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An Equivalent Circuit Modeling of an Equispaced
Metallic Nanoparticles (MNPs) Plasmon Wire

Kyungjun Song and Pinaki Mazumder, Fellow, IEEE

Abstract—Based on the electric dipole moment (EDM) model
of free oscillating electrons inside a single metallic nanoparticle
(MNP), a comprehensive methodology is presented in the paper
for calculating the equivalent circuit elements associated with an
MNP. To find out the passive circuit elements for the MNP, the
electromagnetic (EM) power flows are calculated by deriving the
relaxation damping, radiation outflow, host matrix EM coupling,
and applied signal interaction. The law of conservation of energy
is then used to compute the extended oscillatory equation motion
of a spherical MNP. The resonant behavior of a single MNP is
represented by a lumped resonant circuit model, where the circuit
parameters RLC are derived from the equation of motion of the
EDM and EM near-field energy outside the MNP. Finally, equiva-
lent circuit of a linearly equispaced MNPs plasmon wire is modeled
as a voltage-controlled voltage source by using the nearest surface
plasmon interactions.

Index Terms—Full-width at half-maximum (FWHM), lumped
resonant circuit model, optical interconnect, radiation damping,
relaxation damping, surface plasmon (SP), surrounding matrix
damping, voltage-controlled voltage source (VCVS).

I. INTRODUCTION

THE FEASIBILITY of silicon lasing, photodetection, and
cointegration of on-chip optical interconnect has sparked

enormous optimism in CMOS very large-scale integration
(VLSI) industry because intrachip high-speed binary data trans-
fer via high-bandwidth optical waveguides is expected to solve
various limitations of conventional metallic wires that are dom-
inantly used in intrachip wiring in commercial chips. With ag-
gressive device and interconnect scaling, metallic interconnect
is witnessing several formidable problems, namely, increasing
propagation delay on long global wires, increasing power dis-
sipation due to wide-scale insertion of signal boosting buffers,
and intrinsic coupling between wires causing signal-dependent
time delays and logical faults. Optical interconnect, in contrast,
offers very small interconnect delay, high bandwidth of data
transfer, significantly reduces power consumption by obviat-
ing the need of repeaters, and virtually eliminates the coupling
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noise and electromagnetic (EM) interference between various
adjacent wires [1].

However, light cannot propagate along the conventional
waveguide if it is smaller than the wavelength of the optical
signal [2]. As an alternative to solving the diffraction limit of
optical signals, surface plasmon (SP) is now being extensively
pursued for fabricating nanoscale photonic devices [3]. Notably,
a metal has a negative dielectric permittivity in the optical spec-
trum, thereby enabling 1-D or 2-D SP wave to be propagated
over subwavelength metallic structures [2], [4]. Especially, the
selective optical absorption of a spherical-like metallic nanopar-
ticle (MNP) allows us to develop the next-generation photonic
devices such as subwavelength waveguides and SP biosen-
sors. With the development of nanofabrication technology such
as electron beam lithography (EBL) [5], the ordered metallic
nanostructures can now be built to manipulate the efficient SP
coupling between EM and the metallic surface [6], [7]. Some
analytical calculations [7], [8] and numerical approaches [6], [9]
have been developed to describe EM signal energy transfer along
the MNPs. In addition, equivalent nanocircuit elements of MNP
in the optical domain have been recently developed [10], [11].
These equivalent nanocircuit elements allow us to investigate
future MNPs applications such as subwavelength imaging [12],
quantum optics [13], nanoscale waveguide [6], [7], and near-
field optics [14]. However, these models [10], [11] have some
limitations to describe damping terms such as radiation damping
and host matrix coupling effects. Furthermore, applied current
element from optical signal interaction has not been presented
analytically.

In this paper, we focus on rigorous way to develop the equiv-
alent circuit modeling of an MNP and an equispaced linear
MNPs array based on the electric dipole moment (EDM). First,
to develop the inductance and capacitance elements, the internal
oscillation energy and EM near-field energy can be calculated
based on the EDM. Second, to describe the resistance elements
and the applied signal, four main power flows including re-
laxation loss, radiation outflow emission, host matrix coupling,
and applied signal interaction are calculated by using the rigor-
ous EM analysis. Third, the conservation of energy law leads to
computation of the relaxation, radiation, and surrounding matrix
damping frequency. Fourth, the resonant behavior of SP modes
in a single MNP is represented by a lumped SP resonant circuit
model. The lumped resonant circuit parameters such as capaci-
tance, inductance, and conductance are calculated by using the
equation of motion of the EDM, electric potential, and EM near-
field energy. Finally, nanoelements of an MNP are extensible to
the equivalent circuit modeling for a closely equally spaced
MNPs array as a voltage-controlled voltage source (VCVS)
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Fig. 1. Nondimensional EDM |p| /4πε0 R3
outEinc as a function of photon

energy. These curves are obtained from the cubic spline method by using the
Johnson’s experimental optical data of three different noble metals: Cu, Au, and
Ag.

by using the SP couplings between MNPs. Furthermore, these
calculations not only give a qualitative understanding about SP
modes originating from a single MNP, but also provide the phys-
ical intuition of the complex physical phenomena occurring in
the MNPs waveguide.

The paper is organized as follows. Section II presents the
EDM on the basis of electrostatic approximation and show the
Lorentzian shape with full-width at half-maximum (FWHM)
of the incident wave providing an efficient coupling. Section III
outlines the internal oscillation energy and EM near-field energy
of SP modes in a spherical MNP. Section IV describes the four
SP power flows coming from the MNP. Section V generalizes
the extended oscillatory equation of motion of the MNP and
describes how radiation and surrounding matrix effect of MNP
can be included in this equation. Section VI provides nanocircuit
elements (R,L,C) of the MNP. Finally, Section VII develops the
equivalent circuit modeling for an equispaced linearly spherical
MNPs plasmon wire.

II. EDM OF A SPHERICAL MNP

In a spherical MNP waveguide, the first spherical MNP along
the chain is optically irradiated by a near-field generator, such as
a near-field scanning optical microscope (NSOM), or an optical
input system, such as a far- and near-field conversion struc-
ture [15], [16]. Since the wavelength of light is large compared
to the geometry of particles, the validity of uniform EM field
is reasonable, and the electric charge distribution produces the
coherent EDM. Especially, in the nanoscale domain, SP modes
generate an EM dipole field. In order to evaluate the EDM and
account for strong EM absorption at the optical spectrum, we as-
sume that uniform EM wave applies to the spherical MNP and
produces the electron cloud oscillation. Under these assump-
tions, the EDM of the MNP can be described by [17]

p = 4πε0R
3
(

εr (ω) − 1
εr (ω) + 2

)
Einc (1)

where R is the radius of an MNP and εr (ω) is the di-
electric response. Fig. 1 shows the nondimensional EDM

|p| /4πε0R
3
outEinc by using the Johnson’s experimental data

of three different noble metals such as Cu, Au, and Ag [18].
In addition, the complex dielectric constant εr (ω) = εre(ω) +
jεim (ω) is obtained from the cubic spline regression method, as
shown in inset of Fig. 1. As can be seen, three noble metals have
different magnitude of the EDM, Cu (1.422), Au (1.739), and
Ag (10.72), with different resonant frequencies: Cu (2.11 eV),
Au (2.36 eV), and Ag (3.49 eV). In general, these Lorentzian
behaviors can be explained by using the Drude model approxi-
mation. The complex dielectric of noble metals can be described
by the Drude model

εr (ω) = 1 −
ω2

p

ω(ω + jγ)
(2)

where ωp =
√

nee2/ε0me is the bulk plasma frequency and γ is
the relaxation damping frequency. It follows from the previous
equations that the EDM can be written as

p = 4πε0R
3 −ω2

p

3ω (ω + jγ) − ω2
p

Einc . (3)

From (3), the resonant frequency can be calculated as

ωo =

√
ω2

p

3
− γ2

2
. (4)

However, in the case of the MNP, because the bulk plasma
frequency (ωp ) is about ten times higher in magnitude than
the relaxation frequency (γ) [4], [18], the relaxation damp-
ing frequency effect on the resonance frequency is almost
negligible. Therefore, the resonant frequency is almost equal
to ωo =

√
1/3ωp . However, the Lorentzian line shape with

FWHM depends on bulk plasma frequency (ωp ) and relaxation
damping frequency (γ). For instance, as shown in Fig. 1, Ag with
high bulk plasma frequency (ωp ) and low relaxation frequency
(γ) generates the localized EM field enhancement compared to
other noble metals such as Au and Cu.

III. INTERNAL OSCILLATION ENERGY AND EM
NEAR-FIELD ENERGY

To demonstrate inductance and capacitance of the MNP, it is
necessary to calculate the internal oscillation energy and EM
near-field energy in that internal oscillation energy gives the
equation of motion of SP modes, and EM near-field energy al-
lows us to calculate the energy of the capacitance element. First,
in order to calculate the internal oscillation and EM near-field
energy, we begin to examine the basic physical mechanism of
SP mode in the MNP. Inside the MNP, light creates an electron
gas displacement with respect to positive-ion charge. The sur-
face charge polarization generates an electric field that acts as
the restoring force inside the MNP. Thus, this harmonic oscilla-
tory motion is analogous to simple mechanical motion, which is
described by the spring constant and the relative displacement
from the equilibrium position. The spring constant and resonant
frequency of electron clouds can be calculated by an internal
electric field inside the MNP. Accordingly, the internal oscilla-
tion energy of electron density of the MNP can be described in



414 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 8, NO. 3, MAY 2009

terms of the EDM

HO =
1
2

me

Ne2

[
dp

dt

]2

+
1
2

meω
2
o

Ne2 p2 (5)

where the first term denotes the kinetic energy, the second term
describes the potential energy, p =

∫
x′ρ(x′)d3x′ is the EDM,

ωo is the resonant oscillation frequency, N is the number of
electrons, and me is the optical electron mass. Note that N =
4πR3ρ/3, where ρ is the electron gas concentration and R is
the radius of the MNP. However, in contrast to a uniformly
polarized infinite dielectric slab, the spherical surface charge
distribution with axial symmetry produces the near-field EM
energy outside the MNP. To calculate the near-field EM energy,
we make two assumptions: 1) almost all EM energy density can
be generated by the EDM because particle dimensions are small
compared to the wavelength of oscillation frequency and 2) the
surrounding medium is linear dispersive with small attenuation
coefficient and frequency-independent permittivity. With two
assumptions, the electric field in the near-field zone (kr � 1)
can be calculated by the localized oscillating system [17]

E (r, t) =
1

4πεr3 [3�er (�er · �p ) − �p ] (6)

where ε is the permittivity in the surrounding matrix, �p =
p(r) cos (ωot)�ez is the EDM inside the MNP, and �er is a unit
vector in the radial direction. And, the effective EM energy can
be described by the Poynting’s theorem

1
2
Re

[
d (ωε)

dω

]
〈E (r) · E (r)〉 ≈ 1

2
ε 〈E (r) · E (r)〉 . (7)

Therefore, the near-field EM energy outside the MNP can be
obtained by integrating over the whole volume outside the
particle

EN =
ε

2

∫ ∞

R

∫ 2π

0

∫ π

0
E(r) · E(r)r2 sin θ dθ dφ dr. (8)

The near-field EM energy can be expressed in terms of the EDM

EN =
1
12

p2

πεR3 ≈ 1
24

|p|2

πεR3 (9)

where |p| =
√

�p ∗ · �p means the magnitude of the EDM. The
term is responsible for dispersion relationship, optical force,
and EM energy transfer along the MNP waveguide.

IV. POWER FLOW CALCULATION OF A SPHERICAL MNP

In this section, we now focus on resistance elements and the
applied current signal. The resistance elements and the applied
current signal are strongly related to power flows. In the case of
resistance elements, there exist dissipative power flows because
of three main possible mechanisms, including electron clouds
relaxation [19], radiation energy outflow [20], and resonant sur-
rounding matrix coupling [20] in the three different domains,
as shown in Fig. 2. Assuming that relaxation collision damp-
ing force is proportional to the derivative of the electric charge
displacement, the damping force for electron clouds inside the

Fig. 2. For the oscillatory SP modes in an MNP, energy dissipation mech-
anisms such as relaxation (inside MNP), radiation energy outflow (far-field
region), and surrounding matrix power loss (near-field region) are existed in
three different regions.

MNP can be described by

FD = Meγ

[
dx

dt

]
(10)

where γ denotes the relaxation damping coefficient. Therefore,
the relaxation damping power loss per unit time can be written
as follows in terms of the EDM:

dWD

dt
=

meγ

Ne2

[
dp

dt

]2

. (11)

In the case of the radiation damping loss, this damping mecha-
nism is the emission of EM power flow outside the nanoparticle.
Since the radiation pattern is similar to the dipole field distribu-
tion, radiation power depends on the dipole plasmon mode. The
electric dipole field in the far-field region (kr 	 1) is given by

E (r, t) =
υk2Z

4π
([�er × �p ] × �er )

eikr

r
. (12)

The Poynting vector allows us to calculate the radiation power
as follows:

dWR

dt
=

υ2Zk4 |p|2 sin2(ωot − r/υ)
6π

(13)

where υ = c/n is the EM velocity, Z = (ε/µ)1/2 is the
impedance in the surrounding matrix, and k is the EM wavenum-
ber. If we ignore the retarded time-delay phase difference
(r/υ ≈ 0) and assume the perfect harmonic oscillator model
p(r, t) = p(r)cos(ωot) because the damping decay rate is very
small compared to the oscillation frequency, the radiation power
loss can be approximately obtained in terms of the rate of change
of momentum

dWR

dt
≈ υ2Zk4

6πω2
o

(
dp

dt

)2

. (14)

The last decay mechanism is the EM resonant coupling in-
teraction with the surrounding matrix. In the actual dispersive
nonmagnetic media such as silicon-based material, EM energy
may be dissipated into the surrounding matrix. This dissipated
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power loss per unit time can be calculated as follows [17]:

d

dt
(WM ) = ωoε0Imχ (ωo) 〈E (r) · E (r)〉 (15)

where ωo is the oscillation frequency and Imχ(wo) denotes the
imaginary susceptibility in the surrounding matrix. Therefore,
the absorbed energy in the host matrix per unit time is calculated

d

dt
(WM ) ∼= ωoε0Imχ (ωo) p2

6R3πε2
re

∼= ε0Imχ (ωo)
6R3πε2

reωo

(
dp

dt

)2

. (16)

Finally, the EM field of the applied signal interacts with electron
clouds in the MNP, as shown in Fig. 2. This interaction between
the applied signal and electron clouds produces the external
force in the MNP

F = −NeEI (17)

where EI means the electric field of the applied signal. The
power flow of the applied signal per unit time can be calculated
in terms of the EDM

dWA

dt
= −EI

dp

dt
. (18)

V. EXTENDED OSCILLATORY EQUATION MOTION

OF A SPHERICAL MNP

To obtain the equation of motion of SP modes in a single
MNP, the time derivative of internal oscillation energy in the
MNP is equal to power flow due to the relaxation, radiation,
surrounding matrix, and applied signal

d

dt
(HO ) = −dWD

dt
− dWR

dt
− dWM

dt
+

dWA

dt
. (19)

The extended oscillatory equation of motion including all damp-
ing mechanisms in the MNP can be described by

••
p + (γ + γR + γM )

•
p +ω2

o p = −Ne2

me
EI (20)

where γR is the radiation damping frequency and γM is the
surrounding damping matrix. The radiation damping frequency
is given by

γR =
2ρe2υ2Zk4R3

9meω2
o

=
(

2ρe2Z0

9me

) ( n

c2

)
ω2

o R3 (21)

where Z = (ε0/µ)1/2 is the impedance in the air matrix. And,
the matrix damping frequency is also determined by

γM =
2ρe2ε0Imχ (ωo)

9meε2
realωo

=
(

2ρe2

9men4ε0

)(
Imχ (ωo)

ωo

)
.

(22)
It follows from (21) and (22) that radiation damping frequency
(γR ) depends on the particle size, SP oscillation frequency, and
metal physical properties, whereas matrix damping frequency
(γM ) relies on the optical properties of the surrounding ma-
trix, SP oscillation frequency, and metal physical properties.

Fig. 3. Radiation damping frequency (γR ) can be calculated corresponding
to different radii. This calculation is performed for Ag.

To obtain radiation damping frequency, we choose Ag parti-
cles with different radii because the radiation frequency re-
lies on the particle size. For this calculation, we have used
electron concentration ρAg = 5.85 × 1028/m3 and an electron
mass mAg = 8.745 × 10−31 kg for Ag [21]. The surround-
ing matrix is chosen to be SiO2 with small attenuation coef-
ficient α ∼ 3/m and the refractive index n ∼ 1.56 under the
assumption of an isotropic medium in the optical regime. For
maximum EDM, we use the resonant oscillation frequency
ωo = 5.302 × 1015 rad/s (3.49 eV), as shown in Fig. 1. For
these parameters, we calculate the imaginary susceptibility
Imχ(ωo) ∼ nαc/ωo = 2.546 × 10−7 and the surrounding ma-
trix damping frequency γM = 3.49 × 108 rad/s. Fig. 3 shows
the radiation frequency corresponding to the radius of MNP.
Radiation damping frequency (γR ) is almost equal to the value
of 2.91 × 109 rad/s for 200 nm radius. Therefore, in the case
of resonant oscillation mode with small radius MNP and small
attenuation coefficient of the surrounding matrix, radiation and
surrounding matrix damping frequency are negligible compared
to relaxation damping frequency since relaxation damping (γ)
has the order of 1014 rad/s [18]. However, the radiation damping
(γR ) can be an important factor in the event of high oscilla-
tion frequency and large particle dimension, whereas the matrix
damping frequency can be a significant factor in a poor host
matrix with large attenuation coefficient.

VI. NANOCIRCUIT ELEMENTS OF AN MNP

The SP resonant behavior of an MNP can be modeled as a
lumped resonant circuit, as shown in Fig. 4. The circuit equation
for the lumped resonant circuit is given by

d2υ(t)
dt2

+
G

C

dυ(t)
dt

+
1

LC
υ(t) =

1
C

di

dt
(23)

where v(t) represents the equivalent current voltage, and C,L,
and G denote capacitance, inductance, and conductance, respec-
tively. In the spherical MNP, the average electric potential can
be written in terms of the EDM. The average electric potential
around the MNP can be calculated by integration of the internal
electric field. In general, the symmetric charge configuration of
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Fig. 4. Equivalent models for a plasmonic MNP. (a) Mechanical spring-mass-
damping model. (b) Lumped resonant circuit model.

a hemispherical region gives the average potential as follows:

υavg = avg
[∫

−Eint dl

]
= −4R

3
Eint

= − p

πR2 (ε − ε0)
(24)

where Eint = 3εEI /(ε + 2ε0) denotes the internal electric field
inside the MNP [10]. Therefore, the equation of motion in the
lumped resonant circuit can be described in terms of the EDM:

d2p

dt2
+

G

C

dp

dt
+

1
LC

p =
−πR2(ε − ε0)

C

di

dt
. (25)

It has been shown that three related equations between the
lumped element model and the extended equation of motions
of the EDM can be established by connecting (20) and (25) as
follows:

G

C
= γ + γR + γM = γT ,

1
LC

= ω2
o ,

Ne2

me
EI =

πR2(ε − ε0)
C

di

dt
. (26)

There are four lumped unknown parameters (G, C, L, i) and
three related equations between the lumped circuit model and
the equation of motion of the MNP. Therefore, to determine
all circuit parameters, it is necessary to set up one additional
relation. In the optical spectrum, the metallic structures have
the negative permittivity that can be described by the inductance
(L), and surrounding material has the positive permittivity that
can be presented by the capacitance (C) [10]. Therefore, the
stored energy in the capacitance element in the lumped resonant
circuit is almost equal to the EM near-field energy outside MNP.

UC =
1
2
Cυ2

avg
∼= 1

4
C |υavg |2 =

1
24

|p|2

πε0R3 . (27)

The capacitance of an MNP is given by

C =
πR |ε − ε0 |2

6ε0
. (28)

Table I shows C, L, and G components for three different no-
ble MNP (radius 20 nm) at three different resonant frequencies,

TABLE I
NANOCIRCUIT ELEMENTS OF THREE NOBLE MNPS (RADIUS R = 20 NM)

THAT IS SURROUNDED BY A FREE SPACE WITH A REFRACTIVE INDEX n = 1

Fig. 5. (a) Two fundamental coupled oscillations of a plasmon wire: longitu-
dinal oscillations and transverse oscillation. (b) Equivalent circuit modeling for
MNPS plasmon wire as a VCVS.

which is surrounded by a free space with a refractive index
n = 1. To calculate nanocircuit components, the relaxation
damping frequency (γ) is taken from the Johnson’s data [18].
As can be seen, compared with Cu and Au, Ag has high induc-
tance and small conductance for efficiently sending SP along the
MNPs. At resonant frequency ωo = 5.302 × 1015 rad/s, the per-
mittivity of Ag has the value of (−2.068 + j0.279)ε0 obtained
by Johnson’s experimental optical data [18]. Let us assume the
spherical MNP with R = 20 nm. Equations (26) and (28) show
that the circuit parameters of Ag of the MNP has the value of
C = 0.880 aF, L = 40.43 fH, and G = 0.0283 mS.

VII. EQUIVALENT CIRCUIT OF MNPS PLASMON WIRE

The subwavelength energy transfer along a closely equis-
paced MNPs plasmon wire with spatial distance d can be mod-
eled by using the nanoelements of the MNP. As can be seen
in Fig. 5, the first MNP of the plasmon wire is illuminated
by a laser, thus coupled SP modes can be transported along
the MNPs array. From the point of the antenna theory, near
field produced by mth dipole antenna is received by identi-
cal (m − 1)th and (m + 1)th dipole antennas respectively; near
field from (m + 1)th dipole accordingly transmits mth and
(m + 2)th dipole antennas. In addition, the efficiency of receiv-
ing antenna is also determined by the orientation between the
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receiving dipole antenna and transmitting dipole antenna. The
fundamental orientations of dipole antenna in Fig. 5(a) indicate
that there are two kinds of SP coupled modes: longitudinal cou-
pled modes where dipole moments are along the propagation
direction and transverse coupled modes where dipole moments
are perpendicular to the axis of the array. Depending on the
polarization orientation, the E-field received by the mth dipole
antenna from the nearest SP coupling is given by using (6):

Ep,m =
µipm+1(t)
4πε0n3d3 +

µipm−1(t)
4πε0n3d3 (29)

where µi is the polarization constant for which µL = −2 and
µT = 1, pm is the EDM of the mth MNP, n is the refractive
index of the matrix, and d is the distance of an equally spaced
linear array. The equation of motions of the mth (m ≥ 2) MNP
can be obtained by using the nearest EDM interaction
••
pi,m + γT

•
pi,m + ω2

o pi,m = −µiω
2
c (pi,m−1 + pi,m+1) (30)

where the SP coupling frequency will be

ω2
c =

Ne2

4πε0n3d3me
=

ρR3e2

3ε0n3d3me
s. (31)

The propagating wave solution to (30) have the following form
[7]:

pi,m = pi,m−1 exp (−αd + j(ωt ± kd)) (32)

where pm−1 and pm are the EDM of (m − 1)th and mth MNP,
respectively, and α is the damping constant per unit length.
Substituting (32) into (30) yields

ωγT + 2µiω
2
c sin(kd) sinh(αd) = 0 (33)

ω2 = ω2
o + 2µiω

2
c cos(kd) cosh(αd). (34)

For αd � 1, attenuation constant is approximately given by

αi =
γT ω

2 |µi | d sin(kd)ω2
c

(35)

where αT and αL are the transverse and longitudinal damping
factor, respectively. At the resonance frequency (ω = ωo ), the
wavenumber condition should be satisfied:

kd =
π

2
. (36)

Since the voltage of the mth MNP can be calculated by the EDM
of the mth MNP

υm (t) = − pm (t)
πR2 (ε − ε0)

. (37)

The parameter that relates vm and vm−1 is the MNP plamson
wire Ai = vm /vm−1

Ai = exp(−αid) exp(±jkd). (38)

Fig. 5(b) shows the equivalent circuit model for the closely
linear MNPs plsmon wire as a VCVS with voltage gain Ai.
Thus, voltage gain (Ai) has magnitude∣∣∣∣ Am

Am−1

∣∣∣∣ = exp(−αid). (39)

Table II gives the equivalent circuit parameters including cou-

TABLE II
EQUIVALENT CIRCUIT PARAMETERS OF THREE NOBLE MNPS PLASMON WIRE

(RADIUS R = 20 NM) SEPARATED BY A SPATIAL DISTANCE (d = 60 NM) AT

THREE DIFFERENT RESONANT FREQUENCIES, WHICH IS SURROUNDED BY A

FREE SPACE WITH A REFRACTIVE INDEX n = 1

Fig. 6. (a) Time snapshots of z component (in the xy plane) of scattered
electric field in the Ag plasmon wire. (b) Average E-field density in the Ag
MNPs plasmon wire is obtained by FDTD simulation. Values are calculated
at the identical positions of each MNP, and E-field densities are normalized to
the E-field density of position 1. (c) Average voltage of the Ag plasmon wire
is calculated by Ag circuit parameters. The voltages of MNPs plasmon wire at
different positions are normalized to the voltage of position 1.

pling frequency ωc , attenuation factor α, voltage gain exp(−αd)
for three different noble MNPs’ (radius R = 20 nm) array
with the spatial distance (d = 60 nm) at three different res-
onant frequencies, which is surrounded by a free space with
a refractive index n = 1. To demonstrate the validity of our
equivalent circuit parameters, we have conducted 3-D scattered
finite-difference time-domain (FDTD) simulation. Fig. 6(a)
plots the EM energy transfer in Ag plasmon wire with radius
20 nm and distance 60 nm. For realizing a resonant SP subwave-
length transfer along the plasmon wire, the incident plane wave
(ω = 5.302 × 1015 rad/s), polarized parallel to the longitudinal
axis of the wire, irradiates at the first MNP. Accordingly, we
obtain the average E-field density at different locations from
position 1 to position 12. Values are calculated at the identical
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positions located at the 30 nm offset points (z-directed) from
the center of MNPs, and E-field densities are normalized to the
E-field density of position 1. In addition, Fig. 6(c) shows the
voltage attenuation based on Table II. As shown in Fig. 6(b)
and (c), the FDTD calculation, from position 1 to position 3,
provides strong damping coefficient compared to equivalent cir-
cuit modeling because we ignore higher order electric moments
with small SP interaction compared to EDM coupling. How-
ever, FDTD simulation, after position 3, shows that attenuation
coefficient is closely similar to the voltage attenuation since the
SP energy transfer along the MNPs plasmon wire is transported
by strong EDM coupling, as plotted in Fig. 6(a), thus validating
our equivalent circuit modeling.

VIII. CONCLUSION

To calculate the MNP nanocircuit elements, the theoretical SP
physical mechanism of the single MNP has been demonstrated.
As described in previous sections, the spherical MNP has a
lot of advantages over any other plasmonic structures in that
they demonstrate optical selectivity (FWHM), an SP modes res-
onator, and an effective near-field EM generator. Furthermore,
instead of full-wave computation-intensive FDTD simulation,
the lumped element circuit model of the MNPs plasmon wire
offers us fast system-level simulation models such as SPICE
to investigate the behavior of the SP modes in MNPs in the
presence of conventional electronic components. Therefore, we
can efficiently analyze complex MNPs structure combined with
photonic and electric elements by using the equivalent circuit
modeling.
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