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Abstract: A new highly parallel model for concur- 
rent multilayer routing, called CHiRPS, is present- 
ed. The nucleus of CHiRPS is a very flexible 
pathfinder that can be easily configured, even in 
the presence of obstacles, to generate various com- 
monly used pattern-based routes, such as Steiner 
trees with single trunk, comb trees, contour-based 
routes, etc., that span multiple layers simulta- 
neously. The authors employ the concept of a 
total grid-graph to capture the state of the routing 
region. The main steps of the pathfinder are based 
on new parallel algorithms for cycle detection, 
cycle elimination and tree reduction. The pro- 
posed algorithms scale well with increased 
problem sizes since they require only O(log (N)) 
time when given a grid-graph with up to N2 
nodes. As such they are good candidates for mas- 
sively data-parallel machines. 

1 Introduction 

An efficient routing algorithm is a crucial part of the 
automated layout design. At the same time, it is desirable 
that the router be flexible enough to accommodate varia- 
tions in the nature of the routing regions and the number 
of routing layers used. Unfortunately, most methods, 
such as maze routing [l], which are capable of support- 
ing general concurrent layer search operations, are of 
quadratic time complexity and therefore quite slow for 
large multilayer problems. Hence, an alternative solution 
to speed this task appears to be. of considerable interest. 
This paper describes the CHiRPS (configurable highly 
routable parallel system) model for rapid multilayer 
routing. As shown in Fig. 1, the underlying hardware 
(also called coterie hardware) consists of a processor 
array of simple bit-serial processors operating in a SIMD 
fashion. This is appropriate since, as has been observed in 
previous studies [2, 31, at the detailed routing level the 
problem is inherently fine-grained and therefore not very 
suitable to parallelisation using a network of complex 
processors. The key distinguishing feature of the coterie 
hardware is a dynamically reconfigurable mesh connect- 
ing the processors, permitting simultaneous multiple con- 
nected groupings. This is achieved simply by opening or 
closing switches that are provided at each node. Each 
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switch is independently controlled, by the associated pro- 
cessor, based on its local data and the array instructions. 
Once the switches are set, consensus (SOMEPONE) 
computations via a wired-OR operation can be indepen- 
dently made in parallel in each group. Often, the PES in 
each group share certain common properties; conse- 
quently, the groups are also called coteries, giving the 
hardware its name. Further details of the hardware are 
given in Reference 4. From a routing point of view, a very 
useful feature of the coterie-array is that it provides a 
constant-time hardware solution to the connectivity 
determination problem, i.e. determining if a given k-pin 
net can be connected or not. In contrast, most software 
algorithms only determine this as a consequence of the 
actual pathfinding operation. For instance, the maze 
router will declare a connection failure only if at some 
point it finds no more cells to visit prior to visiting all 
pins. Hence, the complexity of connection checking is in 
general the same as that of net routing. 

The main contributions of this paper are the develop- 
ment of a new type of parallel detailed routing model 
called chord routing, in conjunction with the definition 
and mapping of a planar grid-graph structure called 
total-graph that has the additional advantage of being a 
flexible tool for efficient mapping and execution of con- 
current multilayer search on the coterie hardware. The 
chord router is based on new algorithms for cycle- 
detection, cycle-elimination and tree-reduction on total 
graphs. It can be easily tailored to generate shortest- 
length paths (like maze routing), shortest bend paths (like 
line-probe) or pattern-based routes (like Steiner trees 
with single trunk, comb trees, contour-based routes), etc. 
The algorithm runs in time logarithmic to the problem 
size N, and so is quite fast, especially for large N .  In the 
rest of this paper we assume a gridded routing model, but 
with no restrictions on the shape or locations of termin- 
als. Nets are routed one-at-a-time and net ordering stra- 
tegies have been developed based on any prior 
knowledge of the routing region, such as constraint 
graphs for regular channel-routing problems. 

2 Problem formulation 

2.1 Total grid-graph 
Assume each routing layer is specified by a layer-graph, 
denoted as G,(V, EJ for the ith layer. Each layer-graph is 
simply a grid-graph for a particular routing layer with 
one node for each grid cell and an edge connecting two 
adjacent cells that are both free, as shown in Fig. 2a and 

The first author was supported, in part, by an 
IBM Fellowship. 

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 3, M a y  1995 



b. Informally, the total graph for layers 1, ..., k and 
denoted by TG (( 1, 2, . . . , k) ) ,  is formed by constructing 
a union of the edges belonging to the individual layer 
grid-graphs subject to via-availability constraints, i.e. if 
any two edges from different layers, say I, and 1 2 ( 1 1  < I , )  
are incident at any node in the resulting total graph, then 
the grid cell corresponding to that node must be free on 
all intermediate layers I ,  such that I ,  < l < 1,. Since edges 
of the total graph will be tagged by layer numbers, any 
path embedded on the total graph connecting two points 
can be automatically mapped into a route for a net with 
vias implied at those nodes where there is a jump in 

cally, we have L(G,, e) = i for all e E Ei  . Also, let ut = 1 
when cell U is unoccupied in layer k, and assume that a 
via is always possible between adjacent layers whenever 
the corresponding grid cells are free. Then, the initial via- 
permission function for each of the layer graphs is given 
by 

VP (G,, U) = { j l  ( j  < i ) A ( V k ,  such that j  < k < i, u k  = 1) 

u { j I ( j  > i )  A (  V k, such that i < k < j ,  ut = 1)) 

For instance, if cell U is unoccupied in layers 1, 3, 4, 5 and 
blocked in cell 2, then VP (G,, U) = { l) ,  VP(G, , U) = (8) 

svstpm 

0 b 

Fig. 1 
a System overview b Illustration of hardware connection check on coterie mesh 

labels. In fact, the chief advantages of the total graph 
concept are its implicit ability to capture via locations 
(nodes with multiple associated edge-labels) and also the 
fact that it can be directly mapped onto a two- 
dimensional array processor such as the CAAPP. The 
algorithm for total graph construction is as follows. 

Given a labelled graph G(V, E), let L(G, e) denote the 
label assigned to an edge e E E. If we assume that the 
edge-label denotes the layer to which it is assigned physi- 

layer 1 layer 2 layer 3 

Dath found On 

TG (<l, 2>) 

path shown In 0 

these edges are 
not added since 
via-condition is 

= G(1) +G(2) TG(<1,2,3>)= TG(<1,2>)*G(3) 

Fig. 2 
(I 3-layer maze problem 
b Individual grid graphs 
e Total grid graph 
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while VP (G,, U) = (3, 4, 5 )  for i = 3, 4, 5. Intuitively, for 
routing, a path can enter or leave a node U on any layer 
in VP (G, U). Next, given two labelled graphs, G,: (V, Ex) 
and G,: (V, EJ, define the constrained-prefix sum G, 
+ ,G, of the two graphs as the graph G :  (V, E), with 

E = E, U {e(., U) I e E E, 

A W,, e)  E {VP (Gx, 4 n VP (Gx, U))) 

L(G, e)  = 

L (Gx, e) e E E, VP (G, U) = VP (Gx, U) i L (G,, e) otherwise 

Mathematically, now, the total grid graph TG for k 
layers is given by 

TG((1,2, ... , k ) )  = G, + ,,GZ + ,,G3 + ...  + ,,Gk (1) 

For actual problems, the total graph construction can be. 
constrained in various useful ways as follows: 

1. Restricted direction model: For such models, it is 
sufficient to consider only horizontal or vertical edges 
from a certain layer during the graph construction. This 
is a popular approach for detailed routing using three or 
more layers. 

2. Restricted bend model: It is also possible to restrict 
edge addition only to rows and columns containing pins. 
For channel routing, the effect of such restrictions is to 
limit doglegs only to columns where terminals for the net 
occur. 

3. Preferred layer model: If it is desired to route a 
certain net entirely in a certain layer(s), it is possible to 
do so by simply restricting the total-graph construction 
to use edges from those layer@). 
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3.1 Overview 
Given a total grid-graph G, the chord router first com- 
putes in parallel a minimal set of edges, called a chord- 
set, to remove from G so as to remove all cycles from G. 
In other words it computes a spanning tree for G. The 
name for the router comes from the fact that the edges 
removed become chords for the tree so constructed. A 
top-level description of the chord router shows three 
main steps : 

1. Check to see if any cycles exist in G. If yes, go to 
step 2, else let T = G and go to step 3. 

2. Eliminate all cycles in G yielding a tree T. 
3. Reduce T to form a required route R, i.e. one in 

which all leaves are required pins. 

We now describe the parallel algorithms behind each of 
these steps. 

3.2 Parallel cycle-detection 
An efficient sequential version to determine if cycles exist 
within a partial-grid G is to keep removing the edges 
incident on the leaf nodes in G iteratively until no more 
leaf nodes exist. If this process results in a null graph, 
then it can be concluded that the original graph was 
acyclic; if not we can conclude that the graph contains 
cycles. The parallel version of the algorithm, FrondCon- 
tract, given in Fig. 3 is similar in nature, except for a 

Details of parallel chord router 

proc Frondcontract (G:  (E, V), V )  
begin 

Initially, coterie network N =  E; 
A = {leaf nodes in .N}\{V'}; /*These nodes broadcast a 1 in step 

while (A  # 0)  d o  
2 of the while loop*/ 

(1) N = M - { L , I ( ( d e g r e e ( u )  > ~ ) V ( U E V ) ) } ;  

(2) VAL=A.RegBroadcast (N') 
/*L, denotes all links anached to node U at that time*/ 

/*This steo marks nodes in coteries with one or more leaf 
nodes eV8/ 

(3) N = Jy' - {L,IVAL= = 1)) 
/*All nodes that set VAL to 1 in the above steo 

disconnect*/ 
(4) A = {leaf nodes in M}\{V}; 

od end 

Fig. 3 Frond contraction 

cut-through feature that allows entire segments (maximal 
fronds) to be deleted simultaneously. A frond is defined 
as a path starting from any nonleaf node or a node in V 
of the tree and terminates at a leaf node $ V  and has no 
other fronds emanating from any intermediate node on 
the path. A frond that cannot be extended any further is 
called a maximal frond. Each iteration of the while loop 
can then be viewed as identifying and deleting all 
maximal fronds in the graph in parallel. An example is 
given in Fig. 4a-e. The above problem can be generalised 
as follows: 

Problem FroEdcontract (G, V ) :  'Given a graph G :  (V, 
E) and a node-set V c V, find a maximal subgraph G,: 
(V$, E3 of G such that all leaves of G, are in V'. By 
maximal, we mean that any edge added to G, will lead to 
a leaf-node that is not in V'. 

From this formulation, it follows that cycle-detection can 
be done using V = 9. Furthermore, when V # 'J and G 
is a tree, then G, is the unique path, if any, in G connect- 
ing all nodes in V .  Thus, the same algorithm serves the 
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role of both parallel cycle detection (step 1) and fast 
parallel tree-reduction (step 3). 

Complexity analysis: Note that each iteration of the while 
loop takes constant time on the coterie-network. There- 
fore, to analyse the time complexity, it is sufficient to 

a C 

Fig. 4 Application offond-deletionfor pathfinding on a grid-graph 

prove an upper bound on the total number of iterations 
that are required for frond-contraction in the worst case. 
This is stated in the following theorem. 

Theorem I :  On the coterie-network model, at most I = 2 
log (N + 1) - 1 iterations are needed for graph- 
contraction on an N x N grid-graph G. 

Proof: Please refer to Reference 5 for a proof. Further, it 
can be shown that the above bound is tight for a com- 

0 plete binary tree of height 2 log (N) - 1. 

3.3 Parallel cycle -elimination 
In a sense, what we are seeking to do is to find a span- 
ning tree for any given total-graph. Since these graphs 
are quite sparse, algorithms for spanning trees, that 
require the construction of adjacency matrices, are not 
very useful owing to the size of the grid-graphs. Other 
parallel algorithms [6, 71 given in the literature for paral- 
lel spanning tree generation on general graphs also suffer 
from the same. These algorithms are also area-inefficient, 
in the sense that they require N4 processors for an 
N2-node graph problem. On the other hand, the TreeGen 
algorithm, presented in this Section, incorporates knowl- 
edge of the total-graph structure; hence, for an N x N 
grid graph, it runs in logarithmic time, using only NZ 
processors and constant space per processor. First, we 
define some terms. 

Define a triuial cycle as a cycle formed by edges con- 
necting any four neighbouring nodes in the grid with co- 
ordinates, say, ( i ,  j ) ,  ( i  + l, j ) ,  ( i  + l, j + l )  and ( i ,  
j + 1). Node ( i ,  j )  is said to anchor this trivial cycle. All 
other cycles are termed nontrivial (see Fig. 5).  Suppose G :  
(V, E) is a given total grid-graph and G'(V, E )  is a sub- 
graph of G with only nontrivial cycles. Let T :  (V, ET) be 
a spanning tree for G'. Then each edge e in the set C: 
{ E  - ET} can be called a chord since adding it to ET will 
introduce a cycle in T. The set C itself will be called a 
chord-set. Every spanning tree has a different but unique 
chord-set. Consequently, identifying the chord-set is the 
same as constructing the spanning-tree. This is the 
premise on which the algorithm presented below is based. 
Assume variables D, U, R and L are initially set to l(0) at 
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a node, if an edge is present (absent) between the node 
and its immediate Down, Up, Right or Left neighbour, 
respectively. The notation R.East( ) is used to refer to the 
R value stored at the East neighbour. The same applies 
for other directions as well. 

external 
face 

interna trivial 
face cycle 

a nontrivial cycle 

Fig. 5 Illustration of cycle and region definitions 

Procedure TreeGen: (G): 
Input: A total grid graph G (V, E) 
Output: A spanning tree T (V, ET) for G. 

Stage 1 :  The first step is to delete trivial cycles. Each 
node computes D A R A D.East( ) A  R.South( ), which is 1 
only when there exists a trivial cycle anchored at that 
node. The PES that anchor a trivial cycle set their value 
of D to 0. This yields the graph G :  (V, E )  that contains 
no trivial cycles. 

Stage 2 :  Check to see if G has any other cycles. As 
stated earlier, this can be verified by checking if G: (V, 
E") = Frondcontract (G, V = 9) returns an empty 
graph. If so, the procedure can terminate and G be 
returned as the required spanning tree. Otherwise, we 
continue by identifying a chord-set C for G" such that 
GC: (V, E - C) is a spanning tree of G. 

Stage 3: Clearly a necessary condition for C to be a 
chord-set of G is that it must include at least one edge 
from each cycle in G .  Since each cycle corresponds to a 
face, we begin by forming separate connected regions 
within the coterie mesh, one per face, such that each PE 
belongs to at most one region. The latter requirement is 
needed for SIMD operation since otherwise processors 
can vary in terms of the number of different cases each of 
them has to consider. The actual code needed to set up 
the regions turns out to be quite simple and is given 
below : 

1. CONU = TU; COND = 1D; 
CONL = 1L; CONR = 1R; /*Initial network is the 
complement of G* /  

X, = 1R A lR.South( ); X, = l D  A lD.East( ); 
2. XI = U A D;  X, = RA L; 

3. if X, then CONL = 0; $/*DISJl*/ 
4. if X, then CONU = 0 ;  $/*DISJ2*/ 
5.  if X, then COND = 1; $/*JOINl*/ 
6.  if X, then CONR = 1 ; fi/*JOIN2*/ 
EqualizeLinks( ); 

Let us analyse what each step accomplishes. In step ~, an 
initial network .A'" is set up based on four CON plane 
variables; where CONU is 1 at a node to indicate the 
presence of the up-connection at that node, and so on 
(Fig. 6b). However, adjacent faces continue to remain 
connected in N .  To isolate them from each other, we 
apply the DISJl and DISJ2 steps (3 and 4). The first dis- 
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connects nodes that lie on the right border of the cycle 
from its interior (Fig. 6c) while the second disconnects 
nodes that lie on the bottom border of a cycle from the 
interior (Fig. 6 4 .  In a similar vein, whenever opposite 
borders of a cycle lie on adjacent rows (columns), the 
JOIN step, (5 and 6 )  add links to N ,  as specified, to 
ensure that each face results in exactly one component 
(Fig. 6e-f). 

an internal an external 
face face 

0 b C d 

h h  
.U#-. 

Y h 

Fig. 8 Illustration oftree-generation 
a Given grid graph G with 5 internal and 2 external faces 
b Initial network N .  Link added wherever there is a missing grid edge in G 
c DISJI: Disconnect West link from (b) IF PE has both north & south edges 
incident in 8. Edges removed by DISJl shown dotted. This isolates nodes on right 
borders of cycles from its interior 
d DISJ2: Disconnect North link from c IF PE has both east & west edges inci- 
dent in a. Edces removed bv DISl2 shown dotted. This isolates nodes on bottom 
borders of cycles from its interior 
e JOIN1: Adds East link to d IF Pux) & its East neighbour both have missing 
south edges in (1. Edges added by JOIN1 shown dotted. This connects horizon- 
tally oriented cycles of spread 1 
f JOINZ: Adds South link to e IF Pux) & its south neighbour both have missing 
east edxes in d.  Edces added hv JOIN2 shown dotted. This connects verticallv 
oriented cycles of spread 1 
g A region is deactivaled if at least one node in it has a boundary edge (w.r.1. to 
entire array) missing. Shaded areas show two such repiom. Each corresponds to 
an exterior face. Leftmost nodes within each region selected. If selected PE does 
not have a south edge in a, then the PE to its left is marked (see arrows) 
h Acyclic tree T for G. Down edges from all nodes marked in previous step 
(shown hatched) constitute set CL for this case 

. 

Stage 4 :  Having set up the network, and consequently 
components, we next mark the activity status for the 
components as follows: 

1. Isolated nodes are marked inactive unless 
D = 0 V R = 0, i.e. the corresponding right or down edge 
is missing in G .  

2. All components that correspond to exterior faces are 
also deactivated. This is done as follows. First, each cell 
independently sets a variable B = 1 if it determines, based 
on their addresses and the grid-size, that it lies on the 
border of the grid. Next, all cells broadcast this value 
within their component with a RegBroadcast operation. 
Subsequently, all nodes that receive a 1 in the broadcast 
step deactivate themselves. Fig. 69 shows two regions 
deactivated since they correspond to external faces. 

3. All remaining PES are presumed to be active. In 
Fig. 69, only 5 active components remain each of which 
corresponds to one internal face in G .  

Stage 5 :  At this stage, it is possible to compute several 
chord-sets. In particular, chord-set CL (CR) is deter- 
mined as follows. In parallel, for each active component, 
select randomly a PE with smallest (largest) column 
index. For each marked PE (i, j); if the PE has a 
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DOWN edge in G ,  then add that edge to CL (CR); else 
add the DOWN edge of the PE to the immediate West 
(East), namely, ( i ,  j - 1) to CL ( ( i ,  j + 1) to CR). Return 
either GCL: (V, E - CL) or GCR: (V, E - CR) as the 
required tree. 

Complexity analysis: The TreeGen algorithm also takes 
O(1og (N)) time for an N x N mesh. This is not hard to 
see. Stages 1, 3 and 4 of the algorithm are such that each 
PE performs only local computations which take con- 
stant time. Step 2 takes in the worst case O(1og (N)) time 
from theorem 1. Stage 5 requires a RegSelMin operation 
to select a leftmost (rightmost) PE cell which needs 
O(1og (N)) for data that are at most log (N) bits long. 0 

A formal proof of correctness for the above algorithm 
can be found in Reference 5. In reality, stage 2 is actually 
not required for the correct operation of the TreeGen 
algorithm. The operations described in stages 3-5 equally 
work well when directly applied to G. However, there 
does not seem to be any easy characterisation of the 
resulting coterie components and consequently the proof 
of correctness. However, this does reduce the run time 
and so is of practical interest. 

3.4 Extensions to tree generation 
Note that chord-sets {CL} and {CR} were constructed 
by uniformly choosing the leftmost (rightmost) PE of 
each coterie. On a complete grid-graph, this leads to so- 
called comb trees with a single vertical trunk at column 0 
(N - 1) with horizontal row-wise connections to all 
remaining nodes in G (see Fig. 7a  and b). A gener- 
alisation of the tree-generation mechanism is to move the 
vertical trunk to an intermediate column, say j, where 
0 < j < N - 1. Similarly, a tree having one horizontal 
trunk at row j with possibly many vertical branches ema- 
nating from it can be constructed by first rotating the 
input graph G by 90". We call such trees single-trunk 
Steiner trees (STST). Construction of an STST requires 
the same TreeGen procedure as before, with the follow- 
ing modifications: 

1. Divide the array conceptually into a left half (all 
nodes with Collndex < j) and a right half (all nodes with 
Collndex j). 

2. Interchange the roles of R with L, and East( ) with 
West( ) in Stages 1, 3 and 4 of Procedure TreeGen for the 
right half of the array. Also in stage 1, for the right half of 
the array, define the top-right node of a trivial cycle as its 
anchor. The operations for the left half remain as before. 

3. Compute both CL and CR in stage 5. Now classify 
a member-edge of CL as type-1 if it is on the left border 
of a cycle that lies entirely to the left of column j + 1, or 
as type-2 if it is on the left border of a cycle that lies 

left- contour j = 3  

a b c b  d 

Fig. 7 
a East Comb tree generated using chord-set {CL) 
b Contour-based route generated with {CR) 
c Single-trunk Steiner tree using CLSET (3) with length 22 
d Multitrunk Steiner tree: MTST (3, 2,6) using two zones with length 18 
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Flexible routes generated using chord-router 

entirely to the right of column j - 1, with the rest being 
termed as type-3. Similarly, a member-edge of CR is 
termed as type-1 if it is on the right border of a cycle that 
lies entirely to the right of j ,  or as type-2 if it is on the 
right border of a cycle that lies entirely to the left of j, 
with the rest being termed again as type-3. The following 
then yields two new chord-sets, CLSET(j) and CRSET(j), 
that allow for location of the vertical trunk at any 
column j :  

CLSET(j) = {all type-1 edges in CL and CR} 

U {all type-3 edges in CL} 

CRSET ( j )  = {all type-1 edges in CL and CR} 

U {all type-3 edges in CR} 

Note that the two differ only if there exist cycles 
(obstacles) that span column j. In that case, the resulting 
trees will contour either along the left border of the obs- 
tacle (CLSET) or the right border (CRSET). For instance, 
the route shown in Fig. 7b  can be understood as an STST 
generated with CRSET (0). Consequently, the route con- 
tours along the right side of the blocks present along 
column 0. In general, the idea of STST can be extended 
to multiple-trunk Steiner trees (MTST) having one 
primary trunk with one or more secondary trunks per- 
pendicular to it (see Fig. 7d). Thus, the chord-set idea 
appears to be quite general and useful since many of the 
resulting routes have been found quite relevant to 
channel, switchbox and area routing problems. 

4 Implementation details 

4.1 Overview 
The software for our router has currently been coded in 
C +  + and is linked with the IUA Class Library (ICL) 
[SI that provides all kinds of array data structures and 
communication functions including region broadcasts. 
The router is based on the algorithms described in the 
preceding sections. Various options and heuristic stra- 
tegies have also been incorporated into our router to 
account for routing conflicts amongst the nets, thereby 
enabling it to handle various types of routing problems in 
a consistent uniform manner. For instance, some deal 
with the order in which layers are processed during grid- 
graph construction, while others determine the type of 
chord set to use in generating the routing tree, or the 
reservation of territories for pins of unrouted nets, or 
bounds on wire-lengths, etc. Each such policy can be 
simply controlled by means of a user-specified parameter 
which is specified in a separate options file. Because of 
space limitations only an overview is given in this paper; 
further details of each of these steps will be a topic of a 
future publication. Postprocessing options include wire- 
length minimisation and via minimisation routines. 

Another factor which is of great concern for sequential 
net-at-a-time is the order in which the nets are scheduled 
for routing. For special routing problems such as chan- 
nels, we employ a simple scheduling strategy that is 
derived from the underlying vertical constraint graph 
(VCG). Note that the VCG is a direct graph with one 
node per net and a directed edge from node ni to nj 
whenever there exists a column where the terminal for 
net i is above that for net j .  The idea with the VCG-based 
ordering is to schedule nodes with indegree 0 first. Subse- 
quently, these nodes are deleted from the VCG. This 
process can lead to a new set of nodes with indegree 0, 
and the process is iterated until either all nets are routed 
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or until all nodes have nonzero indegrees. The latter case 
occurs when there are cycles in the VCG. In such a case, 
we choose a node with minimum indegree (primary key) 
having the maximum outdegree and remove its outgoing 
edges. This has the effect of ignoring vertical constraints 
for the net and at the same time minimising the number 
of such violations. This process is repeated until a break- 
through occurs, which is the case when the indegree of at 
least one node becomes zero. Ties are resolved in favour 
of shorter nets. Each net is routed using the CRSET (0) 
chord set strategy, which has the effect of routing it as 
close to the left border as possible.* An exception to this 
rule is that nets which have terminals only along the 
right border are routed using the CLSET (C,J chord-set 
instead, where C,, is the column index of the rightmost 
column. 

For general problems, the role of a scheduler is less 
well defined. We have met with reasonable success using 
a simple-minded heuristic based on the number of pins 
and Manhattan wire length. Shorter nets and those with 
fewer pins are routed first. The cut pattern used is either 
CLSET(c) or CRSET(c) with the value of c set to the 
median of the column indexes for each pin of the net. In 
Reference 5, we have proved that the median yields the 
best route in an expected sense. For these problems, the 
router also considers rotating the boundary region so as 
to change the orientation of the primary trunk. 

4.2 Experimental results 
For these experiments we used a relaxed-HVH layering 
model wherein the directional restrictions are enforced 
strictly initially and relaxed later in case a net cannot be 
routed. Such constraints are easily achieved in our algo- 
rithm by restricting edge addition in the total graph con- 
struction phase to conform with the layer directionality. 
For instance, for the HVH constraint, only horizontal 
edges are added from GI and G3,  and only vertical edges 
added from G2.  Owing to the grid nature of our model, 
we first determine the expected channel density w. Let d 
denote the horizontal channel density, i.e. the maximum 
number of nets crossing any column and U denote the 
length of the longest path in the vertical constraint graph 
for the channel. Then w = max (d/n,, U), where nh is the 
number of H and B layers.? Table 1 gives some of the 
results of running the chord router on several benchmark 
channels. Fig. 8 shows the routing solution for one 
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Table 2 compares the solution quality of our router 
with those of five other 3-layer routers. Note that the 
routers being compared with are all high-quality channel- 
specific algorithms, whereas our router is based on paral- 
lel algorithms developed with the intention of applying it 
Table 1 : Results  f o r  s o m e  3-lever benchmark channe l s  

w #Trks Tot WL #Vias Channel Nets d . v  

yosh 10 5 , 3  3 2  5 3  a 
burs 1 0  4 , 8 ( c y c )  4 3 7 2  9 

0 a 781 71 
ex3b 47 1 7 . 9  9 9 1238 97 

ex1 34  1 2 , 7  7 6 4 4 2  5 0  
ex3a 30  1 5 . 4  

ex3c 5 4  1 8 . 6  9 10  1652 137 
diff 7 2  19, 9 10  1 3  4615 3 3 2  

Table 2: Comoarison w i t h  o ther  routes  

Example This Cham C&L B&S E&D Robust 
paper E91 U01 [111  U21 U31 

ex3a 8 8 8 8 8 8 
ex3b 9 10  10  10  10  9 
ex3c 10  10  9 10  9 10  
diff 1 3  1 1  1 4  1 1  1 3  10 

for a wide variety of routing problems, besides just 
channel routing. For the difficult channel problem, our 
method needs more tracks than the best known solution; 
however, it uses relatively less wire-length after account- 
ing for the differences owing to increased wirelengths 
along the width of the channel. A general observation has 
been that, for channels with 50 or fewer nets, the solution 
of our parallel router, in terms of channel width, is better 
than or the same as existing channel routers; but for 
larger problems, due to the sequential net routing and 
general-purpose nature of this router, the results are off 
by a small number. This seems the price to pay for being 
able to use the same router on several different problems 
such as : two-layer (in general, k-layer) channels, switch- 
boxes, and general area problems; problems with irregu- 
lar boundaries or ones with pre-wired nets or other 
obstacles, etc. For instance, a solution to a larger 2-layer 
128 x 128 general area routing problem, using the chord 
router, is shown in Fig. 9. Here, the first layer is blocked 
at several places as shown, and the second layer is 
assumed to be entirely available for routing purposes. 
The netlist used is the same as in Reference 3. The overall 
wirelength, 781, is very close to the optimal, 759, derived 

- laver 1 _ _ _ _ _ _  laver 2 

Fig. 8 9-track 3-layer solution for channeiex36 

problem. We observe that, due to the relaxed HVH assuming no blockages. In fact, these results are better 
model, some channels can in fact be routed using fewer than the results obtained with a conventional maze 
tracks than the initial estimate w. router (821) owing mainly to incorporation of pin- 

reservation and pattern restriction strategies. The latter 
* Note that, to retain compatibility with the path-router, we orient our 
channels vertically; consequently left (right) terms are used in place of 
the usual top (bottom) 
t In the layering model used, each layer can be tagged as H (strictly 
horizontal), or V (strictly vertical) or B (both-direction wiring allowed) 
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in shorter routes for two nets marked ‘a’ and ‘” 
5 
In this paper we have developed a new framework for 
general-area multilayer routing that is both fast and flex- 
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