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Abstract: The paper investigates the layout opti- 
misation problem for processor-array networks. If 
an appropriate shape geometry is selected for the 
processors, a specific interconnection network can 
be area-eficiently mapped on a VLSI/WSI chip to 
maximise the chip yield, operational reliability 
and circuit performance. A formal technique of 
cellular layout by polyomino tiles is proposed, 
with application to mapping a variety of processor 
geometries onto specific array networks. The 
layout algorithms are expressed in a new nota- 
tional language, which is amenable to cellular 
layout in contrast to classical procedural lan- 
guages. The layout technique is illustrated with 
both well known parallel-processing array net- 
works and a new fault-tolerant square mesh with 
reconfigurable processors and interconnect. The 
square mesh with redundant processors provides 
high yield and operational reliability. 

1 Introduction 

Two-dimensional array networks in which communica- 
tion between two processors occurs through their adjoin- 
ing neighbours have been shown to be highly suitable for 
on-chip parallel processing in CMOS VLSIjWSI applica- 
tions [13]. In the literature, a large number of important 
classes of computational problems (e.g. matrix multiplica- 
tion, LU decomposition, sorting, FFT etc. [lS,  231) have 
been mapped into a VLSI chip utilising the various types 
of square- and hexagonal-array networks. This paper 
addresses the problems of optimisation of processor 
geometry and the associated floorplan design of such 
array networks within VLSIjWSI chips so that overall 
chip yield can be maximised. Specifically, it identifies a 
set of processor geometries which can be optimally laid 
out (in the sense that the total area occupied by the pro- 
cessor modules and the associated interprocessor links is 
minimum) into a VLSI/WSI chip to describe an array 
network. While looking into the floorplanning aspects of 
these array networks, a new fault-tolerant topology of the 
square arrays has been found. This topology has been 
shown to improve the yield and operational reliability of 
the chip. 

Traditionally, in studies of layout techniques for 
parallel-processing networks, the individual processors 
have been assumed to be square in shape because this 

Paper 8419E (C2, E3), first received 12th October t988 and in final 
revised form 5th August 1991 
The author is with the Department of Electrical Engineering and Com- 
puter Science, University of Michigan, Ann Arbor, MI 48109, USA 

IEE PROCEEDINGS-E, Vol. 139, No.  1 , J A N U A R Y  1992 

allows us to minimise the average delay by distributing 
the processors uniformly along both the horizontal and 
the vertical directions [SI. A number of postprocessing 
algorithms exist in computational-geometry literature to 
transform layout of one shape (say rectangle) into a 
square [4]. Such algorithms employ the notions of grid 
embedding where a rectangular grid is embedded on a 
square grid. Such techniques have potential practical lim- 
itations in the sense that grid embedding expands the 
area considerably, the dilatation (separation between two 
adjoining grid points) occurs due to embedding, and 
multiple crossover occurs to minimise the expansion and 
dilatation factors. This paper discusses a new layout style, 
called here cellular layout, that is constructed by hyper- 
cellular structures, commonly known as polyominoes,* 
and it identifies a number of array networks described by 
these layouts. The purpose of this work is to develop a 
formal technique of cellular layout by polyomino shaped 
modules and to demonstrate, given an array network, 
how to select a suitable processor geometry and how it 
can be mapped into a VLSIjWSI chip by using the 
simple layout algorithms discussed here. The layout algo- 
rithms are expressed in a new notational language which 
is more amenable to the layout descriptions than conven- 
tional procedural languages. Application is made to 
several parallel-processing-array networks, including a 
new fault-tolerant square mesh with reconfigurable pro- 
cessors and interconnect. 

2 

An alternative strategy is proposed in this Section to 
tackle the issue of layout transformation. Polyomino cel- 
lular structures, originally proposed by von Neumann in 
connection with cellular automata, are proposed as alter- 
native processor geometries to the square shape. Since 
individual processing elements comprise a variety of 
functional blocks, such as CPU, memory, 1 /0  buffer, etc., 
they can be organised in many different ways and are not 
always merely rectangular in shape. Also, like square 
blocks, the polyomino shapes of this section can be dis- 
tributed uniformly to minimise the propagation delay. 

2.1 A notational language for cellular layout 
A notational language is introduced here for the con- 
struction of layout algorithms. The processors are 
described as polyomino-shaped modules. To maintain 
regularity, layout algorithms are designed by trans- 
forming modules on a Euclidean plane through linear 
transformations. Linear transformations have linear as 

A formal framework for cellular layout 

* A polyomino is a figure obtained by joining squares along their edges 
(i.e. rookwise) only. 

21 



well as rotational components. The simple linear com- 
ponent is not discussed here; however the modules are 
juxtaposed to align their outer edges so that they can be 
enclosed into a minimum square-chip area. In the 
resulting layout, a module is completely surrounded by a 
finite number of other modules and such a pattern is 
described in this paper as cellular layout, since each 
module looks like a von Neumann’s cellular animal. 
Each cell on the chip plane is a unit square, as described 
subsequently. The rotational component of the applied 
linear transformation is defined as a placement operator 
and the modules are restricted to orient along a finite 
direction as permitted by the layout constraint of the 
design. 

Let E’ be a two-dimensional Euclidean plane rep- 
resenting the chip surface, and {x, y} be the basis on E’ 
such that the angle subtended by x and y at the point of 
intersection, called the origin 0, is equal to n/2. Let 
X = { i ( i = O , 1 , 2  ,... } a n d Y = { j l j = O , 1 , 2  ,... }be the  
set of points on the x axis and the y axis such that the 
distance. between any two neighbouring points is unity. 
The quadratic lattice graph on E’ is defined by connect- 
ing all the ordered pairs of x and y in the Cartesian 
product X x Y such that the edges are parallel to the x 
axis or y axis (Fig. 1). The ( i ,  j)th cell on E’ is the area 

Y 

0 
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Fig. 1 Quadratic lattice graph on 

bounded by the edges connecting the ordered pairs { ( i ,  j), 
( i  + 1,. j ) ,  (i, j + l), (i + 1 ,  j + 1)) and is denoted by cell ( i ,  
j) = x‘y‘. 

Definition I :  A processor module T~ on a chip plane con- 
sists of k rookwise-connected unit squares (the connec- 
tion scheme is analogous to valid movements of a rook in 
chess game) [7], called here as cells, and is called a 
k-omino or a k-cell animal. 

Three processor modules are shown in Fig. 2. The first 
module consists of two cells and resembles the English 

a b C 

Fig. 2 
(4 1, (4 L, (4 P, 
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alphabet I. This is denoted by I,. Figs. 26 and 2c are 
similarly denoted by L, and P, since they consist of three 
and five unit cells, respectively. In general, if a processor 
module resembles an English letter in block capital, T ,  
then it is represented by T ~ ,  where k is the number of cells 
in the module. Each processor module and its orientation 
is represented by its shape polynomial [SI, also known as 
rook polynomial [22] .  If the lower-left corner of the pro- 
cessor module is on the origin, then the shape poly- 
nomials of the above three modules are given by S(1,) = 
1 + x, S(L,) = 1 + x + xy, and qP,)  = 1 + y + xy + y2 
+ xy’, respectively. 

Definition 2:  The shape polynomial S(TJ of the processor 
module T~ whose lower-left corner is on the origin 0 is 
given by 

. .  
f l T k )  = C Yi,jx’Y’ 

(i, j )  E X x Y 

where yi, = 1 if the cell ( i ,  j) E T ~ ,  otherwise yi, = 0. 
The shape polynomial of the module P, in Fig. 2c is 

*P,)= 1 + y + y 2 + x y + x y 2 ,  because y o . o = y o , l =  
yo, , = yl, = yl, = 1. It may be noted that x and y ele- 
ments in a shape polynomial of a module can be inter- 
changed to define a new shape polynomial, which will 
represent the same module in a different orientation. The 
new shape polynomial is called here as the conjugate of 
the original shape polynomial. 

Definition 3 :  The conjugate of shape polynomial S(T~) is 
defined as a shape polynomial, 

and is obtained by permuting x and y elements of 4 ~ ~ ) .  
The conjugate of S(P,) will be given by S ( P , )  = 1 + x 

+ x2 + xy + x’y. Since the x and y elements are per- 
muted in the conjugate-shape polynomial, clearly the 
basis of chip plane is rotated by 90 degrees, and thereby 
the conjugation operation represents placement of the 
module in a new orientation. Normally, each processor 
module can be placed in a different orientation by 
employing a placement operator. 

Definition 4 :  A placement operator Y ,  rotates a processor 
module tk  by an angle Y about one of its edges parallel 
to the axis and the new shape polynomial of tk is given 
by yc 0 473. 

Properties ofYC:  If YCl and YC2 are two placement oper- 
ators applied on T ~ ,  then 

(y[lyCZ) S(Tk) = y y S l  { y C 7 .  s ( 7 k ) }  

Thus the placement operation is commutative. 
If Y = 2mrt (where m E (1, 2, ...}), then 

(2mx)< 0 S(T,) = S(T,) and I = (2mx){ is called the identity 
operator. Intuitively, an identity operator applies a linear 
translation on a processor module, with no rotational 
transformation. 

If Y = 4, then 4 0 S(T,) = 4 and Y = 4 is called the 
null operator. 

Since the interconnections in a VLSI layout usually 
run either vertically or horizontally parallel to the edges 
of the chip, the modules are oriented such that their 
edges are always parallel to the basis {x, y}. 
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Dejnition 5 :  The permissible orientations of a processor 
module tk on EL are due to the following placement oper- 
ators applied in any arbitrary sequence: (mnh, (mn)y, 
(mn), and I,, where I, = S(T,) and z is orthog- 
onal to chip plane. 

The transformations due to (mn), and (mx), are called 
reflections or mirroring about the x axis and the y axis, 
respectively. The transformation due to (mn), corres- 
ponds to a sequel of two reflections about x and y axes, 
or equivalently an anticlockwise rotation of 180" about z 
axis. The conjugation operation A, is a composite oper- 
ation of anticlockwise rotation of the module by 90" 
about the z axis and then a reflection about a y axis, i.e. x 
and y elements in the shape polynomial S(zk) are 
swapped to yield its conjugate shape polynomial S ( t k ) .  

Note that a k-omino module tk has at most eight dis- 
tinct shape polynomials corresponding to all permissible 
orientations. To justify this, it can be seen that, corres- 
ponding to a shape polynomial 4 7 3  of three more 
shape polynomials can be generated by applying the 
placement operators IC,, ny, and n, on S(tk). By per- 
muting the x and y elements, S ( r k )  can be derived and 
the above operators can be applied to get three more 
shape polynomials. Depending on the symmetry of tk 
about x, y or z axes, there will be eight, four, two or one 
distinct shape polynomials. Fig. 3 shows the shape poly- 

0 b C 

e f 9 

Fig. 3 All permissible orientations of P ,  

nomials of a module, designated as P, , corresponding to 
all its permissible orientations. Clearly, L, has four dis- 
tinct shape polynomials, Iz has 2, and 7 ,  that consists of 
only one cell is isotropic (i.e. one permissible orientation). 

Using the above definitions, the layout described by 
polyomino-shaped modules can be easily described as 
discussed in the rest of this section. Since a base cell (say, 
z,) can have at most eight neighbours (Moore's 
neighbourhood) which physically adjoin it, each base cell 
should be described by its own shape polynomial and the 
shape polynomials of its eight neighbours. 

Definition 6 :  The cellular layout of a set of modules R = 
U;=, Ri is its shape polynomial S, represented as a 
spatial distribution of the shape polynomials Si (or the 
permissible orientations) of each of the constituent 
modules, R , .  

Assuming that two of the edges of R constitute the 
basis {x, y} such that the lower-left corner of R is the 
origin, the spatial distributions of Si can be expressed as 
a matrix, such that for all Ri and R j ,  if R j  is adjacent to 
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Ri horizontally, vertically or diagonally, Si and Sj are 
also similarly adjacent in the matrix. 

If R = U:= Ri (Fig. 4) is a planar layout describing a 
Moore's neighbourhood structure [8] of nine modules, 

Fig. 4 Planar layout representing a Moore's neighbourhood 

where the base module R, is surrounded by eight other 
modules, then 

sl s6 s5 

s= s, s, s, (1) 
[s. s2 SI 

The right-hand side is called the layout matrix and eqn. 1 
is called the layout rule, E. The layout matrix denotes the 
spatial distribution of the processors in the layout, and 
the layout rule defines the adjacency relationship between 
the modules. 

Operations on S 
As discussed earlier, the placement operators rotate the 
modules in different permissible orientations. They can 
be applied repetitively to construct layout hierarchically. 
When an operator is applied on an layout matrix S all 
the modules within the layout are also rotated accord- 
ingly. This property of the placement operators is 
described here by the following four operations on S 
(where S is given by eqn. 1): 

Reflection about x axis: 

1 n, S, n, S, n, a S, 

n,. s, 11,. s, n,. s, 
n,. s, II, as, n,. s, 

Since the operator n, produces a mirror image of S about 
the x axis, the first and the third rows in eqn. 1 have been 
swapped in eqn. 2. 

Reflection about y axis: 

] (3) [ n,. s, ny . s, n,. s, 

n, . s=  n, . s, n, . s, n, os, ] [ n, . s, n,. s, n, . s, 

ny . s, n, . s, ny . s, 
I l y  0 s= I [ y  0 s4 ITy 0 s, '?T,.s, 

Since the operator ny produces a mirror image of S about 
the y axis, the first and the third columns in eqn. 1 have 
been interchanged in eqn. 3. 

Rotation about z axis: 

I, . s, n, . s2 A, . s, 
(4) 

Since the operator x, rotates the module by 180", the first 
and the third rows in eqn. 1 have been swapped, and then 
the first and the third columns in the modified matrix are 
interchanged in eqn. 4. 
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Conjugate operation: 

I ,  0 s, I ,  0 s, I ,  0 s, 
I , .  s=  I ,  0 s, A, 0 s, I,. s, [ I , .  s, I ,  0 s, I ,  0 SI 

Since the operator I ,  rotates the module by 90", the first 
and the third columns in eqn. 1 have been swapped, and 
then the modified matrix is transposed in eqn. 4. 

Fig. 5 shows the effect of application of above place- 
ment operators on the shape polynomial S of the 

C 

b 

I I R E  I R 7 1  
U 

d 

Fig. 5 
(a) R~ S 

Application ofplacement operators on Moore's neighbourhood 

(4 4 S (b) a, S (C) R ,  S 

Moore's neighbourhood in Fig. 4. Note that in Fig. 5a 
the bottom (top) row corresponds to the top (bottom) 
row of Fig. 4, and this corresponds to mirroring about 
x-axis. Similarly, Fig. 5b, 5c and 5d illustrate the other 
operations as expressed by eqns. 3,4 and 5, respectively. 

2.2 Mosaic layout constructed by polyomino 
modules 

The cellular layout of a repetitive-module structure is 
called a mosaic. For a VLSI/WSI implementation, such 
regularly structured layouts, described by iterative logic 
arrays, cellular networks, systolic arrays etc. are very 
easily constructed. These layouts are constructed by rep- 
licating a single type module such that there is no gap 
between the successive modules. Formally, a mosaic 
layout can be defined as : 

Definition 7: A layout of T~ under the layout rule E is 
called a mosaic M,(T,) iff for every point within the 
layout, there exists an instance of the module T~ denoted 
as T:, such that for all j # i, T: n T', = d. 

A mosaic layout constructed by I, and L, will be dis- 
cussed here. For other polyomino structures, the layout 
algorithms can be easily constructed as shown later. 
Other researchers, namely Wong and Liu [ll], have also 
considered general-purpose floorplanning using L-shape 
modules. 

Layout algorithms 
Fig. 6 shows a mosaic layout made of I,, commonly 
known as dominoes. The powerful array-interconnection 
network described by this layout is discussed in Section 
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3. The layout can be recursively formed by the following 
algorithm. 

Algorithm 2: The layout of I, describes a mosaic MLI(12) 
under the following layout rule (say 81): 

S(I2") 

S(I2") 
S " - m  1, 0 

I I  I I I I I I J  

Fig. 6 Mosaic layout described by I ,  

where n 3 1 is the level of layout, S,,(12) = 4, and I,, = 
C:E; ' xi denotes a linear concatenation of 2n cells. 

In the above algorithm, the nth level of the layout con- 
sists of 4n - 2 dominoes, n dominoes in the top row, n 
dominoes in the bottom row, n - 1 dominoes in the left- 
most column, and n - 1 dominoes in the right most 
column. This describes an annular square region having 
an inner edge of length n - 1 and an outer edge of length 
n. It may be observed that for n = 1, Sl(IF) will consist of 
two dominoes stacked horizontally. By simple induction, 
it can be seen that the algorithm describes the layout 
shown in Fig. 6, which shows &(I,). 

The next algorithm describes a mosaic layout which 
consists of L, modules, commonly known as trominoes. 
As it is pointed out below, hexomino modules having P, 
shape also describe a similar mosaic layout. The layout 
can be recursively constructed as the following: 

Algorithm 3: The layout of L, describes a mosaic M,,(L,) 
under the following layout rule (say ~ 2 ) :  

sn- d sn- 

s(L3) d ] (7) L m  d x y  0 s0-1(~3) 

SAL,) = 

where n > 1 is called the level of layout and S,(L,) = 
qL,)  is the shape polynomial of L, . 

Referring to Fig. 7, in order that a layout having the 
shape polynomial S,(L,) is a mosaic by layout rule e2, it 
is required that h, = 2"h(L,) - 1, u2 = 2"v(L,) - 1, h, = 
h(L,) and u3 = V(L,). 

Thus for example if n = 3, then the mosaic layout 
M,,(L,) will be gven by 

=, 0 SAL,) d SAL,) 

S*(L,) 4 ny 0 S*(L,) 
S,(L,) = d s(L3) [ 
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By applying eqns. 2, 3 and 4, the shape polynomial of the 
mosaic layout is given by 

4 2  

Fig. 7 Mosaic layout described by L ,  

By applying the properties of the placement operators, 
the layout of S,(L,) can be obtained from eqn. 8 as 
shown in Fig. 8. It can be seen that the diagonal (lower- 
left to upper-right) modules are placed without rotation 
by the identity operator I, other modules are rotated by 
the corresponding placement operator in the matrix of 
eqn. 8, and the null operator 4 indicates no occurrence of 
a module in the corresponding position. 

Fig. 8 Mosaic layoutfor S,(L,) 
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2.3 Computational power, chip area and layout cost 
The computational power of a mosaic layout can be 
roughly measured by a parameter called structural com- 
plexity. Since each processor has equal and constant 
computational power, a mosaic has a total computa- 
tional power which is proportional to an exponential or 
a polynomial function of the level of layout n. The struc- 
tural complexity of the shape polynomial S,(T,) is the 
total number of constituent k-ominoes and is given by 
N"(T,). Structural complexity is denoted with respect to n, 
since the level of layout indicates the number of steps 
required to generate a layout of certain computational 
power. From the recursive definition of 81, Nn(Iz) = 4n 
+ Nn-l(Iz) - 2, with N1(12) = 2. Thus the structural 

complexity of S&) is given by N&) = 4 
i + N1(12) - 2(n - 1) = 2n2. Since N,(L,) = 4Nn- 1(L3) 
+ 1 with N1(L3) = 1, the structural complexity of S,(L,) 

is given by N,(L,) = (1/3)(4" - 1). 
The square hull of a mosaic is the smallest-size square 

in which the mosaic can be enclosed and is a measure of 
the minimum chip size required to fabricate the mosaic 
layout. In order that the mosaic can be efficiently laid 
out within a chip, the mosaic should be approximately 
square in shape. The mosaic Mel(12) has a square hull 
of side J(2)n. The mosaic Me2(L3) has a square hull of 
side 2"/J(3), assuming I S(L3) I = 1 (i.e. the area of the tile 
L, is equal to unity). 

2.4 Layout cost 
The regularity of the layout allows us to make a mosaic 
arrangement of the processors by laying out fewer pro- 
cessors than the total number of processors in the 
mosaic. Since each processor has a bounded (usually less 
than 8) number of interprocessor links, the placement 
and the associated connection cost of each processor is 
O(1). The overall layout cost of the mosaic is defined as 
the total number of processors actually laid out. In algo- 
rithm of 81, since each level of recursion of the layout 
involves adding the top and the bottom rows and the 
rightmost and the leftmost columns and costs 4 x 0(1), 
except when n = 1 that costs 2 x O(1). Thus to construct 
ME1(Iz), it costs at most (4n - 2) x O(1) = oJ{N,(I,)}. In 
the algorithm of ~ 2 ,  at each level of recursion of the 
layout ~2 costs 5 x O(1), and to construct Me2(L3), a cost 
of 5/2 log (3Nn(L,) + 1) = O{log N,(L,)} is required. 

3 Array interconnection networks 

To evaluate the importance of the layout algorithms 
described above, it is necessary to identify the intercon- 
nection networks described by the mosaic layout. A com- 
munication link can be set up between two modules in 
the mosaic if they are adjacent to each other. The inter- 
connection networks described by the layouts Mel(12) 
and Me2(L3) are identified in this Section. 

In Fig. 6, it can be seen that every non-peripheral 
domino is surrounded by six other dominoes except the 
innermost two dominoes corresponding to layout level 
n = 1. The graph due to Mcl(12) is 6-regular (assuming 
that the innermost two dominoes as a single node) and 
corresponds to the communication geometries of hexa- 
gonal arrays as shown in Fig. 9. It can be seen in Fig. 6 
that processor x is surrounded by processors a-f, and 
that the resulting graph is thereby a hexagonal array. 
These arrays are suitable for various computational 
problems like matrix multiplication, LU decomposition, 
2-D convolution, FFT etc. [IS]. 
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In Fig. 8 it can be seen that every non-peripheral 
tromino is surrounded by four, five or six other modules 
depending on its position in the layout. The graph 

processor which is added to the centre of S,(L,). The 
values of C, for different values of k = 1, 2, 3, . . . can be 
derived as follows. 

I 
I 

Fig. 9 Hexagonal arrays described by Mc,(12) 

described by Me2(L3) denotes communication geometries 
of square arrays with redundant cells as shown in Fig. 10. 
In the matrix of eqn. 8 the five non-peripheral diagonal 
placement operators (except 4) correspond to the loca- 

Fig. 10 Fault-tolerant meshes described by M,,(L,) 

tion of redundant cells. It may be noted that the com- 
munication graph in Fig. 10 corresponds to S4(L3) and 
hence it has 5 * 4 + 1 = 2 1  redundant cells correspond- 
ing to four S,(L,) and the centre S(L,) in eqn. 7. This 
communication topology is highly suitable for fault- 
tolerant parallel processing and is particularly relevant 
for high-yield VLSI/WSI fabrication. A defective pro- 
cessor can be bypassed as shown in Fig. 11, where the 
central processor is utilised to reconstruct the square 
mesh. 

The presence of redundant processors ameliorates the 
chip yield considerably in VLSI/WSI applications. Since 
the layout of the chip is recursively defined, the yield of 
S,(L,) is defined by the recurrence relation 

y.= Y:-, +4Y:- ,Y1c , - ,  

where Yp is the yield of a single processor and C, ~ is the 
possibility that SnL1(L3) can be repaired by one spare 
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t 
defective 

(a 
Fig. 11 Reconfguration of a defective processor 

From the above equation, it may be seen that Y, = Y: 
+ 4C1Yf,  which is also equal to Y: + 5 Y g l  - Y,) enu- 

merating the different ways we can construct a square 
mesh with five processors. Thus we can find that C ,  = 1 
- Y,. To calculate Cz, we find the probability that 

Sz(L,) is faulty and can be repaired by a fault-free spare 
processor in the centre of S3(L3). In this case, the corner 
processor in S,(L,) that is connected to the centre 
processor of S,(L,) should be faulty, and one of the 
four other processors in Sz(L,) is faulty. Therefore, we 
obtain C, = (1 - Yp)4Y31 - Y,). Similarly, we can show 
that C, = (1 - Yp)Y:Y,3Ygl - Y,) + (1 - Yp)Y:Cz 
+ 3Y: Y,C;, and C,, Ofor k 2 4. 

In Table 1, the yields of a square mesh with and 
without redundant processors for the different processor 
defect probabilities are shown. It may be noted that if the 
processor failure probability is or less, the yield 
remains constant (about 100%) for the fault-tolerant 
mesh, but the yield of the mesh without redundancy 
deteriorates rapidly for large-size meshes (greater than 
1 K). If the defect probability is greater than lo-,, the 
fault-tolerant mesh is very effective in improving the yield 
even for meshes of small sizes. Fig. 1 2  shows the variation 
of yield of normal square meshes of different sizes, and 
Fig. 13 shows the same for fault-tolerant square meshes. 

In addition to improving the chip yield, the presence 
of redundant processors can be utilised to detect and 
correct concurrent error, and thereby to improve the 
computational reliability. Since the redundant processors 
are symmetrically located in the mesh networks (Fig. lo), 

Fig. 12 Yield against size o f a  normal square mesh 
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they can check the computational correctness of the 
outer four processors in a round-robin fashion (similar to 
roving diagnosis [ 161) and thereby improve the oper- 
ational reliability of the mesh networks considerably. 

Fig. 13 Yield against size of a fault-tolerant mesh 
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Fig. 14 Improvement of RIF against mesh size 

Thus the mosaic layout Me2(L3) is topologically suitable 
for fault-tolerant computation. Regular mesh structure is 
not suitable for fault-tolerant computation. If R&r) = e-" 
is the reliability of each processor (assuming the oper- 
ational lifetime of the processors is represented by a Pois- 
sonian process such that 1 is the mean lifetime of the 
processors), then the reliability of an (JN) x (JN) mesh 
network without any redundant processor is R d t )  = 
eCANr. The reliability of the redundant mesh network 

RI&) L (5e-4Ar - 4t-5A73'o*N. Thus the overall reliabil- 
ity improvement factor RIF is RIF = R , M / R M  = (5 
- 4e-L')1"*N. For 1 r  % 0, RIF L N10*45 L N'.16, and it 

can be seen that for a large mesh network the reliability 
improves significantly as shown in Fig. 14. The various 
reconfiguration schemes for bypassing faulty processors 
have been described in Reference 20 and can be easily 
applied here. 

Table 2: Module geometries for array networks 

Module Shape polynomial Type of 
notation of module meshes 
~ 

12 1 + x  
L, l + x + y  

z, 1 + x + x y + x Z y  

P, 1 + x + y + x y + y z  
Y, 1 + x + x 2 + x J + x 2 y  
L, 1 + x + x 2 + y + y 2  
P, 1 + y + y 2 + y " + x + x y  
H, 1 + x + x ' + x y + y 2 + x y ~ + x 2 y 2  

T, 1 + x + x ' + x y  

F, 1 + x + x y + x y 2 + x 2 y  

Hexagon 
Square (fault-tolerant) 
Hexagon 
Hexagon 
Hexagon 
Hexagon 
Hexagon 
Hexagon 
Square (fault-tolerant) 
Hexagon 

Table 2 identifies the layout geometries and shape 
polynomial of some other polyomino modules which also 
describe array networks that are highly suitable for 

S(T4) 

Fig. 15 
4 SIH,) b SIL) c SIP,) d WJ 

VLSI/WSI parallel processing. The planar covering 
properties of these modules have been pictonally rep- 
resented by Fig. 15 and from these geometrical arrange- 
ments, the layout algorithms can be easily designed 
employing the concept developed in this Section. Here, 
only the polyomino modules have been identified, which 
can be utilised to describe different array networks. The 
choice of lower-order polyominoes has been restricted by 
the requirement of distributing the processors uniformly 

Mosaic layouts for hexagonal arrays 

Table 1 : Yield against size of square mesh for different defect prob- 
abilities 

Defect probabilitv lo-'(%) lo-'(%) lo-, ( O h )  

4 
16 
64 
256 
1024 (=lK) 
4096 (=4K) 
16384 (=16K) 
65 536 (=64K) 
262 144 (=256K) 

1048576 (=1M) 

96.0 
85.2 
52.6 
7.6 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 - 

99.9 99.6 
99.8 98.4 
99.3 93.8 
97.3 77.4 
89.7 35.9 
64.6 1.7 
17.5 0.0 
0.1 0.0 
0.0 0.0 
0.0 0.0 

100 99.9 
100 99.8 
100 99.3 
100 97.5 
99.9 90.3 
99.6 66.4 
98.3 19.4 
93.3 0.1 
75.7 0.0 
32.8 0.0 

100 
100 
100 
100 
100 
100 
100 
100 
99.7 
98.9 

100 
99.9 
99.9 
99.7 
99.0 
96.0 
84.9 
51.9 
7.3 
0.0 - 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 - 

Y = Yield for normal square mesh 
Y, = Yield for fault-tolerant square mesh 
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both horizontally and vertically so that delay is approx- 
imately the same along both directions. Only the square 
and hexagonal array networks are illustrated, because of 
their applicability to practical problems such as matrix 
multiplication, LU decomposition, 2-D convolution, FFT 
etc. 

4 Conclusions 

As gargantuan ULSI and GSI chips with several billion 
transistors are becoming a reality, massively large array 
processors will be ideal candidates for the exploitation of 
large silicon surfaces. Fast-parallel-processing topologies 
such as perfect shufne networks [21], binary trees and its 
variants [lo, 171, cube-connected cycles [lS] and others 
have been shown to be inadequate for on-chip parallel 
processing [12]. Interconnection networks having short 
links, such as nearest-neighbour arrays, have several 
attractive features: high regularity, intrinsic fault- 
tolerance capabilities, area efficiency, high chip yield, and 
scalability of the architecture with the problem size. 
Several array machines have been experimentally built 
for general-purpose coprocessor applications (such as 
ILLIAC IV, HARTS and PAX [l, 191) and also for 
special-purpose engines in CAD such as IBM’s wire 
routing machine (WRM) [3], the University of Michi- 
gan’s hexagonal array machine (HAM) [14], and NEC‘s 
torus machine [2]. The task granularity for such array 
processors vanes from simple inner-step product compu- 
tations as in systolic matrix multiplication and LU 
decomposition to customised reduced-instruction-set- 
computations (RISC) as in maze routing engines. 

This paper identifies a number of polyomino module 
shapes for processor geometries which can be mapped 
cost-efficiently into a VLSI/WSI chip to describe an 
array network. The overall design strategy can be 
described as floorplanning for the on-chip-array net- 
works so that the layout area for the processor modules 
and the associated interconnects is a minimum. A new 
method of defining the cellular layout has been proposed 
which uses the notion of linear transformation on the 
layout matrix. The layout algorithms for array networks 
are developed; chip area and the layout cost required by 
these algorithms are also analysed. Finally, a new topol- 
ogy for square meshes has been serendipitously dis- 
covered. The presence of redundant processors in the 
proposed topology has been shown to considerably 
improve the yield and operational reliability of the chip. 
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