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Equivalent-Circuit Modeling of Nonradiative Surface
Plasmon Energy Transfer Along the
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Abstract—An analytical methodology for establishing an
equivalent-circuit network of nonradiative surface plasmon (SP)
energy transport along the metallic nanowire (MNW) is presented.
To find out the passive elements for MNW, the SP dispersion
and damping relation through modified Bessel function electro-
magnetic (EM) field expansion was derived, thus demonstrating
the low-pas transmission-line (TL) model. Specifically, the low-
pass TL parameters, such as series impedance (Z) and shunt
admittance (Y ) can be calculated based on the lumped-element
model and harmonic-voltage (current) distribution. Furthermore,
the equivalent-circuit parameters, such as resistance (R), induc-
tance (L), capacitance (C) and conductance (G), are obtained by
employing the finite difference (FD) discretization method such
as T-cell RLCG networks. These equivalent-circuit elements can
be verified by the HSPICE circuit simulation and 3-D scattered
finite-difference time-domain (FDTD) method. Finally, the paral-
lel MNWs are modeled as equivalent-circuit networks by using the
electrostatic coupling.

Index Terms—Finite-difference time-domain method (FDTD),
low-pass transmission line (TL), metallic nanowire (MNW), mutual
capacitance, surface plasmon (SP), T-cell discretization.

I. INTRODUCTION

THE miniaturization of optical circuitry in nanoscale di-
mensions has been aggressively pursued recently with a

view to performing on-chip signal and information processing
by directly inputting optical data stream from a fiber optics ca-
ble to a very large-scale integration (VLSI) chip consisting of
billions of nanoscale electronic circuit components [1]–[3]. As
a fascinating method, the surface plasmon (SP) that emanates as
near-field electromagnetic (EM) wave due to electron oscilla-
tion on the interfacing surface between conductor and dielectric
material is of great interest for new approaches to obtain the
subwavelength waveguide [4]. For example, for a new class
of subwavelength photonic elements, there has been much in-
terested in 1-D SP propagation in the metallic structure. By
tailoring the topology of a metallic surface, 1-D SP waves can
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be generated at the metallic surface. It is well known that 1-D SP
waves can be produced by the metallic nanoparticles (MNPs)
array [4], [5] and metallic nanowire (MNW) [6]–[9]. Especially,
the SP in the MNW merits a special attention due to its potential
applications in the photonic circuitry [10], subwavelength opti-
cal imaging [11], and quantum optics [12].

However, the issue of propagation loss along the MNW re-
mains to be tackled since the dimension contraction, such as
transformation from 2-D waves to 1-D waves, increases damp-
ing coefficients because low-dimensional waves lead to strong
momentum wave. Moreover, this significant energy attenuation
in the nanoscale domain leads to substantial difficulties in har-
nessing plasmonics in on-chip nanoscale waveguide and other
near-field optical applications. Furthermore, to address the SP
energy dissipation, it is needed to tune the guiding design pa-
rameters such as metal physical properties, host matrix physical
properties, metal geometries, and operational signal frequency.
First, in the case of metal, it would be desirable to choose the
noble metals, such as Ag and Au, having high bulk plasma fre-
quency (ωp ) and low relaxation frequency (γ) to increase the
localized EM field enhancement and produce the low damping
mechanism. Second, for a host matrix, we choose the low refrac-
tive index (n) to decrease the EM energy outflow into the host
matrix. However, two main variables, including geometric fac-
tors and operational frequency, are coupled with each other, thus
the SP dispersion curves and damping relations can be entirely
tailored by the geometry of MNW and EM fields. Thus, a rigor-
ous analysis optimizing the SP guiding performance of MNW
is, therefore, not only desirable, but also essential to develop SP
devices based on MNW.

In general, some numerical simulation [6] and analytical cal-
culation [7] can be used to optimize the SP propagation along
the MNW. For example, the FDTD or finite-element method
(FEM) based on the EM field solvers with a longer simulation
time validates the SP propagation along the MNW. As an al-
ternative of the EM field solvers, the RLC circuit elements of
MNPs have been proposed recently [13], [14]. Moreover, these
equivalent-circuit elements are directly incorporated into the
circuit simulations, such as HSPICE, thus leading to the pos-
sibilities of optimization of SP propagation in the circuit-level
simulation. In addition, this equivalent-circuit modeling leads to
fast system-level simulation combined with conventional pho-
tonic components [15]–[17].

In this paper, we focus on the rigorous way to present the
equivalent-circuit elements of the MNW. To establish nonlinear
circuit block of SP modes along the MNW, we have used to
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physical approach to define nonlinear equivalent-circuit ele-
ments (R, L, C, and G) are capable of mimicking SP behaviors,
such as SP dispersion relation k(ω), damping curves α(ω), and
power flow P (ω). To demonstrate the equivalent-circuit ele-
ments of SP MNW based on physical approach [18], [19], we
need to develop the physical equation formulations. First, we in-
vestigate the dispersion relation and damping curve of nonradia-
tive SP waves along the MNW by using Newton–Raphson algo-
rithm. We can gain an intuitive understanding of the low-pass TL
model by investigating the SP dispersion relation. For instance,
in the conventional TL model, the per-unit-length (PUL) circuit
parameters are derived from the integral of Maxwell’s equation.
However, contrary to the conventional TL approach, our cir-
cuit elements are based on the dispersion relation and damping
curve because the propagation constant is determined by PUL
circuit elements: α + jk =

√
(r + jωl)(g + jωc), where r, l,

g, and c denote resistance per unit length, inductance per unit
length, conductance per unit length, and capacitance per unit
length. Second, to be complete description of all circuit param-
eters, the current (I) and voltage (V ) should be described as the
physical quantity. For example, in the transmission-line (TL)
analysis, the EM fields of a TEM satisfy a static field distribu-
tion in a transverse plane, thus voltage and current are uniquely
defined as a transverse plane based on the integration of E or
H fields. However, because the SP modes generate TM modes,
we have used the net power flow concept to obtain effective
characteristic impedance (Zc = V/I) in analogy with the cal-
culation of radiation impedance for an antenna. In this way, we
can calculate the effective voltage as a physical meaning. Es-
pecially, among many SP propagation modes, we focus on the
dominant TM propagation mode (n = 0) with no surface charge
variation in the θ-direction, thus easily obtaining the effective
current and effective voltage along the MNW. Furthermore, the
lumped-element model and time-harmonic current (or voltage)
distribution lead us to calculate the low-pass transmission pa-
rameters such as series impedance (Z) and shunt admittance
(Y ). Third, the finite-difference (FD) methods such as T-cells,
π-cells, and half-cells enable us to obtain the equivalent-circuit
parameters of MNW: resistance (R), capacitance (C), induc-
tance (L), or conductance (G). Fourth, these equivalent-circuit
parameters of the MNW are validated by HSPICE and FDTD
simulation. Finally, we develop the equivalent-circuit networks
for the parallel MNWs.

II. DISPERSION RELATION AND DAMPING CURVE

OF SP IN THE MNW

In the case of flat metallic surface, the SP dispersion can
be calculated by solving the Maxwell equations. In detail, this
relationship is given by the following well-known formula [20]:

ksp = kf

√
εsεm

εs + εm
(1)

where kf = ω/c is the free-space wave vector, εs is the per-
mittivity of the surrounding material, and εm is the frequency
dependent permittivity of the metallic structure. However, in or-
der to calculate the SP dispersion in the MNP, we shall consider

the subwavelength cylindrical structures with a cross section of
radius R0 (R0 � λ) in the longitudinal z-axis, transverse r, and
θ plane. In the case of subwavelength circular geometry, we as-
sume that the nonradiative near field energy is transported along
the z-direction, and the phase constants of r and θ are imag-
inary because EM wave satisfies the Heisenberg uncertainty
principle (ΔxΔp > h̄). Furthermore, unlike a conventional op-
tical waveguide, the SP modes are purely transverse magnetic
(TM) modes because the surface charge generates a transverse
magnetic field at the interface between a metal structure and
a surrounding matrix. Therefore, the nonradiative EM fields in
the metal core (r < R) are given by as follows [7]:

Ez1 = AIn (kρ1r) Er1 = A
ikz

kρ1
In+1(kρ1r)

Hθ1 = A
iωε1

kρ1
In+1(kρ1r) (2)

and EM fields in the host matrix (r > R) are given by

Ez1 = BKn (kρ1r) Er1 = −B
ikz

kρ2
Kn+1(kρ2r)

Hθ1 = −B
iωε2

kρ2
Kn+1(kρ2r) (3)

where kρi =
(
k2

z − εiμω2
)1/2

, i = 1, 2, are transverse phase
components, In and Kn are the nth-order exponential growth
and decaying functions for the modified Bessel equation, and
R is the radius of MNW. From boundary conditions with tan-
gential EM field components continuity, 1-D SP transcendental
equation can be obtained

Kn (kρ2R)
In (kρ1R)

= −ε2kρ1Kn+1 (kρ2R)
ε1kρ2In+1 (kρ1R)

. (4)

Newton–Raphson numerical algorithm leads us to calculate
the dispersion relation and damping curves in the function of
frequency. In this calculation, we have used the complex dielec-
tric constant of Ag, εr (ω) = εre(ω) + jεim (ω), obtained from
the cubic spline method by using the Johnson’s experimental op-
tical data [21]. Fig. 1(a) shows the SP dispersion relations and
damping curves calculated using (4) for SP propagating along
the Ag MNW with radius R = 10 nm that is surrounded by free-
space medium (ε2 = 1). These dispersion curves are plotted
as a function kz/k0(k0 = ωp/c, where ωp is the bulk plasma
frequency: 9.183 × 1015 rad/s, where c is the light velocity),
which has the nondimensional wave number. As in the inset
of Fig. 1(a), the symmetric fundamental mode (n = 0) with
no surface charge variation in the θ-direction leads to small
momentum mismatch between free space and SP wave, and
small damping coefficients compared to the higher other modes
(n > 0). Moreover, as shown in Fig. 1(a), for a low frequency, SP
modes asymptotically approaches the light line and small damp-
ing loss and, at large kz , the SP modes approaching the cutoff
frequency 0.707 ωp has the strong damping loss. This behavior
is similar to that of flat metallic SP mode. However, compared
to zero curvature structure that denotes metallic flat surface,
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Fig. 1. (a). Dispersion relations of Ag (silver) MNW with radius(R = 10 nm).
(b) Damping curves of Ag (silver) MNW with radius (R = 10 nm). These
calculations are obtained from the cubic spine method by using Johnson’s
experimental optical data (k0 = ωp /c, ωp is the bulk plasma frequency, c is the
light velocity). H fields have the following term H = H0 exp(−αz)exp(iωt −
ikz z).

positive charge distribution and circular electron confinement
with small geometry (R = 10 nm) induce the strong momentum.
For example, for ω = 0.4 ωp , the momentum of fundamental
mode (n = 0) numerically found to be kz ∼ 9.4 kf (kf = ω/c).
However, in the case of metallic flat structure with free-space
surrounding material ε2 = 1, for ω = 0.5 ωp , the momentum
of SP analytically found to be ksp ∼ 1.22 kf by using (1). This
strong momentum mismatch of 1-D SP wave is responsible for
the EM coupling problem and multiple scattering interferences
between light and SP wave.

In order to check the size contraction of nonradiative SP
propagation along the MNW, we have simulated for MNWs with
different radius. In Fig. 2(a) and (b), the dispersion relations and
damping curves obtained by Newton–Raphson algorithm for the
case of n = 0 (fundamental propagation mode) are also plotted.
As can be seen, small radius leads to increase the momentum
and attenuation coefficient. As expected, the size contraction
has a significant impact on the photonic behavior of SP wave.

III. NANO-TL MODELING OF MNW

It has been shown that SP modes along the MNW have the
cutoff frequency ω0 = 0.707 ωp . Below the cutoff frequency
(ω0), SP modes can be generated along the MNW. Intuitively,
this behavior can be interpreted as a low-pass lumped-TL model
with series L (inductance per unit length) and C (capacitance per
unit length), having the cutoff frequency ω0 = 2/(LC)1/2 , as
shown in Fig. 3. This dispersion analysis of TL model provides
a theoretical physical concept for the energy transfer mecha-

Fig. 2. (a) Dispersion relations of Ag (silver) MNW with different radii.
(b) Damping curves of Ag (silver) MNW with different radii. These calculations
are obtained from the cubic spine method by using Johnson’s experimental
optical data (k0 = ωp /c, ωp is the bulk plasma frequency, c is the light velocity).
H fields have the following term H = H0 exp(−αz)exp(iωt − ikz z).

Fig. 3. Lumped low-pass TL model and dispersion curve.

nism along the MNW. In this paper, we examine a simple case
of the TL modeling of the MNW. To calculate the TL parame-
ters, we begin to find out the basic physical mechanism in the
MNW. The electron cloud oscillation around the metallic surface
can be generated by a local field excitation. These oscillatory
electron clouds give rise to unique EM field distribution, where
the magnetic fields have only axial component Hθ , which means
the TM waves. If we consider the SP damping factor, SP energy
transfer can be modeled as a low-pass lumped-TL consisting of
inductance, capacitance, resistance, and conductance, as shown
in Fig. 4(c). Furthermore, in order to calculate these circuit
parameters, it is necessary to evaluate the current and voltage
as a physical quantity. In general, the voltage and current of
TEM wave in the usual fashion as integral in the transverse
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Fig. 4. Equivalent models of nonradiative SP wave along the MNW with
fundamental mode n = 0 with no surface charge variation in the θ-direction.
(a) Electron charge oscillation model. (b) EM field distribution. (c) Equivalent
lumped-low-pass TL model.

plane:

I(z, t) = −
∮

c ′

−→
H

θ
· d	l′ and V (z, t) = −

∫
c

−→
E r ·

−→
dl. (5)

For SP wave guiding that cannot support a TEM wave, we can-
not define unique voltage and current at a given point along the
SP MNW. For these reasons, we choose the equivalent current,
equivalent voltage and equivalent impedance for TM lines. Even
though they are not unique voltage or current, the equivalent
parameters yield the proper physical behavior of the guided
wave such as power flow, propagation constant and damp-
ing [22]. As a first step, to find out equivalent current flow,
we start with the transverse EM field distribution around the
MNW. By using the magnetic field continuity at the metallic
surface (ρ = R), it is easily found that the EM fields inside the
MNW (ρ < R) are given by

Hθ = Hθ (r = R)
In+1 (kρ1ρ)
In+1 (kρ1R)

êθ (6)

Er = Hθ (r = R)
kz In+1 (kρ1ρ)

ωε1In+1 (kρ1R)
êr . (7)

In the outside region (ρ > R), the EM fields are also given by

Hθ = Hθ (r = R)
Kn+1 (kρ2ρ)
Kn+1 (kρ2R)

êθ (8)

Er = Hθ (r = R)
kzKn+1 (kρ2ρ)

ωε2Kn+1 (kρ2R)
êr . (9)

The current flow is governed by the Ampere law

∇× H =
∂D

∂t
+ Jp + Jf =

∂(εpE)
∂t

+ Jf (10)

where Jp is the polarization current density and Jf is the source
current density and εp = εoεm represents a free electron model.
Moreover, the EM fields originate from the embedded elec-
tron charge oscillation of metallic structure, thereby reducing to

source-free region with source current Jf = 0. In this paper, we
only concentrate on the fundamental (n = 0) nonradiative TM
mode with no surface charge variation in the θ-direction. With
the stokes theorem, the total current flow of fundamental mode
(n = 0) around the MNW is readily obtained

Iz (R) = 2πRHθ (r = R). (11)

The validity of (11) can be physically explained by oscillat-
ing charge distributions inside the MNW (r ≤ R), as shown
in Fig. 4(a). Since the magnetic field lies in the transverse
plane, the induced current around the MNW are directed into the
z-axis. However, the physical quantity of voltage is not easily
obtained by using the integral formulation Er , as shown in (5)
because the locally distributed oscillating charges around the
periphery of the MNW generates not TEM wave, but TM wave
with Ez field. As an alternative of E-field integration, we have
used net power flow over the cross section (r–θ plane) to obtain
the physical quantity of voltage flow. For example, in a similar
way, the radiation impedance for the antenna, such as dipole
or linear wire with a current distribution can be obtained by
calculating the radiation power flow. This idea is extensible to
obtain the effective voltage along the MNW. In detail, the time-
averaged power flow in the +z-direction around the MNW at
the given point z is given by

P+
net = P in

z + P out
z

=
1
2

∫
A in

E+
r · H+∗

θ dS +
1
2

∫
A o u t

E+
r · H+∗

θ dS. (12)

Then, (12) can be written in terms of current flow

P+ =
1
2
I+
z (r = R)I+∗

z (r = R)(Zin + Zout) (13)

where

Zin =
kz

2πR2ωε1

1
I1(kρ1R)I1(kρ1R)

∫ R

0
I1(kρ1ρ)I1(kρ1ρ)ρdρ

(14)
and

Zout =
kz

2πR2ωε2

1
K1 (kρ2R) K1 (kρ2R)

×
∫ ∞

R

K1 (kρ2ρ)K1 (kρ2ρ) ρdρ. (15)

As can be seen, the power flow along the MNW can be clas-
sified as the right-handed power flow (P out

z ) and left-handed
power flow (P in

z ). In detail, outside the MNW, Er and Hθ

have right cross product in terms of wave vector (kz ), there-
fore, P out

z > 0. However, inside the MNW, Er has reverse
direction because of ε2 < 0, denoting left cross product and
denoting Re(P in

z ) < 0. The net power flow is the sum of P out
z

and P in
z . To be specific, we can calculate the Zout = 201.1 and

Zin = −2.4268 − 0.0709j at 2.0 eV (red spectrum) in the case
of MNW with radius 10 nm based on the SP dispersion relation
and damping curve, as shown in Fig. 1. Because of Zout 
 Zin ,

the dominant power flow around the MNW is P out
z , thus val-

idating the SP dispersion relation mimicking to the low-pass
TL. On the other hand, if the left handed power flow dominates,
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the series impedance Im(Z ≈ jkzZc ) is negative, thus denoting
the high-pass TL to explain the negative refractive EM behav-
ior. Furthermore, this net power flow concept can be used to
connect between effective current and effective voltage in the
circuit theory. Especially, the complex power flow in the circuit
theory can be expressed in terms of complex harmonic voltage
and current:

P+ =
1
2
V +I+∗

=
1
2
I+ZcI

+∗
. (16)

In this paper, we define the characteristic impedance of the
MNW to connect the voltage and current

Zc = Zin + Zout (17)

where Zc = V +/I+ means connecting parameter to relate ef-
fective voltage and effective current at a single position. In the
case of the MNW, the Zc can be approximately written as

Zc
∼= Zout . (18)

In a typical TL method, the characteristic impedance Zc pro-
vides information about reflection properties. For example, the
MNW with Zc is terminated with a load impedance ZL , the
reflection coefficient can be described by

ΓL =
ZL − Zc

ZL + Zc
. (19)

Physically, the terminated load impedance of MNW can be
approximately modeled as open circuit load ZL → ∞ because
the current distribution only confined to inside the MNW. How-
ever, the MNWs consist of physical lines with various disconti-
nuities and transitions such as gap in MNWs, change in radius,
T-junction MNW and coax-to-MNW junction. These disconti-
nuities are required to shunt or series elements across the junc-
tion to satisfy the SP physical phenomenon such as EM matching
issues. This analysis is much more difficult to analyze and more
detail EM analysis is needed to obtain the accurate equivalent-
circuit elements. In this paper, we only deal with MNWs without
no discontinuities and transitions. Now, it has been shown that
the effective voltage and effective current flow at a physical sin-
gle position are related to net power flows, we now focus on the
TL parameters. We have started two fundamental assumptions:
the lumped-element model and sinusoidal current (or voltage)
waveform. The validity of the lumped-circuit model is that cir-
cuit parameters of the MNW are not distributed into a single
physical position but are lumped into all length. Thus, the TL
equations can be expressed as

dV

dz
= −ZI and

dI

dz
= −Y V (20)

where Z and Y mean are the distributed series impedance and
shunt admittance, respectively. The second assumption denotes
that the current (or voltage) in the +z-direction can be expressed
as follows:

I(z, t) = I exp(−αz) exp(iωt − ikz z)

V (z, t) = V exp(−αz) exp(iωt − ikz z) (21)

Fig. 5. (a) Plasmon zeroth-mode wave number and damping coefficient of Ag
with radius 10 nm. (b) Impedance (Z = R + jX ) of plasmon zeroth-mode of
metallic nanowire with radius 10 nm. (c) Resistance of SP zeroth mode as a
function of frequency with different radii. (d) Reactance of SP zeroth mode as
a function of frequency with different radii.

where kz and α are satisfied with SP transcendental equation.
Therefore, with the help of (21), (20) can be described by

dV (z, t)
dz

= −(α + ikz )V (z, t) = −ZI

dI(z, t)
dz

= −(α + ikz )I(z, t) = −Y V . (22)

With the help of connecting parameter Zc between V and I ,
the lumped series impedance (Z) and shunt admittance (Y ) can
be expressed as

Z = (α + jkz )Zc and Y =
α + jkz

Zc
. (23)

In the case of sinusoidal excitation, the Z and Y of the low-
pass TL can be described as

r + jωl = (α + jkz )Zc and g + jωc =
α + jkz

Zc
(24)

where r, l, g, and c denote resistance per unit length (R/m),
inductance per unit length (L/m), conductance per unit length
(G/m), and capacitance per unit length (C/m), respectively. In
the case of the MNW, the damping coefficient (α) can be an order
of magnitude of the wave vector (kz ) in the optical spectrum,
as shown in Fig. 5(a). Thus, the damping factor (α) should
be considered to calculate the TL parameters of the MNW.
Fig. 5(b) shows the fundamental mode (n = 0) impedance (Z =
R + jX) curves for MNW by using the dispersion relation and
damping coefficient calculated from the SP dispersion relation.
First, positive reactance (X > 0) indicates the inductive element
because of Zout 
 Zin , verifying a low-pass lumped TL. As
it is expected, the damping coefficient of SP proportionally
provides equivalent nanoresistance, as shown in Fig. 5(b). For
example, in the blue (optical) spectrum (ω ∼ 4.56 × 1015 rad/s:
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Fig. 6. (a) FD-based element equivalent circuit. (b) T-cell RGLC circuit model
of a low-pass TL model.

3.0 eV), resistance and reactance of the MNW with radius 10 nm
approximately have about 0.404 and 10.7 Ω/nm, denoting high
damping mechanism. However, in the red (optical) spectrum
(ω ∼ 3.04 × 1015 rad/s: 2.0 eV), resistance and reactance have
about 0.101 and 5.82 Ω/nm, denoting small damping mechanism
and low impedance compared to blue spectrum. Fig. 5(c) and (d)
shows the effect of radius on the impedance of SP propagation
along the MNW. As can be seen, the small dimension of the
MNW leads to strong attenuation and high reactance. From the
curves, as the radius increases twice, the resistance and reactance
almost decrease at half values.

IV. EQUIVALENT-CIRCUIT MODELING FOR SP PROPAGATION

ALONG THE MNW

In previous sections, we have introduced the TL properties
of the SP MNW: capacitance per unit length (C/m), induc-
tance per unit length (L/m), resistance per unit length (R/m),
and conductance per unit length (G/m). These parasitic ele-
ments have an impact on the photonic behavior of the SP MNW
circuit and influence its delay, power attenuation and reliabil-
ity [23]. Basically, the lossy TL can be analyzed by using two
basic approaches: convolution method with impulse response
and lumped-element circuit model [24]. In this paper, we fo-
cus on the lumped-equivalent-circuit model, thus easily imple-
mented in the existing circuit simulation tools such as Spice sim-
ulator [25]–[28]. To demonstrate the lumped-equivalent-circuit
model, let the distributed PUL parameters of the MNW be de-
noted by Z and Y , representing series impedance and shunt ad-
mittance, respectively. By applying the FD method in (23), the
FD discretization with respect to z leads to a RLCG network, as
shown in Fig. 6. Among many different FD discretizaion meth-
ods such as T-cells, π-cells, and half-cells, we have simulated
the symmetric T-cell method since different cell methods lead
to a quite similar result if the cell lengths are small enough.
Let us assume that the number of T-cells is N , the resistance,
inductance, conductance, and capacitance elements of ith T-cell
segment can be obtained by

Zi = Ri + sLi =
Zl

2N
and Y i = Gi + sCi =

Y l

N
(25)

Fig. 7. HSPICE transient analysis of Ag MNW (radius: 10 nm, length:
800 nm) obtained by HSPICE simulator: (a) Blue optical frequency (ω ∼
4.56 × 1015 rad/s: 3.0 eV). (b) Red optical frequency (ω ∼ 3.04 × 1015 rad/s:
2.0 eV).

where l is the length of the MNW and N is the number of
T-cell segment. If we consider an MNW with a length l =
800 nm, a radius R = 10 nm, and free-space host matrix (n =
1). By dividing the MNW into 40 sections, T-cell equivalent-
circuit parameters at the blue spectrum (ω ∼ 4.56 × 1015 rad/s:
3.0 eV) have the values: R = 3.92 Ω, L = 23.25 fH, G =
0.264 mS, and C = 1.94 aF. On the other hand, at the red fre-
quency (ω ∼ 3.04 × 1015 rad/s: 2.0 eV), the T-cell equivalent-
circuit parameters have the following values: R = 1.01 Ω, L =
19.13 fH, G = 0.0489 mS, and C = 0.979 aF. In Fig. 7, the tran-
sient analysis performed by HSPICE is illustrated as a function
of time. In this case, the input source generates a sinusoidal sig-
nal with the amplitude 100 V. Four signal waveforms represent
the transient voltage at input port, 400 nm node, 600 nm node,
and output port (800 nm), respectively. The parasitic elements
of blue spectrum (3.0 eV) play a dominant role in SP power
attenuation, as shown in Fig. 7(a). As expected in previous sec-
tions, to address signal dissipation, it is necessary to decrease
the operational signal frequency. As shown in Fig. 7(b), the red
spectrum leads to transfer SP nonradiative signal with small
damping factors compared to blue spectrum operation.

To confirm the following equivalent-circuit parameters of
MNW, we have conducted 3-D scattered FDTD implementa-
tion since this approach has some advantages over the total field
formulation in that the dispersive calculation error of incident
field is negligible and absorbing boundary condition of scattered
field can be easily implemented [29]. Based on the frequency
dependent FDTD, our simulation volume is chosen as a 3-D
rectangular box with dimension 1000 × 300 × 300 nm3 . We
consider an Ag MNW with a length of 800 nm and a radius
of 10 nm, which is surrounded by a free space (n = 1). For
demonstrating a local nonradiative SP propagation along the
MNW, the incident plane wave, polarized parallel to the longi-
tudinal axis of the MNW, irradiates at the input terminal of the
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Fig. 8. Average E-field density in the Ag MNW (radius = 10 nm) performed
by FDTD. These values are calculated at the positions at 15 nm offset positions
(z-directed) from the axis of MNW.

Fig. 9. (a) Average E-field density in the Ag plasmon wire (r = 10 nm)
calculated by using FDTD simulation. (b) Average voltage of the Ag plasmon
wire (radius = 10 nm) calculated by HSPICE simulation based on the circuit
parameters. These values are normalized to the input values.

MNW. Accordingly, we obtain the average E-field density at
different positions. These values are calculated at the positions
at 15 nm offset positions (z-directed) from the axis of MNW.
The inset of Fig. 8 shows x-component of the scattered field
(x–y plane) calculated by using the FDTD simulation for two
different frequencies. As shown in Fig. 8, even though the blue
frequency (ω ∼ 4.56 × 1015 rad/s: 3.0 eV) generates strong sub-
wavelength localization at the input port of SP MNW because
the resonant SP frequency of Ag MNW locates at the blue spec-
trum, power attenuation become dominant in this spectrum. In
contrast, red spectrum (ω ∼ 3.04 × 1015 rad/s: 2.0 eV) produces
weak subwavelength confinement and slowly attenuating near
field along the SP MNW. In Fig. 9, the attenuation of E-field
(FDTD) and voltage (HSPICE) are compared. These values at
different positions are normalized to the input values. The
closely agreement between FDTD and HSPICE validates the
MNW equivalent-circuit parameters. As the frequency reduces,
small damping coefficients lead to multiple reflections between
two terminals of MNW. When the propagation speed and opera-
tional frequency become sufficiently fast, the multiple reflection
plays an important role in the behavior of TL. For example, the
Fabry–Perot resonator as the silver MNW with diameter around
100 nm is experimentally demonstrated [30]. In detail, by using
the Fabry–Perot resonator analysis, if the electric amplitude of

Fig. 10. (a) Average E-field density in the Ag plasmon wire (radius = 10 nm,
length = 800 nm) at a frequency (ω ∼ 2.28 × 1015 rad/s: 2.0 eV) by FDTD.
(b) Average voltage of the Ag plasmon wire (radius = 10 nm) calculated by
HSPICE simulation based on the circuit parameters. Black line denotes the
N = 40 segments with length l = 800 nm and red line indicates the N = 120
segments with length l = 2400 nm, respectively.

the SP wave after 2(k−1) traveling is Ak , the amplitude gain
loss per pass between MNW is g = exp(–αL) and the phase
change between adjacent wave k and k + 1 is the θ = kzL. The
amplitude Ak has the following relations: A1 = A0t

2gexp(jθ)
and Ak+1 = Akr2g2 exp(2jθ), if k ≥ 1, where A0 denotes the
amplitude of incident electric field in the MNW. Thus, the SP
transmittance is given by

Tplasmonic =
∣∣∣∣Atrans

A0

∣∣∣∣
2

=
(1 − R)2g2

(1 − Rg2)2 + 4Rg2 sin2(kzL)
(26)

where R = r∗r denotes the reflectivity of SP wave in the MNW.
As seen from (26), the SP transmittance can be controlled by
reflectance coefficient, wave number, and guiding length. To
generate the multiple reflections along MNW, we now focus on
the SP guiding mechanism in the MNP at a frequency 1.5 eV
(ω ∼ 2.28 × 1015 rad/s: 1.5 eV). In Fig. 10(a), the average
E-field density for Ag MNW (radius = 10 nm) is obtained
by FDTD simulation. As can be seen, the extraordinary EM
field enhancement at the destination terminal can be explained
by the multiple reflections between MNW. In order to check the
effect of multiple reflections, we have conducted two different
equivalent-circuit models with different T-cell segments. Black
line denotes the N = 40 segments with length l = 800 nm
and red line indicates the N = 120 segments with length l =
2400 nm, respectively. Both all T-cell equivalent-circuit param-
eters at the frequency 1.5 eV have the values: R = 0.306 Ω,
L = 19.39 fH, G = 0.0127 mS, and C = 0.749 aF. In the
case of N = 120 segment (length = 2400 nm), the termination
of the line appears an infinite extension termination line be-
cause damping effects leads to small portion of reflection wave.
Fig. 10(b) gives us a clue on how multiple reflections take an af-
fects on the transient behavior of MNP. As apparent from figure,
multiple reflections generate a complex voltage behavior at the
destination and rapidly decreasing voltage waveform compared
to infinite extension TL.
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Fig. 11. (a) Electric field distribution and mutual capacitance model.
(b) Schematic of monopole, dipole, and quadrupole coupling. (c) Geometry
of two identical MNWs.

V. CIRCUIT NETWORK OF MNWS

Until now, we have concentrated on the single MNW struc-
ture. However, when MNWs array are close together, power can
be coupled between the MNWs array due to the interaction of the
EM fields of the MNW lines [31], [32]. When signal pulses are
transmitted between MNWs, two fundamental mechanisms are
strongly related: 1) electric-field coupling [24], [33], [34], and
2) magnetic-field coupling [35]. In this paper, we concentrate
on the electric static coupling because the electrostatic cou-
pling is dominant compared to magnetic interaction [32], [33],
[36]–[40]. In detail, the electrostatic coupling is modeled as
the mutual capacitance, as shown in Fig. 11(a). In the case
of MNWs, the electrostatic coupling is evaluated by using the
multiple expansion method. As shown in inset of Fig. 1(a),
the charge distribution of the MNW can be expanded as sum
of monopole, dipole, quadrupole, etc. Fig. 11(b) shows the
schematic depiction of electrostatic coupling of multiple ex-
pansions. In the case of nonradiative TM modes, at n = 1 and
n = 2, dipole and quadrupole electrostatic coupling mimics the
electric coupling between MNWs. In the case of fundamental
mode (n = 0), the monopole electrostatic field distribution al-
lows us to calculate the mutual capacitance CAB between two
MNWs. In simplicity, we consider the n = 0 TM propagation
mode and corresponding mutual capacitance CAB between two
identical wires (r = R) with spatial distance d between their
axes, as shown in Fig. 11(c). At the point x (x ≥ R), the Er

field can be calculated as a result of superposition of the Er

fields from A wire and B wire, i.e.,

Er1 = −B
ikz

kρ2
[K1(kρ2x) + K1(kρ2(d − x))] . (27)

Fig. 12. Circuit model of the parallel MNW wires.

The surface charge Q at r = R is calculated by using the
Gauss’s law

Q

2πRε0
= −B

ikz

kρ2
K1(kρ2R) − A

ikz

kρ1
I1(kρ1R). (28)

From boundary conditions with tangential magnetic-field
components continuity, we obtain the following constitutive
relation:

A

B
= −kρ1ε2K1(kρ2R)

kρ2ε1I1(kρ1R)
. (29)

Substituting (29) into (28) yields

Q

2πRε0
= −B

ikz

kρ2

[
K1(kρ2R) − ε2

ε1
K1(kρ2R)

]
. (30)

For example, in the case of Ag NMW surrounded by a free
space, the ε0/εAg (=ε2/ε1) term goes to zero at the low op-
erational frequency, thus demonstrating the perfect conductor
model of a metal at the low frequency. The voltage between
two MNWs (d 
 R) can be approximately obtained by the
integration of Er

V ≈
∫ d−R

R

Erdx. (31)

We obtain the mutual capacitance (CAB = Q/V ) between
two MNWs

CAB ≈ Re [πRε0K1(kρ2R) (1 − (ε2/ε1))][∫ d−R

R K1(kρ2x)dx
] . (32)

Let us assume the two Ag MNWs with radius R = 20 nm,
spatial distance d = 60 nm and free-space host matrix (n = 1).
Equation (32) shows that the mutual capacitance of Ag wire
has the value CAB = 0.1240 nF/m (at 3.0 eV) and CAB =
34.47 pF/m (at 2.0 eV), respectively. To be specific, we construct
the equivalent-circuit networks for a coupled MNWs line, as
shown in Fig. 12. For example, if we consider two identical
MNWs with a length l = 800 nm and divide the MNWs into 40
sections, T-cell equivalent-circuit parameters at 2.0 eV have the
following values: R = 1.01 Ω, L = 19.13 fH, G = 0.0489 mS, C
= 0.979 aF, and Cm = 0.6893 aF. This coupled circuit network
can be analyzed by using the even- and odd-mode analysis
[41] or HSPICE circuit simulator [27], [42]. Furthermore, this
analysis based on the electrostatic coupling can be extended to
evaluate the crosstalk between multiple MNWs.
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VI. CONCLUSION

We have studied the equivalent-circuit modeling of SP propa-
gation along the MNW. Our proposed equivalent-circuit model
provides a basic understanding of the nature of SP propaga-
tion along the MNW and distributed circuit elements, and of
how operational frequency and guiding geometry affect the per-
formance of MNW circuitry. Even though SP of MNW in the
near-infrared and visible spectrum has severe limitations as a
longer signal interconnect, the fast velocity and high operational
frequency enabled by SP wave will provide a novel approach
to obtain ultrafast speed integrated circuitry. Furthermore, this
equivalent-circuit modeling will aid us in the further analysis
and optimization of complex SP devices.
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