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The quadtree data structure is extensively used in representing 2dimensional data in many 
applications like image processing, cartographic data processing. VLSI embedding, graphics, 
computer animation, computer-aided architecture, etc. The data structure employs the divide- 
and-conquer technique to recursively decompose the planar region. This paper addresses the 
problem of planar tessellation which yields the quadtree data structure. Arbitrary triangles and 
parallelograms have been used as basic cells and hyper-cellular structures corresponding to 
lower order k-gons have been shown to represent such data structures. Different tessellation 
schemes have been discussed using the notion of tessellation matrix. The performances of 
different tessellation schemes have been compared, introducing the concept of the neighbor- 
hood graph. 0 1987 Academic press. IX 

1. INTRODUCTION 

The recursive decomposition of a complex problem into simpler subproblems, 
known in the literature as the divide-and-conquer paradigm [l], is a well-practiced 
technique for solving many computational problems. Klinger and Dyer [2] and 
Tanimoto and Pavlidis [3] have successfully employed such techniques for 2-dimen- 
sional image representation. Their technique recursively decomposes the original 
image area of square shape into four identical squares at each step. The resulting 
data structure represents a Cary tree, more commonly called a quadtree, since each 
son of the tree represents one of the four quadrants of its father’s square (Fig. 1). 
The root of the tree represents the complete picture and the leaf nodes of the tree 
represent the tessellated picture segments such that if they are recombined into 
groups as indicated by the internal nodes of the tree, the original image can be 
reconstructed. The advantages of such a hierarchical picture decomposition have 
been discussed in [2, 41. Hierarchical decomposition enables addressing for rapid 
access to any geographical part of the image. It retains explicitly in the data 
structure a hierarchical description of picture patterns, elements, and their relation- 
ships. It permits recursive analysis of subpictures. Also its data structure dis- 
tinguishes object from background and thereby can focus on the interesting subsets 
of the data. These merits associated with the quadtree representation have encour- 
aged many researchers to design many useful algorithms for encoding, transformmg, 
and searching quadtrees [2, 51, converting between quadtree and other data struc- 
tures like chain codes [6], arrays [7, 81, and polygons [5], measuring region properties 
e.g., area and centroid [9], perimeter [S], directional symmetries [4], etc. An excellent 
literary review of these work have been presented by Samet [lo] in his tutorial 
survey on the quadtree and related hierarchical data structure. Two limitations of 
quadtrees are that it needs large memory storage space and its representation of an 
object heavily depends on its location, orientation, and relative size. Normally the 
quadtree data structure needs a large memory space to maintain the pointers 
corresponding to the edges of the tree. Every nonterminal node needs five pointers 
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FIG. 1. Quadtree representation of planar decomposition. 

to set up the links to the immediate predecessor and successors. But recently 
Gargantini [ll], Tammin en [12], and Samet [13] have proposed methods of storing 
the quadtree efficiently in computer memory. Aggarwal and Chien [14] and Li [15] 
have proposed normalized quadtree representation which is invariant to rotation, 
translation, and object size change. A comprehensive bibliography of papers on 
quadtree can be found in the survey on picture processing published annually in this 
journal. 

Quadtree data structures are also extensively used for many other 2dimensional 
computational problems. Matsuyana [16], McKeown [17], Rosenfeld [18, 191, and 
others have employed the hierarchical data structures for cartographic data 
processing. The quadtree data structure was applied by Hunter and Woodwark for 
graphics and animation [5, 20, 21, 221, by Duda for scene analysis [23], and by 
Eastman for architectural design [24]. Leiserson and Leighton [25] used quadtree 
type hierarchical partitioning for constructing fault-tolerant 2-dimensional meshes 
on silicon wafer. Ahuja [26] has proposed an efficient planar embedding for VLSI 
implementation of quad and other trees. A VLSI pyramid machine for parallel 
image processing was designed by Dyer [27]. 

This wide spread application of hierarchical type data structures for 2-dimen- 
sional computational problems has prompted researchers to investigate the planar 
topologies which provide recursive decomposition. Ahuja [28] has done an extensive 
investigation on polygonal decomposition for hierarchical representation. He has 
proposed the equilateral triangle as an alternate geometry for quadtree decomposi- 
tion and has demonstrated that the triangular quadtree has, on the average, the 
same computational complexity for image operations. Other researchers like Bell 
[29], Holroyd [30], etc., have discussed a number of tilings of the plane and 
presented a taxonomy of criteria to distinguish among the various tilings. The 
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problem of planar tessellation has also been addressed by a number of mathemati- 
cians over the centuries. Toth [31], Shubnikov [32], Stevens [33], Grunbaum [34], 
Loeb [35], and Bourgoin [36] provide descriptions of different tilings and patterns. It 
is beyond the limits of this paper to make a reasonable review of all these past 
works. 

On the other hand, the focus of this paper is primarily restricted to the planar 
tessellations which yield the quadtree type data structure. The reason for selecting 
the quadtree is that it provides the most cost-effective tree structure for hierarchical 
data representation. In an ray tree the expected cost of a query involving the leaf 
nodes is proportional to (r + l)/log r which is a monotonically increasing function 
for r > 3. In this paper, it has been shown that any arbitrary parallelogram or 
triangle can be decomposed to yield a quadtree data structure. Also, it has been 
shown that a wide repertoire of planar tiles can be composed using these basic cells 
and any planar region of arbitrary dimensions having a shape identical to these 
classes of tiles can be decomposed recursively to represent a complete quadtree. A 
quadtree for which every nonleaf node has four successors is called (in this paper) a 
complete quadtree (similar to a complete binary tree [l]). The advantage of this 
hypercelluar decomposition is that it provides a more economical storage of 
quadtree in the computer memory. Since k (where k is a positive integer) cells are 
combined to form a hypercellular tile, (k - 1)4” memory space (where n is the 
height of the tree) is saved by decomposing the region into hypercellular tiles, 
Another justification for exploring hypercellular structures is that they are suitable 
for representing the grid images. Even though for normal image processing applica- 
tion, the square tessellation is highly desirable (because the regular polygon like a 
square pixel represents the point image most adequately), for applications in other 
areas like VLSI layout there is no binding reason to conform to a square geometry. 
In [37], Mazumder has identified a number of hypercellular processor geometries 
which can be hierarchically embedded to evolve parallel processing interconnection 
networks. The hierarchical embedding allows a logarithmic layout cost while the 
tessellation property of hypercellular structures provides an area efficient 
layout-two key aspects of VLSI design. 

In this paper a number of tessellation schemes for different planar topologies have 
been shown using the concept of shape polymonials and tessellation matrices. The 
shape polynomial represents the geometry of the planar region while the tessellation 
matrix reveals the spatial adjacency of the regions. A comparison of the computa- 
tional complexity for different types of tessellation schemes has been made using the 
notion of a neighborhood graph. The nodes in the neighborhood graph represent the 
tiles and the edges indicate the physical adjacency between the tiles. The edges are 
grouped into different cutsets which represent the costs associated with tree traversal 
between the nodes. Thus the analysis of a neighborhood graph provides an insight 
on the cost-effectiveness of the planar decomposition. The rest of the paper has been 
organized as follows. Section 2.1 establishes the formal framework of planar 
tessellation on quadrilateral lattices. Section 2.2 gives three tessellation algorithms 
for generating quadtree on quadrilateral lattices. Section 3 briefly presents the 
triangular lattices and four tessellation algorithms. Finally, Section 4 compares the 
computational complexity of the different quadtree topologies. The conclusion from 
this comparison is that the computational complexities of the different tessellation 
algorithms discussed in this paper are comparable. 



PLANAR DECOMPOSITION 261 

2. QUADRILATERAL LATTICES AND QUADTREES 

At first, a formal framework for the construction of tessellation algorithms has 
been made introducing the notion of the Euclidean planar covering by polyomino 
tiles [38]. The planar regions are represented by the tiles and the properties of 
polyomino tiles have been utilized to select the region geometry which can be 
recursively decomposed to yield the quadtree data structure. Tessellation algorithms 
have been designed by transforming tiles on the Euclidean plane by applying linear 
transformations. Linear transformations have linear as well as rotational compo- 
nents. The linear component is not included here and the tiles are juxtaposed to one 
another to align their outer edges parallel to {x, y } basis. The rotational component 
has been defined as an operator and the tiles are restricted to orient along a finite 
direction as permitted by the constraint stated before. The tessellation algorithms 
have been succinctly represented as the spatial adjacency of tiled regions which can 
be recursively constructed employing the operators as postulated by the tessellation 
matrix. 

2.1 Formal Framework of Planar Tessellation 

Let E* be a 2-dimensional Euclidean plane and { x, y } be the basis on E* such 
that the angle subtended by x and y at the point of intersection, called the origin, 
0, is equal to 8, where 0 < 6 < 8. Let X = {iii = 0, 1,2,. . . } be the set of points 
on the x axis such that the distance between any two neighboring points is equal to 
6x. Let Y = {j]j = 0,1,2,. . . } be the set of points on the y axis such that the 
distance between any two neighboring points is equal to 6y. Let V denote the 
Cartesian product of X and Y such that Y = X x Y = {(i, j)li E X and j E Y }. 

The quadratic lattice graph G on E* is defined by connecting all the ordered pairs 
of I’ such that the edges are parallel to either the x axis or y axis. 

G is called an orthogonal lattice iff 8 = 7r/2. If Sx = Sy, cells in G are square in 
shape; otherwise, they are rectangular in shape. 

G is called a rhombic lattice iff 9 # 7r/2. If 6x = 6y, cells in G are rhombic in 
shape; otherwise, they are rhomboid in shape. 

The (i, j)th cell on E* is the area bounded by the edges on G connecting the 
quad ordered pairs {(i, j), (i + 1, j), (i, j -t l), (i + 1, j + 1)) and is denoted by 

cell(i, j) = x’yj. 

A cell(i, j), where i > 0 and j > 0, is called the base cell and the adjoining cells 
cell(i - 1, j), cell(i + 1, j), cell(i, j - l), and cell(i, j + 1) are called the 4-neigh- 
hors [39, 401 or the uon Neumann’s neighbors [41] of the base cell. These four cells 
are said to be Cadjacent to the base cell. The eight adjoining cells of the cell(i, j) 
(viz., cell( i - 1, j), cell(i + 1, j), cell( i, j - l), cell( i, j + l), cell(i - 1, j - l), 
cell(i + 1, j - l), cell(i - 1, j + l), and cell(i + 1, j + 1)) are called its 8-neighbors 
[39, 401 or Moore’s neighbors [41]. These eight cells are said to be g-adjacent to the 
base cell; cell(i, j - 1) and cell(i, j + 1) are horizontally adjacent to the base cell, 
cell(i - 1, j) and celI(i + 1, j) are vertically adjacent to the base cell, and 
cell(i - 1, j - l), cell(i + 1, j - l), cell(i - 1, j + l), and cell(i + 1, j + 1) are 
diagonally adjacent to the base cell. 
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A rookwise path from cell(i, j) to cell(r, k) consists of a sequence of distinct 
contiguous cells 

celI(i, j) = cell(i,, jo), cell(i,, j,), . . . , cell(i,, j,) = cell(I, k) 

such that cell(i,, j,) is 4-adjacent to cell(i,-,, jk-& 1 I k I n. If a rookwiseputh 
exists between two cells, they are said to be rookwise connected. It should be noted 
that all the pairs of 8-connected cells do not generate a rookwise path. In this 
section, the regions which consist of cells which are rookwise connected are only 
considered. Rosenfeld [39, 421 and Kak [40] have discussed other criteria for 
adjacency and connectivity in digital pictures. 

DEFINITION 1. Tile. A title, rk, on E2 consists of k rookwise [43] connected 
cells. If G is an orthogonal lattice, rk is called a k-omino and if G is rhombic 
lattice, rk is called k-diamond. If the 8-adjacent cells of the base cell belong to the 
tile and the base cell does not belong to the tile, then a hole occurs. Tiles with holes 
or with cells having only diagonally adjacent neighbors (i.e., cells which do not have 
a rookwise path between them) are not considered in this paper. 

DEFINITION 2. Shape polynomial of a tile. The shape polynomial, S(rk), of the 
tile, TV, whose lower left comer is on the origin, 0, is given by 

S(Tk) = c yijx’y’ (1) 
(i, j)sE2 

where 

l yij = iff forah(x, y) E cell(i, j) * (x, y) E rk, 
0 otherwise. 

The area of rk is equal to ]S( rk)]. 

DEFINITION 3. Conjugate of the shape polynomial. The conjugate of the shape 
polynomial, S(T~), is detined as a shape polynomial, S*( TV) obtained by permuting 
x and y elements [44,45] of S(r,J such that 

s*(Tk) = c pjix’yi 
(i. j)EE* 

where pji = yij. 

DEFINITION 4. Operator. An operator, \k,, rotates a tile, 7kr by an angle \k 
about one of its edges parallel to the u axis and the new shape polynomial of rk is 
given by ‘k, * S(7k). 

Properties of ‘k,. (1) If \k,, and qo2 are two operators applied on ?k, then 

(2) If * = 2mlr (where m E {1,2,. . . }), then (2mlr), . S(T~) = S(-rk) and 
L = (2ma), is called the identity operator. 

(3) If \k = $, then (p . S(T~) = + and \k = + is called the null operator. 
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FIG. 2. Permissible orientation of P5. 

In order to decompose the regions to yield the quadtree data structure, the tiles 
should be oriented such that their edges are always parallel to the basis {x, y }. This 
requirement poses restrictions on the possible orientation of the tiles and only finite 
permissible orientations of the tiles are possible. 

DEFINITION 5. Permissible orientations. The permissible orientations of a tile 
+rk, on E2 are due to the following operators applied in any arbitrary sequence: 
(mh (m$, (mh and X,, where A, . S(~T,J = r,, : S*(T~) and z is orthogonal 
to E2. A cell(i, j) can be mapped to the cell(m + i, n - j) by applying the operator 
rx, to the celI( m - i, n + j) by applying the operator 7r,, and to the cell( m - i, n - j) 
by applying the operator vz; m and n are two arbitrary integers which depend on 
the translation associated with the transformation. The transformations due to 
(ma), and (ma), are called reJections and transformations due to (ma), and X, 
are called rotations. 

THEOREM 1. A rk has at most 8 distinct shape polynomials corresponding to all 
permissible orientations. 

Proob Let S( TV) be the shape polynomial of rk. By applying the operators ITS, 
rr,,, and n, on S( TV), three more shape polynomials can be generated. By permuting 
the x and y elements, S*( T,J can be derived and the above operators can be 
applied to get three more shape polynomials. Depending on the symmetry of rk 
about the x, y, or z axis, there will be 8, 4, 2, or 1 distinct shape polynomials. •I 

Figure 2 shows the shape polynomials of a tile, designated as PS, corresponding to 
alI its permissible orientations. 

DEFINITION 6. Tile notations. (1) A tile is denoted by Ik iff, by any permissible 
orientation, its shape polynomial can be represented by 

k-l 

S(I,) = c xi. 

i-0 

Figure 3a shows 12. 
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hf: 12 (b): L, cc): P, 

FIG. 3. Shape polynomial of some polyominoes. 

(2) A tile is denoted by L, iff, by any permissible orientation, its shape 
polynimial can be represented by 

m-l 

S(L,) = c xi + iyj s.t. 112 + s = k > 2. 

Figure 3b shows L,. 
i=o i=l 

(3) A tile is denoted by Pk iff, by any permissible orientation, the shape 
polynomial can be represented by 

s(p,) = i xinclyj + mfly~ s.t. m + s(n - m) = k > 2. 
i-l j=m j=O 

Figure 3c shows Ps. 

In general, if by any permissible orientation, the shape polynomial of a utile 
approximately represents an English letter in block capital, 7, then the tile is 
represented by TV, where k is the number of cells in the tile. 

DEFINITION 7. Planar tessellation. The planar tessellation of a region R = 
u ywlRj is its shape polynomial S, represented as a spatial distribution of the shape 
polynomials Si’s (or the permissible orientations) of Ri’s. 

Assuming two of the edges of R constitute the basis {x, y } such that the lower 
left comer of R is the origin, the spatial distributions of Si’s can be expressed as a 
matrix, such that for all Ri and R/, if Rj is adjacent to Rj horizontally, vertically, 
or diagonally, Si and Sj are also stilarly adjacent in the matrix. The horizontal, 
vertical, or diagonal adjacency of the region Rj can be established with respect to 
R, by computing the center of masses of all the regions. The center of mass of a 
region Rj having the shape polynomial Sj is given by the doublet 
{(l/Isj&k, I$,’ E2Yk/ k, (l/IS’IK(k,~) P E’Ykl I >y where yk, is defined as in E!q. (1). 

If R = U i=l R i (Fig. 4) is a planar region similar to Moore’s neighborhood 
structure, then 

(4 

Two planar regions, R, and Rj, having shape polynomials Si and S. such that 
&I = tlSjl, where t or t-l is a positive integer, are said to be homotlreric [Sal iff there 



sequence of permissible orientations have been considered in this paper 
Si = CX~ - S,,, where (Y~ E {(mn),, (MT),,, (mn),, A,}, then 

and the matrix 

is called the tessellation matrix of S. 

Properties of 5. 

a,. p-u a6. p-v 

l” = 3. p-1) = a8. p-1) a9. p-u 

a1 . p-u a2. p-1) 

Operations on S. The operations on S (where S is given by E!q. 1) are: 

(1) reflection about x axis 

n;i * s, 

n;,* = S 7rx * s, 

7rx * s, 

(2) reflection about y axis 

=Y * s5 ?Ty*S6 7ry’S7 
Ty - s, 7ry * s, 7Ty * s, 

5 * s, 7ry’v’s2 ?ry * s, 
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It6 
R7 Its 

R9 R4 

Ri It2 Ii3 

FIG. 4. Planar regions having Moore’s neighborhood. 

exists a sequence of permissible orientations which can be applied on Rj (or Ri) to 
make the two regions similar. Planar regions in Fig. 4 are not homothetic and can 
not be recursively decomposed to yield a quadtree structure. In order to generate the 
quadtree structure, planar regions whose shape polynomials are identical under a 

Thus if 

(5) 

(6) 

(7) 
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(3) rotation about z axis 
“z * s3 Ir, . s, 7rz . s, 

IT2 * s = ?rz. s, ?rz. s, 7rz. s, @) 
qz - S5 7l;s, 7rz*ss, 

(4) conjugate operation 

A; s, A; s, A; s, 
x,-s, x;s, x,43, (9) 
A; s, A; s, A; s, 

EXAMPLE. Let a7 = vrx, a6 = 9, (Ye = 9,~~s = cp, (Ye = 1, (Y., = 9, a1 = L,CX~ = 4, 
and a3 = VT,, such that the tessellation matrix can be represented by 

Then from Eqs. (5), (6), (7), and (8), it can be shown that 

jll ; ZJ (I i ii] [f $ ;j/ 
If SO = S(L,), then {* - S, results into the tessellation corresponds to Fig. 5. 
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FIG. 5. Planar region of shape L,. 

2.2 Tessellation Algorithms 

THEOREM 2. The planar region Rl, having shape polynomial Sl, can be repre- 
sented by a complete quadtree of height n if Sl = lfS(I,), such that IS11 = 4”IS(I,)I, 
where 

s1=(: :) 
andk = 1,2,3 ,.... 

Proof Refer to Fig. 1. Since the tessellation matrix is symmetrical and the tile 
shape is l-dimensional, by using induction the result follows. 0 

THEOREM 3. The planar region R2, haivng shape polynomial S2, can be repre- 
sented by a complete quadtree of height n if S2 = &S(P& = Sn(P&, such that 
IS21 = 4”)S(P,,)I, where 

and k = 1,2,3,. . . . 

Alternately, Theorem 3 can be written as 

THEOREM 3’. 

i 

TX * S-Vu) 4J 9 
\ 

s2 = S”(P,,) = + s”-vL) (P 

S”W3k) (P 7ry * S”-l( P,,) 
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h3 

FIG. 6. Planar region of shape P3k. 

where, n > 1 is called the level of tessellation and S’( P3k) = S(P,,) is the shape of 
polynomial of P3k. 

Proof: Let R2 be an arbitrary region of shape P and its ditnmions are as 
shown in Fig. 6. By using &,, R2 can be tesscUed into exactly 4 re@ons having an 
identical shape to R2 if v2 = v3 = (1/2)vl and h2 = h3 = (1/2)hl. The area of 
R 2 is equal to (3/4)hlvl. Thus R2 can be represented as a complete quadtree whose 
leaves have shape polynomials S(P,,) iff vl/hl = m and hl = 2p, where m and p 
are positive integers. IJ 

THEOREM 4. The planar region R3, haivng shape polynomial S3, can be repre- 
sented by a complete quadtree of height n if S3 = SfS(Psk) = S”( PSk), such that 
IS31 = 4*(S(P,,)(, where 

and k = 1,2,3, . . . . 
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FIG. 7. Planar regon of shape P5k. 

Alternately, Theorem 4 can be written as 

THEOREM 4’. 

I, - s”-Y&) 9 9 
s3 = S”(P,,) = + 7rz . A, - s”-yPJ + 

sn-V5d + 7ry * S”-y P,,) 

where, n > 1 is called the level of tessellation and S’(P,,) = S(P,,) is the shape 
polynomial of Psk. 

Proof: Refer to Fig. 7. By using 13, R3 can be tessellated into exactly 4 regions 
having an identical shape to R3 if v2 = hl and v3 = h2 = (1/2)hl. 

The area of R3 is equal to (5/4)hl*. Thus R3 can be represented as a complete 
quadtree whose leaves have the shape polynomial s(P,,) iff A/h1 = 3m/2 and 
hl = 2p where m and p are positive integers. 0 

3. TRIANGULAR LATTICES AND QUADTREES 

Triangular lattice graph, G’, can be obtained by joining the ordered pairs 
{(it j),(j, 9) of G on E*. Let 0, and B,, be the angles subtended by ((i, j),( j, i)) 
edge on lines parallel to the x and y axes respectively such that 8 + /3, + S,, = 8. 
Let 4 denote the set of all such edges in G’. Thus each cell of G is divided into two 
triangles about an edge, e E [. Bach triangle on E2 is called a cell of G’. Let 
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Region name 

R’l 

R’2 

R’3 

A’4 

PINAKI MAZUMDER 

TABLE 1 
Tessellation Scheme over Triangular Lattices 

Tile name Shape polynomial Tessellation matrix 

1-trigon 1+ 

2-trigon 1 

34rigon 1 +x+ 

6-trigon 1 +x + x2-t + y+ 

- 

cell(i + , j + ) and cell( i - , j - ) denote the lower and upper triangles on G’, 
corresponding to cell( i, j) on G. Obviously, celi(i - , j - ) is the re$ection of 
cell( i + , j + ) about e E 5. Cells of G’ are represented as cell( i + , j + ) = x’“y j’- 
and cell(i - , j - ) = x’-yj- such that the base cell is x’yj = x’+yj+ + x’-y’-. A 
tile, r;, on G’, called a k-trigon, consists of k connected cells such that there is no 
hole within the tile. It should be noted that a hole occurs if at least one of the 
trigons of the base cell is absent. The quadtree representability of the regions whose 
shape polynomial is identical in shape to these tiles and the corresponding tessella- 
tion matrices are shown in Table 1. 

4. COMPARISON OF QUADTREE TOPOLOGIES 

The quadtree shown in Fig. 1 represents only the hierarchical organization of the 
leaf nodes and does not explicitly indicate the spatial neighborhood of the leaf 
nodes. An alternate representation of the quadtree for 2-dimensional data structures 
can be made by the neighborhood graph, G *(V, E). The nodes, u E V, of the graph 
represent the tessellated regions corresponding to the leaf nodes of the quadtree and 
the edges, e E E, of the graph represent the spatial adjacency (corresponding to 
Cadjacency) of the nodes. The neighborhood graphs for regions Rl (as in Theorem 
2), R2 (as in Theorem 3) and R’l (as in first row of Table 1) corresponding to the 
tessellation matrices St, S2, and 3;, respectively, are shown in Fig. 8. Figure 8a 
represents the neighborhood graph corresponding to the well known {4,4) tessella- 
tion. Figure 8c represents the neighborhood graph for triangular quadtree having 
{ 3,6} tessellation. The pair {k, u} is called the Schlafli symbol [47] where k denotes 
the number of sides in a polygonal celI and u denotes the number of cells meeting at 
a vertex. It is interesting to note that the neighborhood graph of { 3,6) tessellakiun 
represents the (6,3} tessellation of regular hexagon. 

In the neighborhood graph, the dotted lines (called the equi-Zeuel lines) are the 
cuts corresponding to the different level of tessellations and indicate the hierarcI$ieal 
distriiution of the nodes. All the edges cut by the ith level tessellations are called 
ith cut-set of G *. Let QUERY ( ui, uj) be a diadic operation on G* involving 
uj, uj E V. The cost of the operation, c(QUERY(t+, uj)), is equal to the total path 
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a :  :  ’ :  ,  

i I  :  i :  ;  :  

Level -3 Level -! Level -2 
Tessellation Tessellation Tessellation 

b 

Level -3 Tessellation 

-  Level -1 Tessellation 

FIG. 8. (a) Graph for Rl. (b) Graph for R2. (c) Graph for R’l. 
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length between the nodes, u, and uj in the quadtree of height n. Obviously, an i th 
level equi-level line describes an equi-cost line of cost 2( n + 1 - i) and 
c(QUERY( ui, uj)) is equal to 2(n + 1 - m), where 1 I m I n is the lowest value of 
the equi-level line intersected by the line joining ui and uj. Let fzk denote the total 
number of nodes corresponding to all the edges in the (n + 1 - k)-th cut-set of G * 
and pzk = f&4* denote the probability that a randomly chosen node will be 
connected by such an edge. Let uj E V be any randomly chosen neighbor of u, E I/. 
The probability of the event c(QUERY(ui, u,)) = 2k, denoted by Pzk, is a perfor-. 
mance metric of the quadtree corresponding to its tessellation matrix, 1. If p2 is the 
probability that ui and uj are siblings (i.e., they have a common father) and qzk is 
the conditional probability that the edge ( uI, u,) is in (n + 1 - k)th cut-set of f’ * 
when for some u E V, (u, u;) is in (n + 1 - k)th cut-set, then 

P2k = PAk + p2,q2,0 - 4,) 

where 

ifi=j 
otherwise. 

aij is called the Kronecker delta function. 
The values of P2k for different neighborhood graphs of Fig. 8 are: 

(1) Graph for Rl (Fig. 8a) corresponding to tessellation matrix {r: Since each 
node has two siblings, p1 = 5 for non-peripheral nodes in the graph. Also, pzk = 
(4 n+l-k2k)p.y = 1/2k-2, where k > 2, and q2k = ((a) *(2k - 1) + (f))/2k = i + 
1/2k+2 so that 

‘2k = (:)&k + ((1 + 2k)/22k)(1 - a,,). 

(2) Graph for R2 (Fig. 8b) corresponding to tessellation matrix S2: The 
non-peripheral nodes have degrees 4, 5, or 6 depending on their locations in 
the graph. The average value of p2 is approximately equal to $ and p2k = fi/2h, 
The exact value of qsk is difficult to compute but the average value of qzk lies 
between $ and i. Thus 

P2k = (+)‘I, + (fiq2k/2k)(1 - slk). 

(3) Graph for R’l (Fig. 8c) corresponding to tessellation matrix lr: Each 
non-peripheral node has either one or three siblings and p2 = $(l*l + 3*1/3) = 4. 
Also, &k = (4n-k (4.5*2k))/4” = 4.5/2k and q2k = ((5)*3 + (i)(4.5*2k - 
3))/(4.5*2k) = (1 + 1.5*2k)/(4.5*2k) so that 

P2k = ($1, + ((1 + 1.5*2k)/22k)(l - a,,). 

From the above results, it is evident that P2, corresponding to k = 1, is approxi- 
mately the same on the average for difTerent planar topologies. 



PLANAR DECOMPOSITION 273 

5. CONCLUSIONS 

From the discussion in this paper, it can be concluded that a wide repertoire of 
planar geometries can be represented as quadtrees. The regions can be tessellated 
recursively using simple algorithms postulated by a tessellation matrix. The cost for 
diadic operation, which is equal to the path traversal necessary in the tree, is 
comparable for different planar geometries. 

This paper is restricted to only hyper-cellular structures corresponding to k-gon, 
where k I 6. But the same concept can be easily employed for higher order k-gons. 

The notion of planar tessellation by polyomino tiles can be extended to 3-dimen- 
sional space to identify the 3dimensional hypercellular topologies that can be 
utilized to generate the o&tree [48]. The o&-tree data structure is highly suitable for 
representing the 3-dimensional objects. 

The concept of recursive tessellation of planar regions as discussed in this paper 
has been utilized to design cost-effective embedding algorithms for cellular arrays in 
VLSI design [37]. Regular geometric structures represented by polyominoes can be 
utilized to select the basic cell geometry corresponding to the requisite communica- 
tion structure and simple embedding algorithms can be designed utilizing the 
notions described in the paper. Embedding algorithm similar to theorem 3 has been 
shown to construct fault-tolerant 2dimensional meshes. 
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