
CHiRPS : a general-area parallel multilayer routing
system

R. Venkateswaran
P. Mazumder

Indexing terms: Parallel routing, Cycle-elimination, Grid-graphs, Coterie array

Abstract: A new highly parallel model for concur-
rent multilayer routing, called CHiRPS, is present-
ed. The nucleus of CHiRPS is a very flexible
pathfinder that can be easily configured, even in
the presence of obstacles, to generate various com-
monly used pattern-based routes, such as Steiner
trees with single trunk, comb trees, contour-based
routes, etc., that span multiple layers simulta-
neously. The authors employ the concept of a
total grid-graph to capture the state of the routing
region. The main steps of the pathfinder are based
on new parallel algorithms for cycle detection,
cycle elimination and tree reduction. The pro-
posed algorithms scale well with increased
problem sizes since they require only O(log (N))
time when given a grid-graph with up to N2
nodes. As such they are good candidates for mas-
sively data-parallel machines.

1 Introduction

An efficient routing algorithm is a crucial part of the
automated layout design. At the same time, it is desirable
that the router be flexible enough to accommodate varia-
tions in the nature of the routing regions and the number
of routing layers used. Unfortunately, most methods,
such as maze routing [l], which are capable of support-
ing general concurrent layer search operations, are of
quadratic time complexity and therefore quite slow for
large multilayer problems. Hence, an alternative solution
to speed this task appears to be. of considerable interest.
This paper describes the CHiRPS (configurable highly
routable parallel system) model for rapid multilayer
routing. As shown in Fig. 1, the underlying hardware
(also called coterie hardware) consists of a processor
array of simple bit-serial processors operating in a SIMD
fashion. This is appropriate since, as has been observed in
previous studies [2, 31, at the detailed routing level the
problem is inherently fine-grained and therefore not very
suitable to parallelisation using a network of complex
processors. The key distinguishing feature of the coterie
hardware is a dynamically reconfigurable mesh connect-
ing the processors, permitting simultaneous multiple con-
nected groupings. This is achieved simply by opening or
closing switches that are provided at each node. Each

0 IEE, 1995
Paper 1619E (Cl, CZ), first received 24th March and in revised form
19th September 1994
The authors are with the Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, MI 48109-
2122, USA

208

switch is independently controlled, by the associated pro-
cessor, based on its local data and the array instructions.
Once the switches are set, consensus (SOMEPONE)
computations via a wired-OR operation can be indepen-
dently made in parallel in each group. Often, the PES in
each group share certain common properties; conse-
quently, the groups are also called coteries, giving the
hardware its name. Further details of the hardware are
given in Reference 4. From a routing point of view, a very
useful feature of the coterie-array is that it provides a
constant-time hardware solution to the connectivity
determination problem, i.e. determining if a given k-pin
net can be connected or not. In contrast, most software
algorithms only determine this as a consequence of the
actual pathfinding operation. For instance, the maze
router will declare a connection failure only if at some
point it finds no more cells to visit prior to visiting all
pins. Hence, the complexity of connection checking is in
general the same as that of net routing.

The main contributions of this paper are the develop-
ment of a new type of parallel detailed routing model
called chord routing, in conjunction with the definition
and mapping of a planar grid-graph structure called
total-graph that has the additional advantage of being a
flexible tool for efficient mapping and execution of con-
current multilayer search on the coterie hardware. The
chord router is based on new algorithms for cycle-
detection, cycle-elimination and tree-reduction on total
graphs. It can be easily tailored to generate shortest-
length paths (like maze routing), shortest bend paths (like
line-probe) or pattern-based routes (like Steiner trees
with single trunk, comb trees, contour-based routes), etc.
The algorithm runs in time logarithmic to the problem
size N, and so is quite fast, especially for large N . In the
rest of this paper we assume a gridded routing model, but
with no restrictions on the shape or locations of termin-
als. Nets are routed one-at-a-time and net ordering stra-
tegies have been developed based on any prior
knowledge of the routing region, such as constraint
graphs for regular channel-routing problems.

2 Problem formulation

2.1 Total grid-graph
Assume each routing layer is specified by a layer-graph,
denoted as G,(V, EJ for the ith layer. Each layer-graph is
simply a grid-graph for a particular routing layer with
one node for each grid cell and an edge connecting two
adjacent cells that are both free, as shown in Fig. 2a and

The first author was supported, in part, by an
IBM Fellowship.

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 3, M a y 1995

b. Informally, the total graph for layers 1, ..., k and
denoted by TG ((1, 2, . . . , k)) , is formed by constructing
a union of the edges belonging to the individual layer
grid-graphs subject to via-availability constraints, i.e. if
any two edges from different layers, say I, and 1 2 (1 1 < I ,)
are incident at any node in the resulting total graph, then
the grid cell corresponding to that node must be free on
all intermediate layers I , such that I , < l < 1,. Since edges
of the total graph will be tagged by layer numbers, any
path embedded on the total graph connecting two points
can be automatically mapped into a route for a net with
vias implied at those nodes where there is a jump in

cally, we have L(G,, e) = i for all e E Ei . Also, let ut = 1
when cell U is unoccupied in layer k, and assume that a
via is always possible between adjacent layers whenever
the corresponding grid cells are free. Then, the initial via-
permission function for each of the layer graphs is given
by

VP (G,, U) = { j l (j < i) A (V k , such that j < k < i, u k = 1)

u { j I (j > i) A (V k, such that i < k < j , ut = 1))

For instance, if cell U is unoccupied in layers 1, 3, 4, 5 and
blocked in cell 2, then VP (G,, U) = { l) , VP(G, , U) = (8)

svstpm

0 b

Fig. 1
a System overview b Illustration of hardware connection check on coterie mesh

labels. In fact, the chief advantages of the total graph
concept are its implicit ability to capture via locations
(nodes with multiple associated edge-labels) and also the
fact that it can be directly mapped onto a two-
dimensional array processor such as the CAAPP. The
algorithm for total graph construction is as follows.

Given a labelled graph G(V, E), let L(G, e) denote the
label assigned to an edge e E E. If we assume that the
edge-label denotes the layer to which it is assigned physi-

layer 1 layer 2 layer 3

Dath found On

TG (<l, 2>)

path shown In 0

these edges are
not added since
via-condition is

= G(1) +G(2) TG(<1,2,3>)= TG(<1,2>)*G(3)

Fig. 2
(I 3-layer maze problem
b Individual grid graphs
e Total grid graph

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 3, May I995

while VP (G,, U) = (3, 4, 5) for i = 3, 4, 5. Intuitively, for
routing, a path can enter or leave a node U on any layer
in VP (G, U). Next, given two labelled graphs, G,: (V, Ex)
and G,: (V, EJ, define the constrained-prefix sum G,
+ ,G, of the two graphs as the graph G : (V, E), with

E = E, U {e(., U) I e E E,

A W,, e) E {VP (Gx, 4 n VP (Gx, U)))

L(G, e) =

L (Gx, e) e E E, VP (G, U) = VP (Gx, U) i L (G,, e) otherwise

Mathematically, now, the total grid graph TG for k
layers is given by

TG((1,2, ... , k)) = G, + ,,GZ + ,,G3 + ... + ,,Gk (1)

For actual problems, the total graph construction can be.
constrained in various useful ways as follows:

1. Restricted direction model: For such models, it is
sufficient to consider only horizontal or vertical edges
from a certain layer during the graph construction. This
is a popular approach for detailed routing using three or
more layers.

2. Restricted bend model: It is also possible to restrict
edge addition only to rows and columns containing pins.
For channel routing, the effect of such restrictions is to
limit doglegs only to columns where terminals for the net
occur.

3. Preferred layer model: If it is desired to route a
certain net entirely in a certain layer(s), it is possible to
do so by simply restricting the total-graph construction
to use edges from those layer@).

209

3

3.1 Overview
Given a total grid-graph G, the chord router first com-
putes in parallel a minimal set of edges, called a chord-
set, to remove from G so as to remove all cycles from G.
In other words it computes a spanning tree for G. The
name for the router comes from the fact that the edges
removed become chords for the tree so constructed. A
top-level description of the chord router shows three
main steps :

1. Check to see if any cycles exist in G. If yes, go to
step 2, else let T = G and go to step 3.

2. Eliminate all cycles in G yielding a tree T.
3. Reduce T to form a required route R, i.e. one in

which all leaves are required pins.

We now describe the parallel algorithms behind each of
these steps.

3.2 Parallel cycle-detection
An efficient sequential version to determine if cycles exist
within a partial-grid G is to keep removing the edges
incident on the leaf nodes in G iteratively until no more
leaf nodes exist. If this process results in a null graph,
then it can be concluded that the original graph was
acyclic; if not we can conclude that the graph contains
cycles. The parallel version of the algorithm, FrondCon-
tract, given in Fig. 3 is similar in nature, except for a

Details of parallel chord router

proc Frondcontract (G: (E, V), V)
begin

Initially, coterie network N = E;
A = {leaf nodes in .N}\{V'}; /*These nodes broadcast a 1 in step

while (A # 0) d o
2 of the while loop*/

(1) N = M - { L , I ((d e g r e e (u) > ~) V (U E V)) } ;

(2) VAL=A.RegBroadcast (N')
/*L, denotes all links anached to node U at that time*/

/*This steo marks nodes in coteries with one or more leaf
nodes eV8/

(3) N = Jy' - {L,IVAL= = 1))
/*All nodes that set VAL to 1 in the above steo

disconnect*/
(4) A = {leaf nodes in M}\{V};

od end

Fig. 3 Frond contraction

cut-through feature that allows entire segments (maximal
fronds) to be deleted simultaneously. A frond is defined
as a path starting from any nonleaf node or a node in V
of the tree and terminates at a leaf node $ V and has no
other fronds emanating from any intermediate node on
the path. A frond that cannot be extended any further is
called a maximal frond. Each iteration of the while loop
can then be viewed as identifying and deleting all
maximal fronds in the graph in parallel. An example is
given in Fig. 4a-e. The above problem can be generalised
as follows:

Problem FroEdcontract (G, V) : 'Given a graph G : (V,
E) and a node-set V c V, find a maximal subgraph G,:
(V$, E3 of G such that all leaves of G, are in V'. By
maximal, we mean that any edge added to G, will lead to
a leaf-node that is not in V'.

From this formulation, it follows that cycle-detection can
be done using V = 9. Furthermore, when V # 'J and G
is a tree, then G, is the unique path, if any, in G connect-
ing all nodes in V . Thus, the same algorithm serves the

210

role of both parallel cycle detection (step 1) and fast
parallel tree-reduction (step 3).

Complexity analysis: Note that each iteration of the while
loop takes constant time on the coterie-network. There-
fore, to analyse the time complexity, it is sufficient to

a C

Fig. 4 Application offond-deletionfor pathfinding on a grid-graph

prove an upper bound on the total number of iterations
that are required for frond-contraction in the worst case.
This is stated in the following theorem.

Theorem I : On the coterie-network model, at most I = 2
log (N + 1) - 1 iterations are needed for graph-
contraction on an N x N grid-graph G.

Proof: Please refer to Reference 5 for a proof. Further, it
can be shown that the above bound is tight for a com-

0 plete binary tree of height 2 log (N) - 1.

3.3 Parallel cycle -elimination
In a sense, what we are seeking to do is to find a span-
ning tree for any given total-graph. Since these graphs
are quite sparse, algorithms for spanning trees, that
require the construction of adjacency matrices, are not
very useful owing to the size of the grid-graphs. Other
parallel algorithms [6, 71 given in the literature for paral-
lel spanning tree generation on general graphs also suffer
from the same. These algorithms are also area-inefficient,
in the sense that they require N4 processors for an
N2-node graph problem. On the other hand, the TreeGen
algorithm, presented in this Section, incorporates knowl-
edge of the total-graph structure; hence, for an N x N
grid graph, it runs in logarithmic time, using only NZ
processors and constant space per processor. First, we
define some terms.

Define a triuial cycle as a cycle formed by edges con-
necting any four neighbouring nodes in the grid with co-
ordinates, say, (i , j) , (i + l, j) , (i + l, j + l) and (i ,
j + 1). Node (i , j) is said to anchor this trivial cycle. All
other cycles are termed nontrivial (see Fig. 5). Suppose G :
(V, E) is a given total grid-graph and G'(V, E) is a sub-
graph of G with only nontrivial cycles. Let T : (V, ET) be
a spanning tree for G'. Then each edge e in the set C:
{ E - ET} can be called a chord since adding it to ET will
introduce a cycle in T. The set C itself will be called a
chord-set. Every spanning tree has a different but unique
chord-set. Consequently, identifying the chord-set is the
same as constructing the spanning-tree. This is the
premise on which the algorithm presented below is based.
Assume variables D, U, R and L are initially set to l(0) at

I E E Proc.-Comput. Digit. Tech., Vol. 142, No. 3, May I995

a node, if an edge is present (absent) between the node
and its immediate Down, Up, Right or Left neighbour,
respectively. The notation R.East() is used to refer to the
R value stored at the East neighbour. The same applies
for other directions as well.

external
face

interna trivial
face cycle

a nontrivial cycle

Fig. 5 Illustration of cycle and region definitions

Procedure TreeGen: (G):
Input: A total grid graph G (V, E)
Output: A spanning tree T (V, ET) for G.

Stage 1 : The first step is to delete trivial cycles. Each
node computes D A R A D.East() A R.South(), which is 1
only when there exists a trivial cycle anchored at that
node. The PES that anchor a trivial cycle set their value
of D to 0. This yields the graph G : (V, E) that contains
no trivial cycles.

Stage 2 : Check to see if G has any other cycles. As
stated earlier, this can be verified by checking if G: (V,
E") = Frondcontract (G, V = 9) returns an empty
graph. If so, the procedure can terminate and G be
returned as the required spanning tree. Otherwise, we
continue by identifying a chord-set C for G" such that
GC: (V, E - C) is a spanning tree of G.

Stage 3: Clearly a necessary condition for C to be a
chord-set of G is that it must include at least one edge
from each cycle in G . Since each cycle corresponds to a
face, we begin by forming separate connected regions
within the coterie mesh, one per face, such that each PE
belongs to at most one region. The latter requirement is
needed for SIMD operation since otherwise processors
can vary in terms of the number of different cases each of
them has to consider. The actual code needed to set up
the regions turns out to be quite simple and is given
below :

1. CONU = TU; COND = 1D;
CONL = 1L; CONR = 1R; /*Initial network is the
complement of G* /

X, = 1R A lR.South(); X, = l D A lD.East();
2. XI = U A D; X, = RA L;

3. if X, then CONL = 0; $/*DISJl*/
4. if X, then CONU = 0 ; $/*DISJ2*/
5. if X, then COND = 1; $/*JOINl*/
6. if X, then CONR = 1 ; fi/*JOIN2*/
EqualizeLinks();

Let us analyse what each step accomplishes. In step ~, an
initial network .A'" is set up based on four CON plane
variables; where CONU is 1 at a node to indicate the
presence of the up-connection at that node, and so on
(Fig. 6b). However, adjacent faces continue to remain
connected in N . To isolate them from each other, we
apply the DISJl and DISJ2 steps (3 and 4). The first dis-

IEE Proc.-Comput. Digit. Tech., Vol. 142, No. 3, M a y 1995

connects nodes that lie on the right border of the cycle
from its interior (Fig. 6c) while the second disconnects
nodes that lie on the bottom border of a cycle from the
interior (Fig. 6 4 . In a similar vein, whenever opposite
borders of a cycle lie on adjacent rows (columns), the
JOIN step, (5 and 6) add links to N , as specified, to
ensure that each face results in exactly one component
(Fig. 6e-f).

an internal an external
face face

0 b C d

h h
.U#-.

Y h

Fig. 8 Illustration oftree-generation
a Given grid graph G with 5 internal and 2 external faces
b Initial network N . Link added wherever there is a missing grid edge in G
c DISJI: Disconnect West link from (b) IF PE has both north & south edges
incident in 8. Edges removed by DISJl shown dotted. This isolates nodes on right
borders of cycles from its interior
d DISJ2: Disconnect North link from c IF PE has both east & west edges inci-
dent in a. Edces removed bv DISl2 shown dotted. This isolates nodes on bottom
borders of cycles from its interior
e JOIN1: Adds East link to d IF Pux) & its East neighbour both have missing
south edges in (1. Edges added by JOIN1 shown dotted. This connects horizon-
tally oriented cycles of spread 1
f JOINZ: Adds South link to e IF Pux) & its south neighbour both have missing
east edxes in d. Edces added hv JOIN2 shown dotted. This connects verticallv
oriented cycles of spread 1
g A region is deactivaled if at least one node in it has a boundary edge (w.r.1. to
entire array) missing. Shaded areas show two such repiom. Each corresponds to
an exterior face. Leftmost nodes within each region selected. If selected PE does
not have a south edge in a, then the PE to its left is marked (see arrows)
h Acyclic tree T for G. Down edges from all nodes marked in previous step
(shown hatched) constitute set CL for this case

.

Stage 4 : Having set up the network, and consequently
components, we next mark the activity status for the
components as follows:

1. Isolated nodes are marked inactive unless
D = 0 V R = 0, i.e. the corresponding right or down edge
is missing in G .

2. All components that correspond to exterior faces are
also deactivated. This is done as follows. First, each cell
independently sets a variable B = 1 if it determines, based
on their addresses and the grid-size, that it lies on the
border of the grid. Next, all cells broadcast this value
within their component with a RegBroadcast operation.
Subsequently, all nodes that receive a 1 in the broadcast
step deactivate themselves. Fig. 69 shows two regions
deactivated since they correspond to external faces.

3. All remaining PES are presumed to be active. In
Fig. 69, only 5 active components remain each of which
corresponds to one internal face in G .

Stage 5 : At this stage, it is possible to compute several
chord-sets. In particular, chord-set CL (CR) is deter-
mined as follows. In parallel, for each active component,
select randomly a PE with smallest (largest) column
index. For each marked PE (i, j); if the PE has a

211

DOWN edge in G , then add that edge to CL (CR); else
add the DOWN edge of the PE to the immediate West
(East), namely, (i , j - 1) to CL ((i , j + 1) to CR). Return
either GCL: (V, E - CL) or GCR: (V, E - CR) as the
required tree.

Complexity analysis: The TreeGen algorithm also takes
O(1og (N)) time for an N x N mesh. This is not hard to
see. Stages 1, 3 and 4 of the algorithm are such that each
PE performs only local computations which take con-
stant time. Step 2 takes in the worst case O(1og (N)) time
from theorem 1. Stage 5 requires a RegSelMin operation
to select a leftmost (rightmost) PE cell which needs
O(1og (N)) for data that are at most log (N) bits long. 0

A formal proof of correctness for the above algorithm
can be found in Reference 5. In reality, stage 2 is actually
not required for the correct operation of the TreeGen
algorithm. The operations described in stages 3-5 equally
work well when directly applied to G. However, there
does not seem to be any easy characterisation of the
resulting coterie components and consequently the proof
of correctness. However, this does reduce the run time
and so is of practical interest.

3.4 Extensions to tree generation
Note that chord-sets {CL} and {CR} were constructed
by uniformly choosing the leftmost (rightmost) PE of
each coterie. On a complete grid-graph, this leads to so-
called comb trees with a single vertical trunk at column 0
(N - 1) with horizontal row-wise connections to all
remaining nodes in G (see Fig. 7a and b). A gener-
alisation of the tree-generation mechanism is to move the
vertical trunk to an intermediate column, say j, where
0 < j < N - 1. Similarly, a tree having one horizontal
trunk at row j with possibly many vertical branches ema-
nating from it can be constructed by first rotating the
input graph G by 90". We call such trees single-trunk
Steiner trees (STST). Construction of an STST requires
the same TreeGen procedure as before, with the follow-
ing modifications:

1. Divide the array conceptually into a left half (all
nodes with Collndex < j) and a right half (all nodes with
Collndex j).

2. Interchange the roles of R with L, and East() with
West() in Stages 1, 3 and 4 of Procedure TreeGen for the
right half of the array. Also in stage 1, for the right half of
the array, define the top-right node of a trivial cycle as its
anchor. The operations for the left half remain as before.

3. Compute both CL and CR in stage 5. Now classify
a member-edge of CL as type-1 if it is on the left border
of a cycle that lies entirely to the left of column j + 1, or
as type-2 if it is on the left border of a cycle that lies

left- contour j = 3

a b c b d

Fig. 7
a East Comb tree generated using chord-set {CL)
b Contour-based route generated with {CR)
c Single-trunk Steiner tree using CLSET (3) with length 22
d Multitrunk Steiner tree: MTST (3, 2,6) using two zones with length 18

212

Flexible routes generated using chord-router

entirely to the right of column j - 1, with the rest being
termed as type-3. Similarly, a member-edge of CR is
termed as type-1 if it is on the right border of a cycle that
lies entirely to the right of j , or as type-2 if it is on the
right border of a cycle that lies entirely to the left of j,
with the rest being termed again as type-3. The following
then yields two new chord-sets, CLSET(j) and CRSET(j),
that allow for location of the vertical trunk at any
column j :

CLSET(j) = {all type-1 edges in CL and CR}

U {all type-3 edges in CL}

CRSET (j) = {all type-1 edges in CL and CR}

U {all type-3 edges in CR}

Note that the two differ only if there exist cycles
(obstacles) that span column j. In that case, the resulting
trees will contour either along the left border of the obs-
tacle (CLSET) or the right border (CRSET). For instance,
the route shown in Fig. 7b can be understood as an STST
generated with CRSET (0). Consequently, the route con-
tours along the right side of the blocks present along
column 0. In general, the idea of STST can be extended
to multiple-trunk Steiner trees (MTST) having one
primary trunk with one or more secondary trunks per-
pendicular to it (see Fig. 7d). Thus, the chord-set idea
appears to be quite general and useful since many of the
resulting routes have been found quite relevant to
channel, switchbox and area routing problems.

4 Implementation details

4.1 Overview
The software for our router has currently been coded in
C + + and is linked with the IUA Class Library (ICL)
[SI that provides all kinds of array data structures and
communication functions including region broadcasts.
The router is based on the algorithms described in the
preceding sections. Various options and heuristic stra-
tegies have also been incorporated into our router to
account for routing conflicts amongst the nets, thereby
enabling it to handle various types of routing problems in
a consistent uniform manner. For instance, some deal
with the order in which layers are processed during grid-
graph construction, while others determine the type of
chord set to use in generating the routing tree, or the
reservation of territories for pins of unrouted nets, or
bounds on wire-lengths, etc. Each such policy can be
simply controlled by means of a user-specified parameter
which is specified in a separate options file. Because of
space limitations only an overview is given in this paper;
further details of each of these steps will be a topic of a
future publication. Postprocessing options include wire-
length minimisation and via minimisation routines.

Another factor which is of great concern for sequential
net-at-a-time is the order in which the nets are scheduled
for routing. For special routing problems such as chan-
nels, we employ a simple scheduling strategy that is
derived from the underlying vertical constraint graph
(VCG). Note that the VCG is a direct graph with one
node per net and a directed edge from node ni to nj
whenever there exists a column where the terminal for
net i is above that for net j . The idea with the VCG-based
ordering is to schedule nodes with indegree 0 first. Subse-
quently, these nodes are deleted from the VCG. This
process can lead to a new set of nodes with indegree 0,
and the process is iterated until either all nets are routed

I E E Proc.-Comput. Digit. Tech., Vol. 142, No. 3, May 1995

or until all nodes have nonzero indegrees. The latter case
occurs when there are cycles in the VCG. In such a case,
we choose a node with minimum indegree (primary key)
having the maximum outdegree and remove its outgoing
edges. This has the effect of ignoring vertical constraints
for the net and at the same time minimising the number
of such violations. This process is repeated until a break-
through occurs, which is the case when the indegree of at
least one node becomes zero. Ties are resolved in favour
of shorter nets. Each net is routed using the CRSET (0)
chord set strategy, which has the effect of routing it as
close to the left border as possible.* An exception to this
rule is that nets which have terminals only along the
right border are routed using the CLSET (C,J chord-set
instead, where C,, is the column index of the rightmost
column.

For general problems, the role of a scheduler is less
well defined. We have met with reasonable success using
a simple-minded heuristic based on the number of pins
and Manhattan wire length. Shorter nets and those with
fewer pins are routed first. The cut pattern used is either
CLSET(c) or CRSET(c) with the value of c set to the
median of the column indexes for each pin of the net. In
Reference 5, we have proved that the median yields the
best route in an expected sense. For these problems, the
router also considers rotating the boundary region so as
to change the orientation of the primary trunk.

4.2 Experimental results
For these experiments we used a relaxed-HVH layering
model wherein the directional restrictions are enforced
strictly initially and relaxed later in case a net cannot be
routed. Such constraints are easily achieved in our algo-
rithm by restricting edge addition in the total graph con-
struction phase to conform with the layer directionality.
For instance, for the HVH constraint, only horizontal
edges are added from GI and G3, and only vertical edges
added from G2. Owing to the grid nature of our model,
we first determine the expected channel density w. Let d
denote the horizontal channel density, i.e. the maximum
number of nets crossing any column and U denote the
length of the longest path in the vertical constraint graph
for the channel. Then w = max (d/n,, U), where nh is the
number of H and B layers.? Table 1 gives some of the
results of running the chord router on several benchmark
channels. Fig. 8 shows the routing solution for one

~ laver 0 -I--- ex3b---*-

Table 2 compares the solution quality of our router
with those of five other 3-layer routers. Note that the
routers being compared with are all high-quality channel-
specific algorithms, whereas our router is based on paral-
lel algorithms developed with the intention of applying it
Table 1 : Results f o r s o m e 3-lever benchmark channe l s

w #Trks Tot WL #Vias Channel Nets d . v

yosh 10 5 , 3 3 2 5 3 a
burs 1 0 4 , 8 (c y c) 4 3 7 2 9

0 a 781 71
ex3b 47 1 7 . 9 9 9 1238 97

ex1 34 1 2 , 7 7 6 4 4 2 5 0
ex3a 30 1 5 . 4

ex3c 5 4 1 8 . 6 9 10 1652 137
diff 7 2 19, 9 10 1 3 4615 3 3 2

Table 2: Comoarison w i t h o ther routes

Example This Cham C&L B&S E&D Robust
paper E91 U01 [111 U21 U31

ex3a 8 8 8 8 8 8
ex3b 9 10 10 10 10 9
ex3c 10 10 9 10 9 10
diff 1 3 1 1 1 4 1 1 1 3 10

for a wide variety of routing problems, besides just
channel routing. For the difficult channel problem, our
method needs more tracks than the best known solution;
however, it uses relatively less wire-length after account-
ing for the differences owing to increased wirelengths
along the width of the channel. A general observation has
been that, for channels with 50 or fewer nets, the solution
of our parallel router, in terms of channel width, is better
than or the same as existing channel routers; but for
larger problems, due to the sequential net routing and
general-purpose nature of this router, the results are off
by a small number. This seems the price to pay for being
able to use the same router on several different problems
such as : two-layer (in general, k-layer) channels, switch-
boxes, and general area problems; problems with irregu-
lar boundaries or ones with pre-wired nets or other
obstacles, etc. For instance, a solution to a larger 2-layer
128 x 128 general area routing problem, using the chord
router, is shown in Fig. 9. Here, the first layer is blocked
at several places as shown, and the second layer is
assumed to be entirely available for routing purposes.
The netlist used is the same as in Reference 3. The overall
wirelength, 781, is very close to the optimal, 759, derived

- laver 1 _ _ _ _ _ _ laver 2

Fig. 8 9-track 3-layer solution for channeiex36

problem. We observe that, due to the relaxed HVH assuming no blockages. In fact, these results are better
model, some channels can in fact be routed using fewer than the results obtained with a conventional maze
tracks than the initial estimate w. router (821) owing mainly to incorporation of pin-

reservation and pattern restriction strategies. The latter
* Note that, to retain compatibility with the path-router, we orient our
channels vertically; consequently left (right) terms are used in place of
the usual top (bottom)
t In the layering model used, each layer can be tagged as H (strictly
horizontal), or V (strictly vertical) or B (both-direction wiring allowed)

I E E Proc.-Comput. Digit. Tech., Vol. 142, No. 3, May 1995

in shorter routes for two nets marked ‘a’ and ‘”
5
In this paper we have developed a new framework for
general-area multilayer routing that is both fast and flex-

213

~~~~~~~i~~~ 



ible. A major contribution of our work has been in the 6 References 
development of very highly parallel algorithms for cycle 
detection and elimination on a special class of routing 
graphs called totakraphs. The latter was also shown to 

1 LEE, C.Y.: ‘An algorithm for path connections and its applications’, 
IRE Trans. Electron. Comput., 1961, pp. 346-365 

2 HONG. S.J.. and NAIR. R.: ’Wire-routinz machines - new tools 

Fig. 9 Parallel muze routed general-area example 

for VLSI physical design’: Proc. IEEE, 198% 71, pp. 57-65 
3 VENKATESWARAN, R., and MAZUMDER, P.: ‘A hexagonal 

array machine for multi-layer wire routing’, IEEE Trans., 1990, 
CAD-9, pp. 1096-1 112 

4 WEEMS, C.C., and RANA, D.: ‘Reconfiguration in the low and 
intermediate levels of the image understanding architecture’, in LI, 
H., and STOUT, Q. (Eds.): ‘Reconfigurable massively parallel com- 
puters’ (Prentice-Hall, 1991), chap. 4, pp. 88-105 

5 VENKATESWARAN, R., and MAZUMDER, P.: ‘Highly parallel 
routing algorithms on a reconfigurable processor array’. Tech. rep., 
University of Michigan, Department of EECS, 1993 

6 SAVAGE, C., and JAJA, J.: ‘Fast eflicient parallel algorithms for 
some graph problems’, SIAM J .  Comput., 1981,10, pp. 682-691 

7 ATALLAH, M.J., and KOSARAJU, S.R.: ‘Graph problems on a 
mesh-connected processor array’, J. ACM, 1984,31, pp. 649-667 

8 BURRILL, J.H.: ‘The class library for the IUA (Amerinex AI, Inc., 
Amherst, MA, 1992) 

9 BRAUN, D., BURNS, I., DEVADAS, S., MA, H.K., MAYARAM, 
K., ROMEO, F., and SANGIOVANNI-VINCENTELLI, A.: ‘Tech- 
niques for multilayer channel routing’, IEEE Trans., 1988, CAD-7, 
DD. 698-71 1 

be an effective and flexible tool for multilayer routing 10 ?ONG, J., WONG, D.F., and LIU, C.L.: ‘A new approach to three 
or four layer channel routing’, IEEE Trans., 1988, CAD-7, pp. area representation since it not only allows a planar rep- 1094-,104 ~ ~~ 

resentation of a three-dimensional space, but can also be 1 1  BRUELL, P., and SUN, P.: ‘A greedy three layer channel router’. 
controlled to account for laverine and other strateeies. Digest of International Conference on Computer desian. November 

but also in the number of routing layers. pp. 212-219 

214 IEE Proc.-Comput. Digit. Tech., Vol. 142, No.  3, M a y  1995 


