
Layout optimisation for yield enhancement in
on-c h i p-VLS IPS I para I le I processing

P. Mazumder

Indexing terms: Very large scale integration, Optimisation

Abstract: The paper investigates the layout opti-
misation problem for processor-array networks. If
an appropriate shape geometry is selected for the
processors, a specific interconnection network can
be area-eficiently mapped on a VLSI/WSI chip to
maximise the chip yield, operational reliability
and circuit performance. A formal technique of
cellular layout by polyomino tiles is proposed,
with application to mapping a variety of processor
geometries onto specific array networks. The
layout algorithms are expressed in a new nota-
tional language, which is amenable to cellular
layout in contrast to classical procedural lan-
guages. The layout technique is illustrated with
both well known parallel-processing array net-
works and a new fault-tolerant square mesh with
reconfigurable processors and interconnect. The
square mesh with redundant processors provides
high yield and operational reliability.

1 Introduction

Two-dimensional array networks in which communica-
tion between two processors occurs through their adjoin-
ing neighbours have been shown to be highly suitable for
on-chip parallel processing in CMOS VLSIjWSI applica-
tions [13]. In the literature, a large number of important
classes of computational problems (e.g. matrix multiplica-
tion, LU decomposition, sorting, FFT etc. [lS, 231) have
been mapped into a VLSI chip utilising the various types
of square- and hexagonal-array networks. This paper
addresses the problems of optimisation of processor
geometry and the associated floorplan design of such
array networks within VLSIjWSI chips so that overall
chip yield can be maximised. Specifically, it identifies a
set of processor geometries which can be optimally laid
out (in the sense that the total area occupied by the pro-
cessor modules and the associated interprocessor links is
minimum) into a VLSI/WSI chip to describe an array
network. While looking into the floorplanning aspects of
these array networks, a new fault-tolerant topology of the
square arrays has been found. This topology has been
shown to improve the yield and operational reliability of
the chip.

Traditionally, in studies of layout techniques for
parallel-processing networks, the individual processors
have been assumed to be square in shape because this

Paper 8419E (C2, E3), first received 12th October t988 and in final
revised form 5th August 1991
The author is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109, USA

IEE PROCEEDINGS-E, Vol. 139, No. 1 , J A N U A R Y 1992

allows us to minimise the average delay by distributing
the processors uniformly along both the horizontal and
the vertical directions [SI. A number of postprocessing
algorithms exist in computational-geometry literature to
transform layout of one shape (say rectangle) into a
square [4]. Such algorithms employ the notions of grid
embedding where a rectangular grid is embedded on a
square grid. Such techniques have potential practical lim-
itations in the sense that grid embedding expands the
area considerably, the dilatation (separation between two
adjoining grid points) occurs due to embedding, and
multiple crossover occurs to minimise the expansion and
dilatation factors. This paper discusses a new layout style,
called here cellular layout, that is constructed by hyper-
cellular structures, commonly known as polyominoes,*
and it identifies a number of array networks described by
these layouts. The purpose of this work is to develop a
formal technique of cellular layout by polyomino shaped
modules and to demonstrate, given an array network,
how to select a suitable processor geometry and how it
can be mapped into a VLSIjWSI chip by using the
simple layout algorithms discussed here. The layout algo-
rithms are expressed in a new notational language which
is more amenable to the layout descriptions than conven-
tional procedural languages. Application is made to
several parallel-processing-array networks, including a
new fault-tolerant square mesh with reconfigurable pro-
cessors and interconnect.

2

An alternative strategy is proposed in this Section to
tackle the issue of layout transformation. Polyomino cel-
lular structures, originally proposed by von Neumann in
connection with cellular automata, are proposed as alter-
native processor geometries to the square shape. Since
individual processing elements comprise a variety of
functional blocks, such as CPU, memory, 1 /0 buffer, etc.,
they can be organised in many different ways and are not
always merely rectangular in shape. Also, like square
blocks, the polyomino shapes of this section can be dis-
tributed uniformly to minimise the propagation delay.

2.1 A notational language for cellular layout
A notational language is introduced here for the con-
struction of layout algorithms. The processors are
described as polyomino-shaped modules. To maintain
regularity, layout algorithms are designed by trans-
forming modules on a Euclidean plane through linear
transformations. Linear transformations have linear as

A formal framework for cellular layout

* A polyomino is a figure obtained by joining squares along their edges
(i.e. rookwise) only.

21

well as rotational components. The simple linear com-
ponent is not discussed here; however the modules are
juxtaposed to align their outer edges so that they can be
enclosed into a minimum square-chip area. In the
resulting layout, a module is completely surrounded by a
finite number of other modules and such a pattern is
described in this paper as cellular layout, since each
module looks like a von Neumann’s cellular animal.
Each cell on the chip plane is a unit square, as described
subsequently. The rotational component of the applied
linear transformation is defined as a placement operator
and the modules are restricted to orient along a finite
direction as permitted by the layout constraint of the
design.

Let E’ be a two-dimensional Euclidean plane rep-
resenting the chip surface, and {x, y} be the basis on E’
such that the angle subtended by x and y at the point of
intersection, called the origin 0, is equal to n/2. Let
X = { i (i = O , 1 , 2 ,... } a n d Y = { j l j = O , 1 , 2 ,... }be the
set of points on the x axis and the y axis such that the
distance. between any two neighbouring points is unity.
The quadratic lattice graph on E’ is defined by connect-
ing all the ordered pairs of x and y in the Cartesian
product X x Y such that the edges are parallel to the x
axis or y axis (Fig. 1). The (i , j)th cell on E’ is the area

Y

0
0 1 2 3 4 5 I 1.1 x

Fig. 1 Quadratic lattice graph on

bounded by the edges connecting the ordered pairs { (i , j),
(i + 1,. j) , (i, j + l), (i + 1 , j + 1)) and is denoted by cell (i ,
j) = x‘y‘.

Definition I : A processor module T~ on a chip plane con-
sists of k rookwise-connected unit squares (the connec-
tion scheme is analogous to valid movements of a rook in
chess game) [7], called here as cells, and is called a
k-omino or a k-cell animal.

Three processor modules are shown in Fig. 2. The first
module consists of two cells and resembles the English

a b C

Fig. 2
(4 1, (4 L, (4 P,

22

I , Land P shaped modulesfor processor geometries

alphabet I. This is denoted by I,. Figs. 26 and 2c are
similarly denoted by L, and P, since they consist of three
and five unit cells, respectively. In general, if a processor
module resembles an English letter in block capital, T ,
then it is represented by T ~ , where k is the number of cells
in the module. Each processor module and its orientation
is represented by its shape polynomial [SI, also known as
rook polynomial [22] . If the lower-left corner of the pro-
cessor module is on the origin, then the shape poly-
nomials of the above three modules are given by S(1,) =
1 + x, S(L,) = 1 + x + xy, and qP,) = 1 + y + xy + y2
+ xy’, respectively.

Definition 2: The shape polynomial S(TJ of the processor
module T~ whose lower-left corner is on the origin 0 is
given by

. .
f l T k) = C Yi,jx’Y’

(i, j) E X x Y

where yi, = 1 if the cell (i , j) E T ~ , otherwise yi, = 0.
The shape polynomial of the module P, in Fig. 2c is

*P,)= 1 + y + y 2 + x y + x y 2 , because y o . o = y o , l =
yo, , = yl, = yl, = 1. It may be noted that x and y ele-
ments in a shape polynomial of a module can be inter-
changed to define a new shape polynomial, which will
represent the same module in a different orientation. The
new shape polynomial is called here as the conjugate of
the original shape polynomial.

Definition 3 : The conjugate of shape polynomial S(T~) is
defined as a shape polynomial,

and is obtained by permuting x and y elements of 4 ~ ~) .
The conjugate of S(P,) will be given by S (P ,) = 1 + x

+ x2 + xy + x’y. Since the x and y elements are per-
muted in the conjugate-shape polynomial, clearly the
basis of chip plane is rotated by 90 degrees, and thereby
the conjugation operation represents placement of the
module in a new orientation. Normally, each processor
module can be placed in a different orientation by
employing a placement operator.

Definition 4 : A placement operator Y , rotates a processor
module tk by an angle Y about one of its edges parallel
to the axis and the new shape polynomial of tk is given
by yc 0 473.

Properties ofYC: If YCl and YC2 are two placement oper-
ators applied on T ~ , then

(y[lyCZ) S(Tk) = y y S l { y C 7 . s (7 k) }

Thus the placement operation is commutative.
If Y = 2mrt (where m E (1, 2, ...}), then

(2mx)< 0 S(T,) = S(T,) and I = (2mx){ is called the identity
operator. Intuitively, an identity operator applies a linear
translation on a processor module, with no rotational
transformation.

If Y = 4, then 4 0 S(T,) = 4 and Y = 4 is called the
null operator.

Since the interconnections in a VLSI layout usually
run either vertically or horizontally parallel to the edges
of the chip, the modules are oriented such that their
edges are always parallel to the basis {x, y}.

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY 1992

Dejnition 5 : The permissible orientations of a processor
module tk on EL are due to the following placement oper-
ators applied in any arbitrary sequence: (mnh, (mn)y,
(mn), and I,, where I, = S(T,) and z is orthog-
onal to chip plane.

The transformations due to (mn), and (mx), are called
reflections or mirroring about the x axis and the y axis,
respectively. The transformation due to (mn), corres-
ponds to a sequel of two reflections about x and y axes,
or equivalently an anticlockwise rotation of 180" about z
axis. The conjugation operation A, is a composite oper-
ation of anticlockwise rotation of the module by 90"
about the z axis and then a reflection about a y axis, i.e. x
and y elements in the shape polynomial S(zk) are
swapped to yield its conjugate shape polynomial S (t k) .

Note that a k-omino module tk has at most eight dis-
tinct shape polynomials corresponding to all permissible
orientations. To justify this, it can be seen that, corres-
ponding to a shape polynomial 4 7 3 of three more
shape polynomials can be generated by applying the
placement operators IC,, ny, and n, on S(tk). By per-
muting the x and y elements, S (r k) can be derived and
the above operators can be applied to get three more
shape polynomials. Depending on the symmetry of tk
about x, y or z axes, there will be eight, four, two or one
distinct shape polynomials. Fig. 3 shows the shape poly-

0 b C

e f 9

Fig. 3 All permissible orientations of P ,

nomials of a module, designated as P, , corresponding to
all its permissible orientations. Clearly, L, has four dis-
tinct shape polynomials, Iz has 2, and 7 , that consists of
only one cell is isotropic (i.e. one permissible orientation).

Using the above definitions, the layout described by
polyomino-shaped modules can be easily described as
discussed in the rest of this section. Since a base cell (say,
z,) can have at most eight neighbours (Moore's
neighbourhood) which physically adjoin it, each base cell
should be described by its own shape polynomial and the
shape polynomials of its eight neighbours.

Definition 6 : The cellular layout of a set of modules R =
U;=, Ri is its shape polynomial S, represented as a
spatial distribution of the shape polynomials Si (or the
permissible orientations) of each of the constituent
modules, R , .

Assuming that two of the edges of R constitute the
basis {x, y} such that the lower-left corner of R is the
origin, the spatial distributions of Si can be expressed as
a matrix, such that for all Ri and R j , if R j is adjacent to

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY I992

Ri horizontally, vertically or diagonally, Si and Sj are
also similarly adjacent in the matrix.

If R = U:= Ri (Fig. 4) is a planar layout describing a
Moore's neighbourhood structure [8] of nine modules,

Fig. 4 Planar layout representing a Moore's neighbourhood

where the base module R, is surrounded by eight other
modules, then

sl s6 s5

s= s, s, s, (1)
[s. s2 SI

The right-hand side is called the layout matrix and eqn. 1
is called the layout rule, E. The layout matrix denotes the
spatial distribution of the processors in the layout, and
the layout rule defines the adjacency relationship between
the modules.

Operations on S
As discussed earlier, the placement operators rotate the
modules in different permissible orientations. They can
be applied repetitively to construct layout hierarchically.
When an operator is applied on an layout matrix S all
the modules within the layout are also rotated accord-
ingly. This property of the placement operators is
described here by the following four operations on S
(where S is given by eqn. 1):

Reflection about x axis:

1 n, S, n, S, n, a S,

n,. s, 11,. s, n,. s,
n,. s, II, as, n,. s,

Since the operator n, produces a mirror image of S about
the x axis, the first and the third rows in eqn. 1 have been
swapped in eqn. 2.

Reflection about y axis:

] (3) [n,. s, ny . s, n,. s,

n, . s= n, . s, n, . s, n, os,] [n, . s, n,. s, n, . s,

ny . s, n, . s, ny . s,
I l y 0 s= I [y 0 s4 ITy 0 s, '?T,.s,

Since the operator ny produces a mirror image of S about
the y axis, the first and the third columns in eqn. 1 have
been interchanged in eqn. 3.

Rotation about z axis:

I, . s, n, . s2 A, . s,
(4)

Since the operator x, rotates the module by 180", the first
and the third rows in eqn. 1 have been swapped, and then
the first and the third columns in the modified matrix are
interchanged in eqn. 4.

23

Conjugate operation:

I , 0 s, I , 0 s, I , 0 s,
I , . s= I , 0 s, A, 0 s, I,. s, [I , . s, I , 0 s, I , 0 SI

Since the operator I , rotates the module by 90", the first
and the third columns in eqn. 1 have been swapped, and
then the modified matrix is transposed in eqn. 4.

Fig. 5 shows the effect of application of above place-
ment operators on the shape polynomial S of the

C

b

I I R E I R 7 1
U

d

Fig. 5
(a) R~ S

Application ofplacement operators on Moore's neighbourhood

(4 4 S (b) a, S (C) R , S

Moore's neighbourhood in Fig. 4. Note that in Fig. 5a
the bottom (top) row corresponds to the top (bottom)
row of Fig. 4, and this corresponds to mirroring about
x-axis. Similarly, Fig. 5b, 5c and 5d illustrate the other
operations as expressed by eqns. 3,4 and 5, respectively.

2.2 Mosaic layout constructed by polyomino
modules

The cellular layout of a repetitive-module structure is
called a mosaic. For a VLSI/WSI implementation, such
regularly structured layouts, described by iterative logic
arrays, cellular networks, systolic arrays etc. are very
easily constructed. These layouts are constructed by rep-
licating a single type module such that there is no gap
between the successive modules. Formally, a mosaic
layout can be defined as :

Definition 7: A layout of T~ under the layout rule E is
called a mosaic M,(T,) iff for every point within the
layout, there exists an instance of the module T~ denoted
as T:, such that for all j # i, T: n T', = d.

A mosaic layout constructed by I, and L, will be dis-
cussed here. For other polyomino structures, the layout
algorithms can be easily constructed as shown later.
Other researchers, namely Wong and Liu [ll], have also
considered general-purpose floorplanning using L-shape
modules.

Layout algorithms
Fig. 6 shows a mosaic layout made of I,, commonly
known as dominoes. The powerful array-interconnection
network described by this layout is discussed in Section

24

3. The layout can be recursively formed by the following
algorithm.

Algorithm 2: The layout of I, describes a mosaic MLI(12)
under the following layout rule (say 81):

S(I2")

S(I2")
S " - m 1, 0

I I I I I I I I J

Fig. 6 Mosaic layout described by I ,

where n 3 1 is the level of layout, S,,(12) = 4, and I,, =
C:E; ' xi denotes a linear concatenation of 2n cells.

In the above algorithm, the nth level of the layout con-
sists of 4n - 2 dominoes, n dominoes in the top row, n
dominoes in the bottom row, n - 1 dominoes in the left-
most column, and n - 1 dominoes in the right most
column. This describes an annular square region having
an inner edge of length n - 1 and an outer edge of length
n. It may be observed that for n = 1, Sl(IF) will consist of
two dominoes stacked horizontally. By simple induction,
it can be seen that the algorithm describes the layout
shown in Fig. 6, which shows &(I,).

The next algorithm describes a mosaic layout which
consists of L, modules, commonly known as trominoes.
As it is pointed out below, hexomino modules having P,
shape also describe a similar mosaic layout. The layout
can be recursively constructed as the following:

Algorithm 3: The layout of L, describes a mosaic M,,(L,)
under the following layout rule (say ~ 2) :

sn- d sn-

s(L3) d] (7) L m d x y 0 s0-1(~3)

SAL,) =

where n > 1 is called the level of layout and S,(L,) =
qL,) is the shape polynomial of L, .

Referring to Fig. 7, in order that a layout having the
shape polynomial S,(L,) is a mosaic by layout rule e2, it
is required that h, = 2"h(L,) - 1, u2 = 2"v(L,) - 1, h, =
h(L,) and u3 = V(L,).

Thus for example if n = 3, then the mosaic layout
M,,(L,) will be gven by

=, 0 SAL,) d SAL,)

S*(L,) 4 ny 0 S*(L,)
S,(L,) = d s(L3) [

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY 1992

By applying eqns. 2, 3 and 4, the shape polynomial of the
mosaic layout is given by

4 2

Fig. 7 Mosaic layout described by L ,

By applying the properties of the placement operators,
the layout of S,(L,) can be obtained from eqn. 8 as
shown in Fig. 8. It can be seen that the diagonal (lower-
left to upper-right) modules are placed without rotation
by the identity operator I, other modules are rotated by
the corresponding placement operator in the matrix of
eqn. 8, and the null operator 4 indicates no occurrence of
a module in the corresponding position.

Fig. 8 Mosaic layoutfor S,(L,)

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY 1992

2.3 Computational power, chip area and layout cost
The computational power of a mosaic layout can be
roughly measured by a parameter called structural com-
plexity. Since each processor has equal and constant
computational power, a mosaic has a total computa-
tional power which is proportional to an exponential or
a polynomial function of the level of layout n. The struc-
tural complexity of the shape polynomial S,(T,) is the
total number of constituent k-ominoes and is given by
N"(T,). Structural complexity is denoted with respect to n,
since the level of layout indicates the number of steps
required to generate a layout of certain computational
power. From the recursive definition of 81, Nn(Iz) = 4n
+ Nn-l(Iz) - 2, with N1(12) = 2. Thus the structural

complexity of S&) is given by N&) = 4
i + N1(12) - 2(n - 1) = 2n2. Since N,(L,) = 4Nn- 1(L3)
+ 1 with N1(L3) = 1, the structural complexity of S,(L,)

is given by N,(L,) = (1/3)(4" - 1).
The square hull of a mosaic is the smallest-size square

in which the mosaic can be enclosed and is a measure of
the minimum chip size required to fabricate the mosaic
layout. In order that the mosaic can be efficiently laid
out within a chip, the mosaic should be approximately
square in shape. The mosaic Mel(12) has a square hull
of side J(2)n. The mosaic Me2(L3) has a square hull of
side 2"/J(3), assuming I S(L3) I = 1 (i.e. the area of the tile
L, is equal to unity).

2.4 Layout cost
The regularity of the layout allows us to make a mosaic
arrangement of the processors by laying out fewer pro-
cessors than the total number of processors in the
mosaic. Since each processor has a bounded (usually less
than 8) number of interprocessor links, the placement
and the associated connection cost of each processor is
O(1). The overall layout cost of the mosaic is defined as
the total number of processors actually laid out. In algo-
rithm of 81, since each level of recursion of the layout
involves adding the top and the bottom rows and the
rightmost and the leftmost columns and costs 4 x 0(1),
except when n = 1 that costs 2 x O(1). Thus to construct
ME1(Iz), it costs at most (4n - 2) x O(1) = oJ{N,(I,)}. In
the algorithm of ~ 2 , at each level of recursion of the
layout ~2 costs 5 x O(1), and to construct Me2(L3), a cost
of 5/2 log (3Nn(L,) + 1) = O{log N,(L,)} is required.

3 Array interconnection networks

To evaluate the importance of the layout algorithms
described above, it is necessary to identify the intercon-
nection networks described by the mosaic layout. A com-
munication link can be set up between two modules in
the mosaic if they are adjacent to each other. The inter-
connection networks described by the layouts Mel(12)
and Me2(L3) are identified in this Section.

In Fig. 6, it can be seen that every non-peripheral
domino is surrounded by six other dominoes except the
innermost two dominoes corresponding to layout level
n = 1. The graph due to Mcl(12) is 6-regular (assuming
that the innermost two dominoes as a single node) and
corresponds to the communication geometries of hexa-
gonal arrays as shown in Fig. 9. It can be seen in Fig. 6
that processor x is surrounded by processors a-f, and
that the resulting graph is thereby a hexagonal array.
These arrays are suitable for various computational
problems like matrix multiplication, LU decomposition,
2-D convolution, FFT etc. [IS].

25

In Fig. 8 it can be seen that every non-peripheral
tromino is surrounded by four, five or six other modules
depending on its position in the layout. The graph

processor which is added to the centre of S,(L,). The
values of C, for different values of k = 1, 2, 3, . . . can be
derived as follows.

I
I

Fig. 9 Hexagonal arrays described by Mc,(12)

described by Me2(L3) denotes communication geometries
of square arrays with redundant cells as shown in Fig. 10.
In the matrix of eqn. 8 the five non-peripheral diagonal
placement operators (except 4) correspond to the loca-

Fig. 10 Fault-tolerant meshes described by M,,(L,)

tion of redundant cells. It may be noted that the com-
munication graph in Fig. 10 corresponds to S4(L3) and
hence it has 5 * 4 + 1 = 2 1 redundant cells correspond-
ing to four S,(L,) and the centre S(L,) in eqn. 7. This
communication topology is highly suitable for fault-
tolerant parallel processing and is particularly relevant
for high-yield VLSI/WSI fabrication. A defective pro-
cessor can be bypassed as shown in Fig. 11, where the
central processor is utilised to reconstruct the square
mesh.

The presence of redundant processors ameliorates the
chip yield considerably in VLSI/WSI applications. Since
the layout of the chip is recursively defined, the yield of
S,(L,) is defined by the recurrence relation

y.= Y:-, +4Y:- ,Y1c , - ,

where Yp is the yield of a single processor and C, ~ is the
possibility that SnL1(L3) can be repaired by one spare

26

t
defective

(a
Fig. 11 Reconfguration of a defective processor

From the above equation, it may be seen that Y, = Y:
+ 4C1Yf, which is also equal to Y: + 5 Y g l - Y,) enu-

merating the different ways we can construct a square
mesh with five processors. Thus we can find that C , = 1
- Y,. To calculate Cz, we find the probability that

Sz(L,) is faulty and can be repaired by a fault-free spare
processor in the centre of S3(L3). In this case, the corner
processor in S,(L,) that is connected to the centre
processor of S,(L,) should be faulty, and one of the
four other processors in Sz(L,) is faulty. Therefore, we
obtain C, = (1 - Yp)4Y31 - Y,). Similarly, we can show
that C, = (1 - Yp)Y:Y,3Ygl - Y,) + (1 - Yp)Y:Cz
+ 3Y: Y,C;, and C,, Ofor k 2 4.

In Table 1, the yields of a square mesh with and
without redundant processors for the different processor
defect probabilities are shown. It may be noted that if the
processor failure probability is or less, the yield
remains constant (about 100%) for the fault-tolerant
mesh, but the yield of the mesh without redundancy
deteriorates rapidly for large-size meshes (greater than
1 K). If the defect probability is greater than lo-,, the
fault-tolerant mesh is very effective in improving the yield
even for meshes of small sizes. Fig. 1 2 shows the variation
of yield of normal square meshes of different sizes, and
Fig. 13 shows the same for fault-tolerant square meshes.

In addition to improving the chip yield, the presence
of redundant processors can be utilised to detect and
correct concurrent error, and thereby to improve the
computational reliability. Since the redundant processors
are symmetrically located in the mesh networks (Fig. lo),

Fig. 12 Yield against size o f a normal square mesh

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY 1992

they can check the computational correctness of the
outer four processors in a round-robin fashion (similar to
roving diagnosis [161) and thereby improve the oper-
ational reliability of the mesh networks considerably.

Fig. 13 Yield against size of a fault-tolerant mesh

10-

8 -

O1 6-

-
0
L

6
U-' 4 -
(L

2 -

ob 10 20 30
number of processors, power of 2

Fig. 14 Improvement of RIF against mesh size

Thus the mosaic layout Me2(L3) is topologically suitable
for fault-tolerant computation. Regular mesh structure is
not suitable for fault-tolerant computation. If R&r) = e-"
is the reliability of each processor (assuming the oper-
ational lifetime of the processors is represented by a Pois-
sonian process such that 1 is the mean lifetime of the
processors), then the reliability of an (JN) x (JN) mesh
network without any redundant processor is R d t) =
eCANr. The reliability of the redundant mesh network

RI&) L (5e-4Ar - 4t-5A73'o*N. Thus the overall reliabil-
ity improvement factor RIF is RIF = R , M / R M = (5
- 4e-L')1"*N. For 1 r % 0, RIF L N10*45 L N'.16, and it

can be seen that for a large mesh network the reliability
improves significantly as shown in Fig. 14. The various
reconfiguration schemes for bypassing faulty processors
have been described in Reference 20 and can be easily
applied here.

Table 2: Module geometries for array networks

Module Shape polynomial Type of
notation of module meshes
~

12 1 + x
L, l + x + y

z, 1 + x + x y + x Z y

P, 1 + x + y + x y + y z
Y, 1 + x + x 2 + x J + x 2 y
L, 1 + x + x 2 + y + y 2
P, 1 + y + y 2 + y " + x + x y
H, 1 + x + x ' + x y + y 2 + x y ~ + x 2 y 2

T, 1 + x + x ' + x y

F, 1 + x + x y + x y 2 + x 2 y

Hexagon
Square (fault-tolerant)
Hexagon
Hexagon
Hexagon
Hexagon
Hexagon
Hexagon
Square (fault-tolerant)
Hexagon

Table 2 identifies the layout geometries and shape
polynomial of some other polyomino modules which also
describe array networks that are highly suitable for

S(T4)

Fig. 15
4 SIH,) b SIL) c SIP,) d WJ

VLSI/WSI parallel processing. The planar covering
properties of these modules have been pictonally rep-
resented by Fig. 15 and from these geometrical arrange-
ments, the layout algorithms can be easily designed
employing the concept developed in this Section. Here,
only the polyomino modules have been identified, which
can be utilised to describe different array networks. The
choice of lower-order polyominoes has been restricted by
the requirement of distributing the processors uniformly

Mosaic layouts for hexagonal arrays

Table 1 : Yield against size of square mesh for different defect prob-
abilities

Defect probabilitv lo-'(%) lo-'(%) lo-, (O h)

4
16
64
256
1024 (=lK)
4096 (=4K)
16384 (=16K)
65 536 (=64K)
262 144 (=256K)

1048576 (=1M)

96.0
85.2
52.6
7.6
0.0
0.0
0.0
0.0
0.0
0.0 -

99.9 99.6
99.8 98.4
99.3 93.8
97.3 77.4
89.7 35.9
64.6 1.7
17.5 0.0
0.1 0.0
0.0 0.0
0.0 0.0

100 99.9
100 99.8
100 99.3
100 97.5
99.9 90.3
99.6 66.4
98.3 19.4
93.3 0.1
75.7 0.0
32.8 0.0

100
100
100
100
100
100
100
100
99.7
98.9

100
99.9
99.9
99.7
99.0
96.0
84.9
51.9
7.3
0.0 -

100
100
100
100
100
100
100
100
100
100 -

Y = Yield for normal square mesh
Y, = Yield for fault-tolerant square mesh

IEE PROCEEDINGS-E, Vol. 139, No. I , JANUARY 1992 27

both horizontally and vertically so that delay is approx-
imately the same along both directions. Only the square
and hexagonal array networks are illustrated, because of
their applicability to practical problems such as matrix
multiplication, LU decomposition, 2-D convolution, FFT
etc.

4 Conclusions

As gargantuan ULSI and GSI chips with several billion
transistors are becoming a reality, massively large array
processors will be ideal candidates for the exploitation of
large silicon surfaces. Fast-parallel-processing topologies
such as perfect shufne networks [21], binary trees and its
variants [lo, 171, cube-connected cycles [lS] and others
have been shown to be inadequate for on-chip parallel
processing [12]. Interconnection networks having short
links, such as nearest-neighbour arrays, have several
attractive features: high regularity, intrinsic fault-
tolerance capabilities, area efficiency, high chip yield, and
scalability of the architecture with the problem size.
Several array machines have been experimentally built
for general-purpose coprocessor applications (such as
ILLIAC IV, HARTS and PAX [l, 191) and also for
special-purpose engines in CAD such as IBM’s wire
routing machine (WRM) [3], the University of Michi-
gan’s hexagonal array machine (HAM) [14], and NEC‘s
torus machine [2]. The task granularity for such array
processors vanes from simple inner-step product compu-
tations as in systolic matrix multiplication and LU
decomposition to customised reduced-instruction-set-
computations (RISC) as in maze routing engines.

This paper identifies a number of polyomino module
shapes for processor geometries which can be mapped
cost-efficiently into a VLSI/WSI chip to describe an
array network. The overall design strategy can be
described as floorplanning for the on-chip-array net-
works so that the layout area for the processor modules
and the associated interconnects is a minimum. A new
method of defining the cellular layout has been proposed
which uses the notion of linear transformation on the
layout matrix. The layout algorithms for array networks
are developed; chip area and the layout cost required by
these algorithms are also analysed. Finally, a new topol-
ogy for square meshes has been serendipitously dis-
covered. The presence of redundant processors in the
proposed topology has been shown to considerably
improve the yield and operational reliability of the chip.

5 Acknowledgments

I would like to thank Profs. Kent Fuchs and Steve Kang
at the Coordinated Science Laboratory, University of Illi-

nois, for their criticisms and useful suggestions. This
research was supported in part by US Army University
Research Initiation programme under grant DAAL-03-
87-K-0007, and by NSF under grants MIP 8808978 and
MIP 9013092.

6 References

1 BARNES, G.H., et al.: The ILLIAC IV computer’, IEEE Trans.,
1968, C-17, pp. 7 6 7 5 7

2 SUZUKI, K., et al.: ‘A hardware maze router with application to
interactive ripup and reroute’, IEEE Trans., 1986, 5, (IO), pp.
4-76

3 NAIR, R., et al.: ‘Global wiring on a wire routing machine’. Pro-
ceedings of Design Automation Conference, June 1982, pp. 226231

4 ALELIUNAS, R., and ROSENBERG, A.L.: ‘On embedding rec-
tangular grids in square grids’, IEEE Trans., 1982, C-31, (9). pp.
907-913

5 BARNES, F.W.: ‘Algebraic theory of brick packing 2’, Discrete
Math., 1982.42, pp. 129-144

6 HWANG, K., and BRIGGS, F.: ‘Computer architecture and paral-
lel processing’ (McGraw-Hill, New York, 1984)

7 GOLOMB, S.W.: ‘Polyominoes’ (Scribner, 1965)
8 HAYES, B.: ‘Computer recreations’, Sci. Am., 1984, 250, (3). pp.

12-21
9 HAYES, J.P.: ‘Testing memories for single-cell pattern-sensitive

faults’, IEEE Trans., 1980, C-29, (3). pp. 249-254
10 HOROWITZ, E., and ZORAT, A.: ‘The binary tree as an intercon-

nection network: applications to multiprocessor systems and VLSI’
(ibid., 1981, C-30, (4), pp. 247-253

11 WONG, W.F., and LIU, C.L.: ‘A new algorithm for floorplan
design’. Proceedings of 23rd Design Automation Conference, June
1986, pp. 101-107

12 MAZUMDER, P.: ‘Evaluation of three interconnection networks
for CMOS VLSI implementation’. Proceedings of 1986 Internation-
al Parallel Processing Conference, 1986, pp. 2W207

13 MAZUMDER, P.: ‘Evaluation of onchip static interconnection
networks’, IEEE Trans., 1987, C-36, pp. 365-369

14 VENKATESWARAN, R., and MAZUMDER, P.: ‘A hexagonal
array machine for multilayer wire routing’, IEEE Trans., Computer-
Aided Design, 9, (IO), pp. 10961 112

15 MEAD, C.A., and CONWAY, L.A.: ‘Introduction to VLSI systems’
(Addison Wesley, 1980)

16 MEYER, G., and MASSON, G.: ‘An efficient fault diagnosis algo-
rithm for symmetric multiple processor architecture’, IEEE Trans.,
1978, C-27, (ll), pp. 1059-1063

17 PATTERSON, D., and DESPIAN, A.: ‘X-tree: a structured multi-
processor computer architecture’. Proceedings of IEEE 6th Annual
Symposium on Computer Architectures, April 1979, pp. 83-89

18 PREPARATA, F.P., and VUILLEMIN, J.: The cube connected
cycles: a versatile network for parallel computation’. Proceedings of
20th Annual IEEE Symposium on Foundations of Computer
Science, 1979, pp. 140-147

19 SHIN, K.G.: ‘HARTS: a distributed real-time architecture’, IEEE
Computer, 1991, pp. 2 5 3 5

20 SHUTE, M.J.: ‘Fifth generation wafer architecture’ (Prentice Hall,
London, 1988)

21 STONE, H.S.: ‘Parallel processing with the perfect shufne’, IEEE
Trans.. 1970, C-U), (2), pp. 153-161

22 TUCKER, A.: ‘Applied combinatorics’ (John Wiley & Sons, 1980)
23 ULLMAN, J.D.: ‘Computational aspects of VLSI’ (Computer

Science Press, 1984)

28 IEE PROCEEDINGS-E, Vol. 139, No. 1, JANUARY 1992

