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The resonant tunneling diode (RTD) has been widely studied
because of its importance in the field of nanoelectronic science
and technology and its potential applications in very high
speed/functionality devices and circuits. Even though much
progress has been made in this regard, additional work is needed
to realize the full potential of RTD’s. As research on RTD’s
continues, we will try in this tutorial review to provide the
reader with an overall and succinct picture of where we stand
in this exciting field of research and to address the following
questions: What makes RTD’s so attractive? To what extent
can RTD’s be modeled for design purposes? What are the
required and achievable device properties in terms of digital
logic applications? To address these issues, we review the device
operational principles, various modeling approaches, and major
device properties. Comparisons among the various RTD physical
models and major features of RTD’s, resonant interband tunneling
diodes, and Esaki tunnel diodes are presented. The tutorial and
analysis provided in this paper may help the reader in becoming
familiar with current research efforts, as well as to examine
the important aspects in further RTD developments and their
circuit applications.

Keywords—Nanoelectronics, quantum theory, quantum wells,
resonant tunneling devices, semiconductor device modeling.

I. INTRODUCTION

Over the past two decades, resonant tunneling diodes
(RTD’s) have received a great deal of attention following
the pioneering work by Esaki and Tsu [1]. Significant
accomplishments have been achieved in terms of RTD
device physics, modeling, fabrication technology, and cir-
cuit design and applications. The RTD has been widely
studied, and well over a thousand research papers have been
written on various aspects of this seemingly simple device.
Yet, whether RTD’s will find their way into mainstream
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electronics in the future remains inconclusive. The research
is ongoing and, in some areas, very active. Why has this
device, typically consisting of two potential barriers and
one quantum well, been so attractive to the electronics
research community for such a long period? With all
the knowledge about RTD’s so far acquired, will RTD’s
become practical? What are the main issues of current
research on RTD’s? To get at these questions, we present
in this tutorial review an updated and succinct picture that
addresses some important aspects of RTD’s. For formal
treatments and detailed analysis on specific topics of RTD’s,
the interested reader can find a number of excellent papers,
review articles, and books, which will be referred to in the
relevant context. This paper will cover the device aspects,
while the circuit aspects on RTD circuit design and digital
applications will be reviewed in an accompanying paper in
this issue [2].

It is well documented that today’s advanced information
technology is mainly attributed to the electronic represen-
tation and processing of information in a low-cost, high-
speed, very compact, and highly reliable fashion, and that
the quest and accomplishments of continual miniaturization
and integration of solid-state electronics have been the
key to the success of the computer industry and computer
applications. The advanced multimedia infrastructure and
services in the future will demand further reduction in
chip size. Chip density, represented by memory technology,
has been following Moore’s law and has roughly doubled
every other year over the last three decades. The trend
remains strong and definite, at least for the foreseeable
future. For example, a 0.15-m process technology has
been implemented in the first 4-Gb dynamic random access
memory (DRAM) unveiled in 1997, and the feature size
of DRAM transistors is projected to be 0.18m (1 Gb)
in 2001, 0.13 m (4 Gb) in 2004, 0.10 m (16 Gb) in
2007, and 0.07 m (64 Gb) by 2010 [3]. A natural and
realistic question, then, is whether this desired trend will
continue indefinitely. While an ultimate limit on the down-
scaling of conventional transistors and integrated circuits
(IC’s) will eventually be reached, device physicists and
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IC engineers have pondered answers, both evolutionary
and revolutionary, to the challenge. While the downscaling
of conventional transistors enjoys an exceptional, rapid
evolution, revolutionary device concepts have been actively
sought, particularly in the two related areas known as
nanoelectronics and single electronics [4]. For a more recent
overview of nanoelectronic devices, see [5].

The idea of nanoelectronics was popularized in the mid-
1980’s, when pioneering work on resonant tunneling and
bandgap engineering in low-dimensional semiconductor
quantum wells and superlattices grew and was championed
by several groups for the exploration of new opportunities
for circumventing the limit on the downscaling of con-
ventional transistors and IC’s. The physics and electronics
communities worldwide participated with enthusiastic re-
search efforts, with rapid progress made in understanding
mesoscopic transport physics as well as nanofabrication
technology. The RTD, and its several variations, has be-
come a research focus in nanoelectronics for its promise as
a primary nanoelectronic device for both analog and digital
applications.

It is well known that when the size of a system be-
comes comparable to the electron wavelength, quantum
effects become dominant. This occurs when transistors are
downscaled and their characteristic dimensions reach the
nanometer range, leading to new phenomena and possible
novel devices based on quantum tunneling mechanisms. For
nanoelectronics to become a reality, it is essential that the
new devices and circuits must be fabricated with nanometer
precision, and one must be able accurately to design the
devices and circuits. This has led to research efforts and
accomplishments in three areas: nanofabrication, quantum
modeling, and circuit innovations.

For device realization, nanofabrication technology has
made impressive advances during the last decade by rou-
tinely producing artificial semiconductor structures using
molecular-beam epitaxy, metal-organic chemical vapor de-
position, and chemical-beam epitaxy. Accurately controlled
feature sizes as small as monolayers of atoms in the
growth direction for dissimilar semiconductor materials,
or heterostructure systems, have been achieved. Nanoscale
lithography and patterning by electron-beam lithography
have also been highly developed in the direction perpendic-
ular to the growth direction. Although further improvements
in this area call for more precise control, better resolution,
and improved interfaces, recent advances in nanofabrication
technology have brought quantum effect device concepts
to reality and have presented a great challenge for device
physicists in the theoretical analysis of nanoelectronic de-
vices. For a recent review of nanofabrication, the reader is
referred to [6].

Continuing effort in quantum transport modeling
of RTD’s is motivated by the need to understand
device operation and to provide a primary test for
developing theoretical tools for nanoelectronic devices. Not
surprisingly, this is very different from traditional device
modeling. Moreover, it provides valuable knowledge of
the quantum aspects of electron transport in mesoscopic

systems. Since the useful device properties, e.g., fast
switching operation betweenON and OFF states, are
a consequence of the desired and controlled electron
motion in the device, it is essential for device designers
to understand and quantify the transport processes.
Based on physical models, one can adjust the structural
parameters and suppress the unwanted processes through
device design and optimization. For conventional devices
such as metal–oxide–semiconductor (MOS) and bipolar
transistors with feature sizes much larger than nanometers,
semiclassical transport models have proven to be adequate
for successful device downscaling development. These
device models become invalid in the nanometer regime,
however, since the classical transport concepts treat
electrons (and holes) as particles, and the transport
parameters are defined by taking ensemble averages of
the particle motion. In nanostructures, a device theory
that can properly treat quantum transport phenomena
between macroscopic and microscopic scales is therefore
needed. Work in this field has invoked mesoscopic physical
principles and hierarchical quantum device models for
formulating and quantifying nanoelectronic transport and
device analysis. However, the available nanoelectronic
device models have not been well established to the
standards of conventional device models. For example,
it is still a formidable task to accurately predict the I–V
characteristics of nanoelectronic devices, such as RTD’s.
This topic is considered further in Section III.

Among the numerous nanoelectronic devices proposed
and demonstrated, the RTD is perhaps the most promising
candidate for digital circuit applications due to its nega-
tive differential resistance (NDR) characteristic, structural
simplicity, relative ease of fabrication, inherent high speed,
flexible design freedom, and versatile circuit functionality.
There is a good practical reason to believe that RTD’s may
be the next device based on quantum confined heterostruc-
tures to make the transition from the world of research into
practical application. Progress in epitaxial growth has im-
proved the peak-to-valley current ratio at room temperature
even beyond that required for many circuit applications.
This temperature requirement is the single most important
feature that any new technology must satisfy. It is what dis-
tinguishes the RTD from other interesting quantum device
concepts that have been proposed but that show weak, if
any, desired phenomena at room temperature. A variety of
circuit functions has already been demonstrated, providing
proof-of-concept of proposed applications [7]–[10]. The
main issue at present is not, in fact, the RTD perfor-
mance itself but the monolithic integration of RTD’s with
transistors [high electron mobility transistors (HEMT’s) or
heterojunction bipolar transistors (HBT’s)] into integrated
circuits with useful numbers and density of devices. Major
challenges include the variation in the current–voltage
characteristic of the RTD’s across a wafer and from wafer
to wafer, fabrication-dependent parasitic impedances, and
edge effects as the RTD mesa area is decreased in order
to reduce the intrinsic parasitic impedances and to achieve
higher integration levels. Recently developed techniques for

642 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 4, APRIL 1998



Fig. 1. Physical processes in double-barrier tunneling.

providing feedback during epitaxial growth via optical and
photoemission probes have greatly improved the situation
as far as uniformity of growth is concerned. It is for these
reasons that RTD research has been sustained for more than
two decades and may now be rapidly approaching the stage
of technology implementation. A more specific account of
RTD device features and properties as compared with other
NDR quantum devices is given in Section IV.

This paper is organized as follows. The resonant tun-
neling phenomena is first reviewed in Section II, where a
simple physical picture of the origin of the NDR is given for
a basic understanding of RTD operation. Section III deals
with theoretical models of RTD’s. The hierarchical models
of RTD’s with various levels of sophistication are com-
pared and recent progress is summarized. Although RTD
models have inspired intriguing physical and mathematical
formulations, it is not the purpose of this paper to go into a
detailed treatment of quantum transport. Only the concep-
tual framework and main features of various formalisms
are examined, without engaging in details of the theory.
For purposes of illustration, however, RTD operational
principles and modeling issues are exemplified using the
simple envelope function formulation. Section IV, on the
analysis of RTD properties, discusses the considerations for
desirable RTD characteristics for digital circuits and related
issues in terms of carrier transport restrictions and realistic
material and structural considerations. The main features of
various RTD’s, resonant interband tunnel diodes (RITD’s),
and Esaki TD’s are also compared and summarized. In the
final section, concluding remarks are given highlighting the

accomplishments and existing concerns in RTD research.
This tutorial review on RTD issues cannot be encyclopedic,
with an obvious omission of the high-frequency aspects of
RTD’s, but it is hoped that an overall picture of where
we are with an updated account of this exciting research
frontier is presented.

II. RESONANT TUNNELING

A. Double-Barrier Quantum Well (DBQW) Structure

The basic RTD device configuration is a DBQW struc-
ture of nanometer dimensions, including two contacts as
depicted in Fig. 1, where the regions I, II and VI, VII
are heavily doped contacts made from a semiconductor
with a relatively small bandgap, e.g., GaAs. These layers
comprise the emitter and collector, respectively. Regions
III and V are quantum barriers made from a semiconductor
with a relatively larger bandgap, e.g., AlGaAs, and in
particular a positive conduction-band offset with respect
to the smaller bandgap semiconductor. Region IV between
the two barriers is the quantum well made again from
the smaller bandgap semiconductor. It is sometimes also
called the base, whether or not electrical contact is actually
being attempted. The structure is shown in terms of electron
energy versus distance under bias because we are interested
in the electron transport process, which is essentially the
electron motion within a certain energy-band structure
under applied bias voltages. Because the characteristic
dimensions of the DBQW structure are comparable with the
electron wavelengths, the wave nature of electrons leads to
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quantum phenomena such as interference, tunneling, energy
quantization, etc. As a result, resonant tunneling phenomena
occur in DBQW structures and form the basis for RTD
operation.

The basic RTD structure shown in Fig. 1 may have many
variations in terms of the potential (energy) profile, which
is determined primarily by the specific material system
used. We will consider issues of the material system and
device structure in Section IV when we discuss device
properties. Fig. 1 gives a descriptive picture of the major
physical processes pertaining to resonant tunneling and
current transport components in RTD’s.

B. Physical Processes in RTD’s

Envision a spectrum of electrons in region I, driven by
a bias voltage applied across the RTD contacts, incident
upon the DBQW structure shown in Fig. 1. The electron
spectrum is considered to be distributed in energy according
to the Fermi–Dirac statistics as the contacts are typically
heavily doped to provide a low ohmic contact and high
current density. The use of the Fermi distribution implies
that the electrons in region I are assumed in thermal
equilibrium due to the interactions among the electrons and
their surroundings in contact region I. The same assumption
is made for contact region VII. Electrons are also incident
from the right-hand-side contact region but are not shown
in the figure; the current due to them is small under the
bias condition as shown.

A first look at the RTD structure brings out the general
features of the electron wave as it traverses the DBQW,
resulting in the main characteristic of RTD’s, namely, the
NDR. The electron undergoes multiple reflections from
the interfaces due to its wave nature, leading to the reso-
nant nature of the tunneling. Also, there are dimensional
changes across the interfaces, i.e., the three-dimensional
(3-D) density of states in the emitter versus the two-
dimensional (2-D) density of states in the quantum well,
as described in the next section. The multiple reflections
cause destructive or constructive interference depending
on the wavelength of the particular electron. For electrons
with specific wavelengths that favor constructive interfer-
ence, a near-unity transmission probability may be found
at energies corresponding to these wavelengths. In other
words, resonant tunneling occurs at these resonant energy
levels, which may have a finite width in energy due to
broadening mechanisms. This process is indicated in Fig. 1
by process 1 for an electron with energy coincident with
the resonant energy . In addition to the transport through
the resonant levels, other processes can also be identified.
In process 2, an electron is first scattered into an energy
level in the emitter accumulation layer, which is a 2-D
potential well in region II. It may then absorb a phonon and
sequentially tunnel through the resonant level. Similarly,
in process 3, an electron with an initial energy may
interact with the lattice vibration by emitting a phonon,
then tunnel through . On the other hand, electrons with
sufficiently high energies (for example, ) may overcome
the barriers by thermionic emission, as indicated by process

4. Note that the incident electrons also have a finite, but
small, probability to tunnel through the nonresonant energy
ranges that lie between the resonances. This current is an
important contribution to the valley current.

The physical processes involved in RTD operation are in
actuality much more complex than the preceding simple
description and are especially complicated by the elec-
tron’s interaction with its environment. First of all, the
electrons have particle and energy exchanges with the
battery applying the bias voltage, which makes the device
open to the outside environment and very different from
an isolated quantum system. Moreover, the electrons in
the RTD structure have interactions with lattice vibration,
impurities, interface roughness, and alloy disorder, as well
as the interaction among themselves. In the wave pic-
ture, an incident electron wave is scattered by not only
the heterostructure potential profile but also the scattering
potentials originating from these other scatterers. These
processes may affect the device properties significantly,
making an accurate physical model of realistic RTD’s a
formidable task.

C. Origin of Negative Differential Resistance

An important feature of resonant tunneling is that elec-
trons are incident from the 3-D contacts into the 2-D
quantum well, where the electrons have a plane-wave-
like motion only in the and directions, as shown in
Fig. 1. We designate the in-plane wave vector or transverse

momentum . Following Luryi’s explanation
[11], the conservation of the crystal transverse momentum
of the tunneling electron is responsible for the NDR.

The electron energy in the 3-D emitter contact can be
written as

(1)

where is the bottom of the conduction-band in the
emitter in region I and the effective masses in the different
layers are assumed to be the same at this point.

The electron energy in the quantum well is given by

(2)

where is the energy of an available th subband
in the quantum well. During tunneling, a reduction of
dimensionality occurs, but the tunneling electrons do not
see any potential change in the transverse directions and
their transverse momentum is therefore conserved. The
electron longitudinal momentum however, generally
changes with distance except in the flat band-edge regions.
As ( ) is an accessible unoccupied state in the
quantum well, from energy conservation one sees that
tunneling is possible only for electrons with their momenta
in a disk with in the emitter Fermi sphere, where

. As the emitter–base potential
rises under bias, so does the number of electrons that can
tunnel. For , which corresponds to ,
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the number of tunneling electrons per unit area reaches a
maximum. When rises above , then at K,
there are no electrons in the emitter that can tunnel into the
quantum well while conserving their transverse momentum.
The tunneling current density therefore has a sharp drop
from its maximum value. Further increase of the bias and/or
temperature will further lift up the electron distribution in
the emitter, and electron thermionic emission and tunneling
through the top regions of the barriers will lead to an
increase in current density. It can then be appreciated that
the origin of the NDR in the RTD characteristic requires
transverse momentum conservation as a condition.

III. RTD DEVICE MODELS

Formal treatment of the modeling of RTD’s entails ad-
vanced quantum transport theory, possibly including rather
intricate formulations of multiband effective mass theory,
quantum statistical theory based on the density matrix,
Wigner functions, and Green’s functions. Frensley, Ferry,
Grubin, and other authors have written extensive review
papers on related subjects, and interested readers can find
more detailed information from these reviews [12], [13].
We present in this section an overview of various RTD
models in a simplified conceptual framework of quantum
transport and a tabulated summary of the main features and
differences of the models. The RTD’s dc I–V characteris-
tic is taken as the primary example for illustrating RTD
modeling issues.

Significant effort has been devoted to developing physical
models of RTD’s with varying degrees of sophistication
and success. The interest in achieving an accurate RTD
model lies in the fundamental motivation to gain insight
into mesoscopic transport and provide guidance for opti-
mal device design, which are indispensable for conceiving
new devices and pursuing realistic device development.
Moreover, we believe that there exists a lag in theo-
retical modeling of quantum transport as compared to
nanofabrication technology. Quantum device modeling has
yet to be as well established as modeling capabilities
for conventional MOS field-effect transistors (FET’s) and
bipolar transistors. On the other hand, quantum transport
problems in nanoelectronic devices and their complicated
material and structural dependence demand heavy reliance
on computer simulation tools. In that sense, RTD models
serve as a test vehicle for device modeling capabilities as
we progress into the nanoelectronic regime.

Device terminal properties are determined by studying
carrier transport of the electrons, whose available energies
are described by the band structure. The carrier motion
should include the major physical processes, such as those
depicted in Fig. 1, in a specific band profile. In order to
compute RTD I–V characteristics, it is clear that RTD
modeling should include two important aspects.

1) Proper energy-band parameters for a particular RTD
structure, built up from dissimilar materials and their
interfaces. For example, the band offsets at the het-
erointerfaces, carrier effective masses, and other ma-

Fig. 2. Elements of quantum device modeling.

terial parameters derived from the band structure must
be available with accuracy.

2) A proper transport formalism, which must be able to
model the major processes in the RTD. Since simplifi-
cations, approximations, and numerical discretization
are always used in the various models, they must
not violate the basic physical laws and principles
of quantum mechanics. However, in practice, these
simplifications and approximations often compromise
some of these principles.

The general elements of quantum device models are out-
lined in Fig. 2, which will be discussed in some detail.

From a first-principles point of view, the RTD as a
nanoelectronic device is in general an open quantum sys-
tem, in which electron transport is three dimensional, time
dependent, time irreversible, dissipative, and many-body in-
teractive, with both particle and energy exchanges with the
device’s environment. The device system is therefore very
different from a simple isolated quantum system, where a
conservative Hamiltonian and the boundary conditions for
the Schr̈odinger equation may be readily formulated. On
the other hand, since a full many-body formalism that is
computationally manageable for such open device systems
has not been well established, and may not be necessary for
calculations of specific device properties, approximations
and simplifications are typically used in various modeling
approaches to simplify the calculations, provided that the
major transport processes can be properly modeled. Recent
efforts in RTD modeling have generated fruitful results for
evaluation of quantum effects in RTD’s and for device
design. In terms of the electron state description and the
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capability of correctly treating the electron interactions
with its environment, the existing RTD physical models
can be classified into two categories: dynamic or coherent
models and kinetic models. We first indicate their common
ingredients before identifying their differences.

According to quantum mechanics, an electron can be
described by its quantum state, represented by its state func-
tion. A simple or pure electron state is generally represented
by the electron wave function and may be specified by its
amplitude, momentum (wave vector), energy, and phase;
its time evolution follows the time-dependent Schrödinger
equation. An interaction between an electron and an optical
phonon, however, may break the electron’s phase coherence
and generate correlations with other microparticles. We then
speak of incoherent interactions and mixed electronic states.
This is because the interacting particles have no phase
relation with the incident electron wave, and it is therefore
in practice impossible to trace the variation of the electron
wave function of every particle. According to quantum sta-
tistical theory, the mixed state may be characterized by the
density matrix, Wigner (distribution) functions, or Green’s
functions. For device modeling purposes, we may have the
view that common to all quantum transport models, one
takes amodel functionto represent electron states in a
quantum device. Once the model function is evaluated for
a specific device under specific operating conditions, other
physical quantities of interest as well as device properties
can all be calculated from the available model function. It
is the chosen model function that makes major differences
in terms of the formalism, capabilities, and results from
one model to another. The model function in the coherent
dynamic models is typically the envelope function, whereas
in the kinetic models, the density matrix, Wigner function,
and Green’s functions are employed and formulated. These
functions representing electron states in quantum devices
are capable of modeling, to varying degrees, the physical
processes in the device, such as electron transmission,
reflection, and scattering processes, in a unified formulation.
The central formulation in a model can be a single equation
or a set of equations, depending on the chosen model. Since
the approximations often render an approach inadequate for
all the processes to be modeled even approximately, how-
ever, additional formulation may still be needed. The central
equation is typically a nonlinear differential or differential-
integral equation, and solutions to the equation require
extensive numerical work and computer programming as
well as significant computer resources.

An important issue closely related to the central equations
is boundary conditions. It is essential to have a proper
treatment of boundary conditions for any device model. It
is especially critical for quantum device models where the
device system is open to particle reservoirs and driven far
from equilibrium. As restricted by the scope of this paper,
however, we will only point out the boundary conditions in
RTD models. For a comprehensive review on this topic, the
reader is referred to an in-depth analysis by Frensley [12].

As in any physical system, one would like to find how
a system evolves in time with a computable equation of

motion. Device transient and high-frequency properties,
such as switching times and device admittance (impedance)
at high frequencies, require a time-dependent solution of the
model function. For device dc I–V characteristics, solutions
of the time-independent or steady-state equation of the
model function often suffice. In this paper, we identify in
each approach acentral model equationassociated with its
model function. A solution for the model function leads to
the device terminal properties, such as I–V characteristics.

A. Envelope Function Models of RTD’s

RTD models based on the envelope function description
of electron states have been popular and very useful in
studying RTD’s and other nanoelectronic devices because
they are conceptually simple, computationally efficient, and
capable of modeling important properties of RTD’s. We will
outline RTD models based on the envelope function in this
section to illustrate the main issues.

The envelope function description for electron states in
semiconductors has been well documented [14] and is
familiar to device engineers. It is based on effective mass
theory, where the internal crystal potential is integrated
into the effective response of carriers to an external ap-
plied force, greatly simplifying the treatment of carrier
transport in semiconductor devices. For RTD models, since
quantum phenomena must be included, the effective mass
Schr̈odinger equation is invoked to calculate the electron
state function, or the envelope wave function, neglecting the
rapidly varying periodic component. This is the first major
approximation made in the envelope function formalism,
which brings about a great simplification, at the price of
ignoring the microscopic information of the central cell part
of the true wave function. Another major approximation
involved in the envelope function approach is that it is
limited to pure state calculations, to be discussed shortly.

The time-independent effective mass Schrödinger equa-
tion is the central equation of the envelope function model

(3)

where the potential term includes the device energy-
band offset for the heterojunction, the bias voltage applied
across the device, the contributions from the doping im-
purities, and mobile electronic charge. These enter
in a mean-field, self-consistent fashion (the Hartree poten-
tial) through the coupling of (3) with Poisson’s equation.
Additionally, the electron correlation and exchange po-
tential due to the interaction of electrons may also be
included. The effective mass is specified according
to the corresponding materials. The subscriptindicates
the th band, indicates the electron wave vector, and
indicates the position vector. Equation (3) is often converted
in practice into a one-dimensional (1-D) calculation using
a weighting function , also known as the supply
function for incident electrons, which effectively integrates
over transverse wave vectors. The Schr̈odinger equation
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Table 1 Features of Various RTD Models

is then specified for a particular device structure and bias
condition, and various numerical methods and algorithms
are used for the solution of the electronic wave functions.
The boundary conditions of the Schrödinger equation and
the normalization of the wave functions are critical for
obtaining the correct solutions. The boundary conditions
used in the envelope function model and other quantum
device models will be listed in Table 1 and discussed briefly
when RTD quantum models are summarized.

In the envelope function model, electronic conduction
in quantum systems is represented by the transmission
coefficient based on the Landauer and Büttiker [15], [16]
formulation. The transmission , as a function of the
longitudinal electron energy, is the probability ratio of the
incident and transmitted waves of a particular electron state,
which is equivalent to the ratio of incident and reflected
electron flux if the ratio of group velocities is also included.

To model the I–V characteristic of the RTD, a spectrum
of electron eigenstates are taken to be incident from the
contacts, and the electron waves are then subject to elastic
and inelastic scattering by various scattering potentials in-
cluded in the formulation of . The electron eigenstates
in the contacts are assumed to be plane waves, and the
reflected and transmitted wave functions are solutions of
the Schr̈odinger equation for the specified RTD potential
profile, including the scattering potential terms and the
effective masses. Once the wave functions are found, the
device current density can be computed

Im

(4)

where a superposition over suitably normalized quantum
states is performed. Equivalently, the current density
can be evaluated using the Tsu–Esaki formula [17], and the
total current density is obtained by summing the current
density of each state over occupied states multiplied by
their transmission probability

(5)

where can be calculated from the wave functions
available in the solution of the Schr¨odinger equation and
the supply function obtained by integrating over has
been incorporated. Other symbols in (5) are conventional.

More recent RTD models using envelope functions have
incorporated additional important physical aspects such as
space charge effects, the 2-D accumulation layer in the RTD
emitter region, multiband effects, and phonon scattering.
These aspects are discussed next.

Space charge effects occur in RTD’s because of the
impurity doping profile and the mobile electronic charge
that exists in the quantum well(s) as well as in the emitter
notch or accumulation region. Since the charge density
responds to the same electrostatic potential it generates,
one needs to solve for the self-consistent potential and
charge distributions. This is usually carried out by solving
Poisson’s equation and the effective mass Schrödinger
equation iteratively, followed by the current density calcula-
tion. Inclusion of self-consistency significantly modifies the
device characteristics due to effects such as band bending,
changes in the effective barrier height, the effective voltage
drop across the barrier, and the shifting of the resonant
state energies in the quantum well. Several versions of
the self-consistent solution, with varying degrees of ap-
proximation, now exist. Ohnishiet al. assume in their
calculation that thermal equilibrium is maintained outside
the barriers while the injected electrons are transported
ballistically through and between the barriers [18]. Cahay
et al.,however, assume quantum ballistic transport through
the whole region between the contacts [19]. An important
choice in such methods resides in which locations the
injected carriers are assumed to be maintained in thermal
equilibrium, since it plays a critical role in the quantitative
results for the quantum well charge and the current density.
Which assumption is more appropriate may depend on the
specific device structure being modeled and the operating
conditions. More details on self-consistent calculations can
be found in the original work or in [20] and references
therein.

One of the consequences of the self-consistent potential
is the formation of the 2-D accumulation layer in the
RTD emitter region due to the band bending, in which
the injected electrons can scatter into the quantized states
and then tunnel through the resonant energy levels with or
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without further scattering. This corresponds to process 2 in
Fig. 1. Current transport through the emitter accumulation
layer is important since it can change the device current
significantly. Within the envelope function model, Fiiget al.
[21] have addressed this problem using an additional term
in the emitter charge expression to account for the quantized
states in the emitter accumulation layer, so that a quantum
repulsion effect is observed and the peak current evaluation
includes the contribution from carrier transport through
these states. A better treatment of the emitter accumulation
layer is now incorporated in the kinetic model using Green’s
functions. For details, see references to the Green’s function
model for RTD’s in Section III-B.

Multiband effects are important in RTD modeling be-
cause in the envelope function description, the periodic
part of the true wave function is ignored or assumed to
be the same for different materials. In addition, if the
interaction of electrons in different bands is important for
the evaluation of the RTD current, a single-band effective-
mass equation is not adequate. The most obvious problem
with single-band models is that they do not include band
nonparabolicity, which is due to the well-known
repulsion of the light hole and conduction bands. The
energy scale of the nonparabolicity effect is set by the
bandgap and the energy difference between these two
bands. Nonparabolicity in the conduction band implies that
the effective mass increases as energy increases above the
band minimum. This results in lower resonance energies
than would otherwise be expected. The effect is especially
important for RTD’s using small bandgap semiconductors
such as the InGaAs in the very important InGaAs/AlAs
double-barrier structure, which is lattice-matched to InP.
As a result of these effects, the single-band models usually
predict the second turn-on of the RTD I–V characteristic at
a much higher applied bias voltage than experimental data
obtained in many RTD structures.

A second effect is more subtle but actually just as,
or more, important. It is that the scale of the decay of
the wave function in the barriers is also affected by the
nonparabolicity. The simplest model that goes beyond the
single-band model is Kane’s two-band model, derived from
the theory [22]. Instead of the parabolic imaginary

relation within the bandgap of the barrier
semiconductor, where is the magnitude of the imaginary
wave vector, the energy dispersion can be approximated as

. Examination of
this equation shows that this “imaginary” band links the
light hole and conduction-band extrema. Thus, at a given
energy in the bandgap, is smaller than it would be in
the single-band model. Since the decay lengths are just

, they are significantly longer in the two-band model.
Transmission, and thus currents, is exponentially dependent
on the decay length. This can easily result in the single-band
model’s underestimating the current density by a factor of
two or more for typical devices of interest. Furthermore,
the single-band model is useless for the interband tunneling
devices. For example, in the InAs/AlSb/GaSb RITD shown

Fig. 3. Schematic energy-band-edge diagram of an
InAs/AlSb/GaSb RITD.

in Fig. 3, the electron is incoming in the InAs conduction
band. The band alignment is such that the valence band
of GaSb lies above the conduction band of InAs. Thus,
that same electronic wave function is hole-like in the GaSb
region. The two-band model is the simplest framework
for incorporating this kind of situation, as it includes one
conduction band and one valence (light hole) band in each
material.

To incorporate multiband effects, Schulman introduced
the two-band model into RTD modeling [23]; Rousseau
et al. incorporated the multiband tight-binding model for
RTD’s [24], which was then further improved by several
authors. For example, the ten-band nearest neighbor
model [25] has been extended very recently to give im-
proved material parameters and modeling results of RTD
I–V characteristics by Boykin [26] and Bowenet al. [27].

Within the effective mass-envelope function framework,
several formulations incorporating optical phonon scatter-
ing processes have been attempted with varying degrees
of success. Chevoiret al. [28] treat the incoherent current
transport as a sequential process from an occupied emitter
state to a localized state in the well. Turleyet al.performed
calculations of resonant tunneling assisted by localized
phonons in double-barrier structures [29]. Roblinet al.
[30] employ a multiple sequential scattering algorithm to
calculate scattering assisted tunneling currents. Caiet al.
[31] use phonon annihilation and creation operators to form
the Hamiltonian of the electron–phonon interaction, and this
scheme was employed by Fuet al. [32] to calculate the
phonon-assisted tunneling currents. In another approach,
Stone et al. [33] and Zohta et al. [34] make use of
the optical potential in analogy to its use in neutron
scattering theory [35], in which an imaginary potential

is introduced into the Hamiltonian to treat the
scattering problem. Based on their work, Sunet al. [36]
have improved the model to obtain results in good agree-
ment with the experiment. At present, however, no single
existing envelope function model can accurately predict
the I–V characteristics for the whole range of RTD design
parameters. A simple, elegant approach for the accurate
design of I–V characteristics of realistic RTD structures is
desired but may not be feasible due to the fundamental
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Fig. 4. An envelope function model for RTD’s.

approximations used in this approach. Nonetheless, the
envelope function model for RTD’s and other quantum
device structures is a valuable tool for simple device
analysis in the quantum regime.

For an illustration of an approximate treatment of in-
elastic phonon scattering, a self-consistent RTD model
including the optical potential for optical phonon scattering
is described next in some detail. Its general procedure is
outlined in Fig. 4.

The effect of the imaginary potential on electron motion
can be seen directly from the time-dependent Schrödinger
equation

(6)

where . Multiplying by on the left of (6)
and taking the imaginary part, it follows that

(7)

where the electron density and current density are
defined, respectively, as

(8)

Im (9)

It is seen from (7) that in the steady state, the electron
current density is attenuated by the optical potential at a
rate of , which corresponds to a scattering time

. The simple form of the imaginary potential implies
that the one-electron motion decays exponentially with
time. On the other hand, one can see that the probability
of finding electrons in the quantum well is reduced
corresponding to an electron mean free path given by

, where is the electron velocity for
an electron state and is the longitudinal electron energy.
We have dropped the subscript. A damping constant for
the wave function in the quantum well can then be defined

accordingly

(10)

This allows us to express the electron wave function in the
well as a linear combination of damping waves
and for the solution of the Schr¨odinger equation
with the imaginary potential. This form for the wave
function exhibits clearly that current conservation for the
electronic state is not preserved. This is fundamentally due
to the lack of unitarity of the Hamiltonian, which includes
the complex potential.

When applied to the phonon-assisted tunneling calcu-
lation for RTD’s in the growth direction , the time-
independent Schr¨odinger equation now becomes

(11)

where is now a variable electron effective mass, de-
pending on the material composition of the individual
layers, and is the scattering rate of a hot electron in the
quantum well that is derived using Fermi’s golden rule. The
value of can be approximated using the bulk scattering
rate for optical phonons.

For simplicity, and as a good approximation for hot elec-
trons, the bulk scattering rate for optical phonon scattering
in the specific material is used similarly to typical Monte
Carlo simulations

(12)

(13)

where is the resonant energy in the quantum well
and is a prefactor of the scattering rates, adjustable
to fit the experimental results. is the energy of the
optical phonon, is the Boltzmann constant, andis the
absolute temperature. If we designate to be the phonon
population, or the Bose–Einstein factor in these equations,
then (12) can be read as , representing
the case where both emission and absorption of the optical
phonon take place, whereas (13) becomes , which
is for the absorption case alone. The inelastic scattering
potential is therefore energy dependent and related to the
material used for the quantum well region in the RTD and
to temperature.

In this approach, the total transmission is taken to be
the sum of the coherent transmission and incoherent
transmission . An attenuation coefficient is defined as

, where is the coherent reflection
coefficient. After a single collision event, the attenuated part
is assumed to tunnel in both the and directions in
proportion to the transmission coefficient for each barrier,
denoted respectively as for the right (the second) barrier
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Fig. 5. Modeled and measured RTD I–V characteristics using the
envelope function model with parameter adjustment.

and for the left (the first) barrier. Approximate analytical
expressions have also been derived for these coefficients.
To evaluate the transmission from regionto region , we
use the squared ratio of the transmitted electron flux to the
incident flux

(14)

where is the transmitted wave amplitude, with as-
sociated effective mass and wave vector , while

is the incident wave amplitude, with and in
the respective regions. The wave amplitudes are available
from the numerical solution to (11) for a particular self-
consistent potential obtained using the procedure
outlined previously. The total transmission through the
double-barrier structure is then

(15)

(16)

The total current density is evaluated according to (5) using
the total transmission .

A comparison between calculated and measured RTD
I–V characteristics is displayed in Fig. 5. Note, however,
that good agreement between theory and experiment such as
this often involves parameter adjustment for the scattering
rate . Applying this approach to RTD’s with varying
design parameters is not as successful in obtaining good
agreement between modeled and measured results. In gen-
eral, accurate prediction of RTD I–V characteristics cannot
be claimed. Moreover, as will be discussed next, there are
fundamental limitations to the coherent model, especially
when a unified treatment of the electron and its interactions
with the surrounding microparticles is desired.

B. Kinetic RTD Models

The envelope function models are classified as dynamic
models because they model the time-dependent or dy-
namic device behavior based on the equation of motion of
the system, i.e., the time-dependent Schrödinger equation.
However, this framework cannot in principle treat the time-
evolution of a system with internal force terms such as
inelastic phonon scattering. For internal kinetics to be
included, one has to invoke a kinetic equation such as
the Boltzmann transport equation, in which internal forces
are explicitly or implicitly incorporated. The pursuit of
quantum kinetic models of RTD’s was first motivated by
the desire for a correct treatment of the inelastic electron-
phonon scattering process. The density matrix and Wigner
function models were then developed with this goal in
mind. A great deal of work has been performed on the ap-
plication of Wigner functions to RTD modeling [37]–[40],
and progress has generated very valuable information about
RTD device properties. Although models based on the
Wigner function and the density matrix are based on
established principles, however, phonon scattering in these
models is treated semiclassically within the relaxation time
approximation. The present authors’ experience is that
consistent results for RTD I–V characteristics using the
Wigner function approach have not always been obtain-
able over a range of device parameters when compared
with experiment [41]. Very recently, the Green’s function
model has shown further improvement on the modeling of
phonon scattering and other electron interactions and has
generated encouraging results. It is currently under active
development.

In this section, we describe and compare features of
kinetic models. Some degree of mathematical formalism
is unavoidable in discussing this topic, but an attempt was
made to make this section self-contained, and it may be
skipped without sacrificing continuity.

In principle, the fundamental difference between the
coherent (or dynamic) and kinetic models is that the former
is based on the single-particle picture using the pure state
description, while the latter is based on the many-particle
picture with mixed state description. Note, however, that in
practice, a kinetic RTD model can be reduced to the single-
particle picture with the mixed state description retained,
such as in the one-particle density matrix formulation. Be-
cause of this fundamental difference, the coherent models
cannot treat interactions between the microparticles on a
rigorous basis. This difference can also be traced to the
nature of the model function. In coherent models, the
envelope wave function is a one-particle, pure state wave
function assumed to have phase coherence over the entire
device, an interacting many-particle system. The phase
coherence is clearly not preserved for electrons experi-
encing inelastic phonon scattering. For the same reason,
the envelope function is not capable of properly modeling
electron interactions in environments such as in the device
contacts, where energy and particle exchanges take place.
This is consistent with the central equation of the coherent
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Fig. 6. Electron current and wave function due to phonon scat-
tering using the optical potential approach.

model. In the time-reversible effective mass Schrödinger
equation for an electron state, the state does not change its
eigenenergy during its time evolution. Accordingly, this is a
pure state description, which cannot treat electron–phonon
and electron–electron interactions if they are strong enough
such that the state energy changes and its phase coherence is
destroyed. This results in a mixed state. In the optical model
of optical phonon scattering within the envelope function
framework, the energy, particle, and current conservation
principles do not hold, since there is no correlation between
the electron states being computed. This is deducible from
Fig. 6, in that the electron wave function and the current are
greatly attenuated, but there is no correlation to include the
effect of this loss of current in one state to that of another
in this framework.

When strong electron interactions must be included, one
has to go beyond simple, single-particle, pure quantum
states. Due to the statistical nature of quantum theory, a
definite, conserved Hamiltonian for the Schrödinger equa-
tion for the system cannot be specified, and the electron can
be described in terms of a mixed state. In kinetic quantum
transport models, a quantum device is considered to be
a particle ensemble, characterized by the density matrix,
the Wigner (distribution) function, or Green’s functions.
As a rigorous understanding of these model functions
involves advanced quantum physics concepts and extensive
formulation, we give here only a brief and superficial
discussion to introduce the conceptual differences with the
coherent model and to identify the model functions and the
central equations of these approaches.

First we separate the problem into two parts, i.e., the
device under consideration and the environment outside the
device. Then, let describe the device system in which we

are interested and let describe the part of the universe
outside the system. The density matrix is defined as

(17)

Its temporal evolution is given by the Liouville equation

(18)

where [ ] is the Poisson bracket and is the Liouville
operator. Equation (18) can be written in the following
form for device modeling

(19)

Based on Wigner’s definition, the Wigner function is the
Fourier transform of the one-particle density (matrix) op-
erator

(20)

Alternatively, by performing the Wigner transformation
for the Schr̈odinger equation, one arrives at the Liouville
transport equation, which gives the time evolution of the
Wigner function for device modeling

(21)

where the time derivative with subscript denotes a term
due to scattering and is the potential. In a simple form,
the device is assumed to obey the Liouville equation

(22)

where is the collision operator

(23)
and is the transition rate from to . Equation (22)
expresses the time evolution of the Wigner function in
terms of the Liouville operator, representing the ballistic
motion, and a collision operator to include dissipative
interactions such as the optical phonon scattering. The
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Fig. 7. Current density versus voltage for an RTD structure using
the density matrix model. Reproduced from [42] with permission.

resultant quantum Liouville equation may be considered
as the quantum Boltzmann transport equation. In fact, in
the classical limit, (21) is reduced to the semi-classical
Boltzmann equation

(24)

where is the familiar Boltzmann distribution function.
Conceptually, since the transport equation is written in
terms of a sum of many state functions, it is capable
of describing mixed quantum states; the mixing of states
occurs due to the scattering terms in (21). This kinetic
model offers a proper conceptual basis for dealing with
quantum transport phenomena and has generated many
useful insights into RTD physics and device properties.
Fig. 7 shows an I–V curve modeled using the density
matrix approach for a 200-nm RTD structure, with two
5-nm, 300-meV barriers separated by a 5-nm well at 77
K. More details of this work can be found in [42]. In
Fig. 8, a comparison between RTD I–V curves modeled
by the (coherent) tunneling theory and by the Wigner
function model is shown for a GaAs/AlGaAs RTD structure
consisting of a 4.5-nm quantum well bounded by 2.8-
nm barriers. The scattering effects on the peak and valley
current densities in the Wigner function model are evident.
For more details of comparison between these modeling
results, the reader is referred to the original paper [12].
The major accomplishments, shortcomings, and detailed
formulations of the density matrix and Wigner function
approaches for RTD’s have been summarized in recent
reviews [42], [43].

RTD models based on nonequilibrium Green’s func-
tions have gained increasing interest recently because this
approach offers a comprehensive physical basis for the

Fig. 8. Current density as a function of voltage for a model RTD
using the Wigner function model. Reproduced from [12] with
permission.

treatment of interactions between microparticles in the
device system [44], [45]. Electron–electron interactions in
the contact regions, including the emitter accumulation
layer, electron–phonon interactions, and other scattering
processes, can also be readily incorporated in a unified
formulation. This approach has produced improved results
and more microscopic information in the device over the
other RTD models [46].

Green’s functions are utilized to treat many physical
phenomena. For example, in electromagnetic theory, they
are used to calculate the response of a system to external,
point excitations. More specifically, Green’s function de-
termines the response in at time due to an excitation
in at time . For transport problems such as in RTD
modeling, one takes the RTD current to be the response
to excitations. Nonequilibrium Green’s functions can be
used, typically in matrix form, as a computational vehicle
that contains the information about device response to
various excitations, such as applied voltage. Moreover,
various scattering sources, such as phonons, electrons,
impurities, interface roughness, etc., can be taken as internal
excitations, and the contributions to the current from the
individual excitations can then be calculated by summing
up all the responses.

Several different but related nonequilibrium Green’s
functions are required to encompass the increased micro-
scopic information contained in the Green’s function model
for RTD’s. The model functions consist of a number of
different Green’s functions, i.e., the retarded and advanced
Green’s functions , , the correlation function ,
and the self-energies . Heuristically, these
functions may be considered, respectively, as the electron
wave response at different locations with respect to the
excitation, the correlation between different states at
different times, and the Hamiltonians of the scattering
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potentials. As the formalism needed to define and describe
the Green’s functions correctly is nontrivial, we refer the
reader to the description of Green’s functions in quantum
physics [47] and the treatment by Keldysh, Kadanoff, and
Baym (the KKB formalism) [48], [49]. Datta has recently
written an excellent book explaining the use of Green’s
functions for mesoscopic transport problems including
RTD calculations [50].

The central equation for the Green’s function approach
can be considered to be Dyson’s equation [51]. Starting
from Dyson’s equation in the Keldysh formalism, Datta and
Lake formulated a set of equations for the Green’s functions
for RTD steady-state transport calculations, which yield dc
I–V characteristics [45], [52]. For example, the equations
for the retarded Green’s function and the correlation
function are

(25)

(26)

Other equations related to the self-energies are also needed
for the model but will not be listed here. Further approx-
imations have also been used to simplify the formulation
and numerical work.

RTD models based on nonequilibrium Green’s func-
tions can include the electron–microparticle interaction in
a unified framework. This gives more insight and micro-
scopic information about the current transport, the effects
of inelastic scattering on the occupation of the energy
levels, the density of states, the energy distribution of
the current density, and the power density. These can all
be calculated for practical device structures under high
bias conditions, which is not possible with other exist-
ing RTD models. Recent efforts at Texas Instruments by
the Nanoelectronics Group, in collaboration with others,
have produced nanoelectronic modeling (NEMO) software
utilizing nonequilibrium Green’s functions to attempt state-
of-the-art device modeling capabilities for RTD’s and to
provide a comprehensive quantum device modeling tool for
nanoelectronic devices (see [46] by Klimecket al.). This
model includes the effects of quantum charging, band struc-
ture, incoherent scattering from alloy disorder, interface
roughness, ionized dopants, and acoustic and polar optical
phonons. The relevant publications have indicated that the
NEMO program may be more accurate for modeling RTD
I–V characteristics and other steady-state properties than
previous RTD models. On the other hand, the develop-
ment of KKB-based time-dependent modeling is still in
its infancy. So far, only simplified transfer Hamiltonians
have been used [53], [54]. It is worth noting, however,
that RTD’s are capable of operating in the terahertz fre-
quency range, and time-dependent models may not be
that important for the frequencies of interest in the near
future for digital circuit applications being considered. In

addition, as is the case for other quantum kinetic device
modeling, significant computer resources are demanded,
both for memory and CPU time. Nonetheless, RTD models
based on nonequilibrium Green’s functions represent a
remarkable advance in quantum transport modeling, and
further enhancement of their capabilities is expected.

In Table 1, the major features of various RTD models
discussed above are summarized to give a sketchy outline
of these models. Because we try to give a very simplified
summary in a tabulated form, some terms in the table are
loosely used. For example, there, the Green’s functions
really mean nonequilibrium Green’s functions. The density
matrix model is categorized to be kinetic only in principle;
it is not strictly true, however, for the RTD models based
on the one-particle density matrix formulation.

A brief discussion on the boundary conditions in RTD
modeling is in order. As alluded to in the beginning of
this section, the boundary conditions must reflect the open
nature of the device boundaries. Mathematically, values
and derivatives of the model functions at the boundaries
may be formulated for the solution of the model equations.
Listed in the table are the quantum transmitting boundary
method (QTBM) proposed by Lent and Kirkner [55] and
the injected distribution function. The QTBM approach
has gained more applications recently. Generally speaking,
the essence of this approach is to apply mixed boundary
conditions by fixing the values of linear combinations
of the model functions and their gradients at the device
boundaries. The physical conditions at the boundaries and
interfaces can then be enforced during the entire solution
process. For a specific example of how it is implemented,
see [56]. The injected distribution function approach is
a traveling wave condition in that the boundaries emit
a quasicontinuum of eigenstate electrons with their wave
vectors distributed according to the thermal equilibrium
distribution. The integral of these eigenstate electrons yields
the doping concentration at the contacts. One can appreciate
that this approach reflects the open nature of the device
contacts and offers a proper formulation for the normaliza-
tion of the model functions. Similar treatment of boundary
conditions is also applicable in RTD models based on the
envelope function approach.

In addition, we may note the difference between the
nonequilibrium Green’s function model and the other ki-
netic RTD models. In the entry of phonon scattering, under
the density matrix and Wigner function models, the relax-
ation time approximation implemented in the collision term
in these RTD models may also be characterized as being
Markovian. The Markov approximation assumes that the
evolution of the device system (through phonon scattering
in this context) does not depend upon its past history.
This is reflected in the density matrix formulations, where

is a one-time model function. This assumption,
however, is not made in the nonequilibrium Green’s func-
tion model. Therefore, the Green’s function model has an
additional degree of freedom capable of modeling non-
Markovian processes in the device. Further study of this
point can be extended in relationships between the density

SUN et al.: RTD’S: MODELS AND PROPERTIES 653



matrix, Wigner function, and Green’s function formalisms.
Treatment of other scattering processes included in the
envelope function and the Green’s function model can, in
principle, be implemented in the density matrix and Wigner
function models, but no report has been published to our
knowledge.

C. Other RTD Models

Based on the well-known Esaki–Tsu integral formula for
the tunneling current, many modifications and improve-
ments have been made, such as the work by Coonet al.
[57] and Changet al. [58]. Analytic models for the RTD
current such as those offer simple formulas relating the most
important physical ingredients of RTD operation but do not
adequately predict experimental I–V behavior. On the other
hand, as RTD device and circuit developments advance to
the stage of practical circuit innovation and implementation,
there is a need to bridge the gap between the available RTD
physical models and circuit simulation. The RTD quantum
models are too complicated and generally not accurate
enough to be directly called from a circuit simulator. Recent
attempts have begun to incorporate the RTD NDR into
circuit simulation models based on SPICE-type computer-
aided design tools [59]. Therefore, simple analytic models
that closely relate both the essential RTD physical pa-
rameters and measured I–V characteristics are desired.
Work in this area follows analytical approximations for
the I–V characteristics based on transmission calculations
with adjustable empirical parameters linked as closely as
possible to real physical quantities. It has been shown that
such models can accurately reproduce experimental I–V
characteristics [60], which should be a very valuable tool
for realistic RTD device and circuit development.

There are several important issues to note when com-
paring theoretical and experimental results, including the
uncertainties in the material and doping profiles of the
device, the possible error in the growth data, the material
parameters employed such as effective masses and band
offsets, and the effects of imperfectly known parasitic
impedances on the measured I–V curve. These factors
make it very difficult to obtain an accurate prediction
or reproduction of experimental I–V characteristics and
demand more accurate characterization and calculation of
material and structural parameters pertinent to RTD mod-
eling calculations.

Last, there is a well-known issue that is conceptually
simple but difficult to include in practice: the inclusion of
the series and contact resistances. These resistances modify
the device I–V characteristics. It is difficult for all the
above models to include an accurate evaluation of these
resistances. Usually, a rough estimate or measurement is
made to fit the measured I–V curve, which may not be
satisfactory for circuit designers if the RTD’s being used
have a large fluctuation in their values for the resistance,
and therefore in their peak and valley voltage values. A
recently proposed technique to determine the RTD I–V
characteristics experimentally based on microwave reflec-
tion coefficient measurement may be useful in this regard

[61]. The importance of this issue will become clear in the
next section, where RTD I–V parameters for logic circuits
are discussed.

IV. DEVICE PROPERTIES

We now examine RTD dc properties, emphasizing only
those that affect potential digital logic circuit applications,
since this is where the major impact is expected. Before
specific RTD dc properties required by its logic applications
are discussed, we note that there are also serious consider-
ations for analog applications, signal processing, and A/D
converter applications of RTD’s, which are not covered in
this paper.

The most important property of an RTD lies in its NDR,
which is sustainable to very high frequencies and offers
very fast switching speed. Of course, the time-dependent
device properties possess interesting and subtle effects that
have absorbed a great deal of effort, particularly in relation
to device transients and high-frequency behavior. Recent
results have shown that RTD’s can produce small amounts
of power at frequencies above 800 GHz, and calculations
predict an NDR response in the terahertz range.

An analysis of RTD switching speed requires solving the
central transport equations in the time domain. The resulting
current transient information can be Fourier transformed
into the frequency domain to obtain the admittance, which
can in turn be used to construct a small signal circuit
model for the analysis of the high-frequency properties.
RTD switching characteristics have been investigated by
many authors. Liu and Sollner have recently written a
comprehensive review covering many aspects of RTD high-
frequency behavior (see [62] and references therein). De-
spite the impressive high-frequency oscillations that have
been demonstrated [63] and theoretical predictions that ter-
ahertz frequencies are obtainable, current devices produce
only very low levels of output power and have limited
application as power sources. It is hoped that recently
proposed schemes for coherently combining the power of
RTD’s in array form can overcome this limitation. We will
not discuss high-frequency aspects of RTD’s in this paper.

For realistic applications of RTD’s in digital circuits,
some of the questions that need to be addressed are:
What is required of the dc I–V characteristic for typical
digital circuits, e.g., logic gates? How likely is it that these
requirements can be attained? What are the major issues
concerning the choice of material system and structural con-
siderations? In addition, there exist other quantum devices,
notably the resonant tunneling transistor (RTT), the res-
onant tunneling hot-electron transistor (RHET), the RITD,
and the Esaki TD, all of which exhibit NDR characteristics.
Is the RTD more attractive than the others? We will provide
a brief comparison among some of those devices in terms
of their main features and properties. Before we make the
comparison, it is helpful to see what is required from the
device NDR characteristics for digital logic applications.

First of all, it is important to note that two-terminal device
logic circuits, i.e., using RTD’s alone, have several limita-
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Fig. 9. An example of logic gate consisting of RTD’s and HBT’s.

tions and are not adequate for most circuit applications.
That is the main reason that circuits employing conven-
tional Esaki TD’s did not materialize in the past. Recent
advances in very-high-frequency transistors such as HBT’s
and HEMT’s, however, and the possibility of integrating
NDR devices such as RTD’s with them, have changed
the picture significantly. The combination of these devices
now holds great promise for very high speed/functionality
circuits. In the next section, we will mainly consider an
RTD-HBT-based circuit as an illustration [58], but certainly
RTD-HEMT based circuits and other circuits are also very
important and are being pursued.

A. NDR Characteristics and Parameters

For illustrating the issue of the integration of RTD’s and
transistors, we take a typical RTD-HBT threshold logic gate
as an example. Fig. 9 shows the logic gate configuration
with HBT’s as the logic driver and an RTD used
as the load. This is referred to as a minority gate and can
be employed to achieve many digital functions. The logic
gate operates as follows. The input currentsthrough
change to cause changes in the current flowing through
the RTD load. When the clock (clk) signal goes high, it
will cause the total current through the RTD to increase.
If more than inputs are high, the current through the
RTD exceeds the peak current, causing a jump, and thus
switches the logic state to the second positive differential
resistance (PDR) region. This results in the node’s
going low. If less than inputs are high, the current
through the RTD does not exceed the peak current and

remains high. When the clock signal goes low, the
previous output is maintained. When thereset line goes
high, it will force all the transistors into cutoff. The current
flowing through the RTD will fall below the valley current,
and the node is pulled high. When thereset line
goes back to zero, the node remains high. The logic
operation can also be seen from Fig. 10, which shows the
intersections of the RTD’s I–V curve with the HBT’s I–V

Fig. 10. Intersecting characteristics of RTD’s and HBT’s in a
logic gate.

characteristic. The I–V curve of the basic RTD device
can be divided into three branches and six interrelated
NDR parameters as shown. There are two PDR branches,
one before the peak point and one beyond the valley
point, with the NDR region in between. Other important
quantities are the peak current (), peak voltage ( ),
valley current ( ), valley voltage ( ), and the peak-
to-valley current ratio (PVR). A voltage swing () may
be defined as the voltage at which the current reaches
on the second PDR branch. Desired NDR characteristics
can be analyzed in terms of the above parameters. The
requirements on the RTD parameters can be considered
relative to the noise margin, speed, and power dissipation
for the logic gate.

When the HBT’s are switched on by high (HI) input
signals, the current flowing through the load RTD will
intersect its PDR branch. If the current reaches, the
operating point will be switched to the point, producing
a low output (LO) voltage, thus achieving a logic state.
Conversely, a LO input signal at the HBT’s input will set
the RTD to a voltage near , the power supply of the
gate. Since the noise margin of the logic gate is related to
the difference , we require and thus

to be as close to as possible. This demands
a low value for and high values for and .

The value sets up the logic relationship of the gate
since it determines the point at which the logic state
changes. However, it also depends on specific circuit driver
configurations and therefore cannot be considered to be a
stringent requirement. Generally, too large a value of the
peak current is certainly undesirable from the viewpoint of
power dissipation for future large-scale circuit integration.
In addition, it takes time to reach a large peak current point
and then decrease to the valley point between the different
states. This is undesirable for high speed. For the logic
circuit shown in Fig. 9, a value for of a fraction of a
milliampere will usually suffice.
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Evaluating the valley current, and the related PVR,
has been a major challenge, with the associated goals of
understanding current transport, improving RTD models,
and achieving high PVR’s. In general, a low valley current
density is desired, as it is necessary for switching and is
also advantageous for low power consumption when large-
scale RTD circuits are integrated. On the other hand, merely
seeking a very high PVR may be misleading and should be
clarified. The PVR must be sufficiently large to provide the
logic function with a good noise margin, but it is not the
sole figure of merit of an RTD. As can be seen in Fig. 10, if
the PVR of the RTD is too low, a noise signal may trigger
the operating point near ( ) to move down along the
NDR branch of the I–V curve, reaching the valley point
and then subsequently switching to an incorrect or faulty
state. As a rule of thumb, a PVR of five would generally
be adequate; a value of ten is quite sufficient, and further
pursuit of a much higher PVR may not be necessary for
logic applications.

It should be noted that the above discussion is an ex-
ample for illustration. Since specific requirements for RTD
characteristics may vary depending on the particular circuit
configuration of different logic families and on different
digital applications, the considerations may or may not
apply for different digital circuits. For example, for RTD’s
used for large-scale memory applications, the PVR will be
required to be as high as possible to reduce the standby
power consumption.

B. Material and Structural Considerations

The NDR characteristics considered in the preceding
section as representative device properties are a direct con-
sequence of the carrier transport, described in Sections II
and III. They are closely related to the material system and
specific device structure. A great deal of research has been
devoted to exploring the various options for the realization
of optimum RTD’s.

It is obvious that for the sake of future large-scale
integration, the most desirable material system would be
silicon based, being compatible with current silicon IC
technology. In contrast to the successful HBT performance
achieved in Si/SiGe heterosystems [64], however, attempts
at building RTD’s in the Si/SiGe system with acceptable
I–V characteristics have not been encouraging, with PVR’s
not much larger than one [65], [66]. The most important
relevant parameter is the energy-band offset, particularly
the offset in the conduction band, because in most cases
electron transport is desired due to its lighter effective
mass as compared with holes. Although various schemes
based on the SiGe alloy band structures have been proposed
and tested, the conduction-band offset between Si and
SiGe alloys has been limited to a few of tenths of an
electron volt. This is not enough to produce the necessary
quantum confinement for a strong resonant state in the
DBQW structure. Studies on hole resonant tunneling in
SiGe systems have also been carried out [67], [68]. Tsu [69]
has proposed silicon-based quantum wells with Si/SiO
strained layer superlattice barriers, but the structure has not

been demonstrated. This is probably due to difficulties in
the fabrication technology and strong electron scattering’s
obscuring the resonance. Another possibility is to grow
materials with different bandgaps that are lattice matched
to silicon, for example, SiGeC materials [70]. There have
also been recent proposals for quantum MOS transistors
incorporating RTD’s, but a real breakthrough in this area
is yet to come.

For RTD’s based on III–V compound ma-
terials, the original traditional material system,
GaAs(well)/AlGaAs(barrier), has been extended to
GaAs/AlAs, InGaAs/AlAs, InGaAs/InAlAs, InAs/AlSb,
and others. The work on RTD’s built from these material
systems is extensive. For a summary of the various RTD
characteristics achieved in these systems, see [71] by
Seabaugh and Lake. RTD’s made from these systems can
achieve a very high peak current density, a sufficient PVR,
and a very high speed index (i.e., the ratio of the peak
current to the device capacitance).

At this time, the GaAs/GaAlAs and InGaAs/AlAs (on InP
substrates) systems are the strongest candidates for actual
circuit insertion. The InGaAs/AlAs system is clearly supe-
rior in terms of its intrinsic properties, but GaAs/GaAlAs
IC fabrication technology is significantly more mature in
general. The focus now is onlow powerat moderately high
frequencies (tens of gigahertz), as there are other more
conventional high-frequency solutions available if power
is not the primary objective. In this regard, a variation of
the InGaAs/AlAs system has come to the fore. It contains
a modified InGaAs well with extra In inserted, either in
the form of a higher alloy concentration than called for by
lattice matching or a small number of pure InAs central
layers [72]. Either way, the extra In lowers the resonance
energy in the well so that the peak voltage is lowered
correspondingly. The tradeoff is that the peak current
decreases as the resonance is lowered, so a compromise
is required. The lower voltage is absolutely essential if low
power is to be achieved. For that purpose, an even better
system is the InAs/AlSb/GaSb RITD, or a variation thereof,
which will be explained shortly.

While it may be straightforward in principle to control
the peak current density by properly designing the DBQW
structure, it is not easy to realize this in practice. The
tunneling current density essentially has an exponential
dependence on the barrier thickness, which varies typically
by one monolayer either way from the nominal thickness
aimed for in the epitaxial growth. The window for optimum
condition in the growth is narrow and often unforgiving,
with no warrant of precise repetition. Therefore, iterative
adjustment is usually needed for a desired current density.
Further, it is difficult to obtain the small values predicted
by calculations for reasons related to device contact and
series resistances. The PVR is a combined result of the
factors relating to the valley current transport mechanisms,
material system, structural design, and processing technol-
ogy. The valley voltage naturally has material and structural
dependences that can be considered, as in Sections III and
IV. Last, the swing voltage is related to the valley shape
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and the turn-on in the second PDR branch, which is very
much related to the material parameters. For example, since
the interaction between the conduction and valence-band
electrons becomes more significant when the electric field
strength increases with applied voltage, an early turn-on
and a small are expected for materials with a narrower
bandgap. In addition, it is easy to see that a low barrier
material leads to earlier turn-on and a smaller voltage
swing.

The above discussion indicates a strong dependence of
the NDR on the material and structure. An initial design
may take these factors into consideration, but since factors
affecting the resultant NDR and I–V characteristics are
highly nonlinear, modeling calculations to aid quantitative
design are desirable. Previous material growth data and
RTD processing parameters, if available, should be very
valuable for a realistic assessment of expected RTD I–V
characteristics. Design and process iterations are often used
to obtain a desired device NDR characteristic.

In addition to the basic DBQW structure, several other
RTD structures have been investigated for interesting reso-
nant tunneling physics, for possible performance improve-
ment, and for a variety of potential applications. Notable
examples include polytype InAs/AlSb/GaSb RITD’s based
on resonant interband tunneling mechanisms [73]–[75], the
Schottky-collector RTD’s [76], the double- and triple-well
RTD’s, which generate multiple NDR characteristics for
multiple-valued logic circuits [77], [78], and, in yet another
direction, RTD’s of lower dimensions, so called 1-D and
zero-dimensional (0-D) RTD’s [79], [80].

The main idea of an RITD is to combine interband
tunneling in Esaki TD’s and resonant tunneling in quantum
well structures. These combinations became possible due to
various types of band lineups in polytype heterostructures.
An example is shown in Fig. 3, where electrons tunnel from
the conduction band (InAs contacts) through an interband
barrier into light hole states in the valence band (GaSb
quantum well). The peak current is caused by the tunneling
through a resonant state in the quantum well, as in the case
of conventional RTD’s. As the bias voltage passes reso-
nance, however, the electrons will experience the bandgap
not only of AlSb but also of GaSb. Therefore, in principle,
such devices are expected to have very high PVR’s, and
the published work has shown promising results. It may
have a dramatically lower peak voltage but still with the
high peak currents typical of InGaAs/AlAs without the extra
In. The low voltage is due to the Type II band alignment:
the InAs emitter conduction-band edge proximity to the
GaSb quantum well valence band. The positive mass of
the conduction band relative to the negative valence-band
mass implies that there can be electrons satisfying the
resonance condition even at very small biases. Fabrication
of transistors in this material system has been demonstrated,
but it is at a very early stage.

In a somewhat different version of RITD’s, heterostruc-
ture p-n junction TD’s have also been demonstrated [81].
For example, in an InGaAs/InAlGaAs/InGaAs tunnel diode,
the wide-bandgap barrier layer is inserted in between the

two narrow-bandgap contact layers. The tunneling current
in such tunnel diodes is determined not only by the doping
profile, as in a homojunction Esaki TD, but also by the
barrier width and height, which can be controlled to tune the
device I–V characteristics, thus adding a degree of freedom
in device design.

For Schottky-collector RTD’s, the ohmic-contacted col-
lector of a conventional RTD is replaced with a direct
Schottky contact to the space charge layer near the second
barrier, thereby eliminating the contact series resistance
on that side. This reduced series resistance leads to an
increased maximum frequency of oscillation. A 64-element
monolithic Schottky-collector RTD oscillator array oscil-
lated at 650 GHz has been reported [82].

In 1-D RTD’s, the electrons are laterally confined in the
or directions using the convention of Fig. 1. Another

novel example is the variable-area RTD, in which the
size of the lateral confinement can be altered [83]. In
0-D or quantum dot RTD’s, electrons are confined later-
ally as well as vertically, but weakly coupled to electron
reservoirs. Resonant tunneling has been observed in these
lower dimensional RTD structures. These lower dimen-
sional structures are interesting for studying the interplay
between resonant tunneling and the Coulomb blockade
effect in single electron structures [84]–[86]. These studies
may produce interesting and promising device properties
for future electronics, but many practical difficulties due to
their extremely small size and increased complexity have
to be resolved.

C. Other NDR Quantum Devices

We now make a comparison between RTD’s and other
quantum devices with NDR characteristics. RTT’s and
RHET’s, being three-terminal devices, have the advantage
that the NDR can be controlled by the voltage applied to
the third terminal, an attractive feature for circuit design,
since it provides isolation between different circuit stages.
This allows better control of device operation and gain.
Although RTT operation has been demonstrated [87], it is
extremely difficult to make a low resistive contact to the
RTT base. On the other hand, RHET’s have limited gain
due to scattering in the base and are difficult to fabricate
[88]. However, this controllable NDR characteristic can be
obtained with RTD’s alone by connecting it in series with
an FET or an HBT.

Another device whose operation is based on electron
tunneling, the Esaki or tunnel diode, is the original quantum
device with an NDR I–V curve. At that time, only discrete
devices were possible. Now, there is no reason that they
cannot also be integrated with HBT’s or HEMT’s. The
challenges are different from those for RTD’s in that it
is the doping that varies instead of the composition. One or
the other may be more appropriate for a given application.

Some of the important features of RTD’s, RITD’s, and
Esaki TD’s that have been discussed are summarized in
Table 2. A comprehensive comparison among these devices
with an in-depth analysis is of current interest, and research
is ongoing on both device and circuit aspects.

SUN et al.: RTD’S: MODELS AND PROPERTIES 657



Table 2 Important Parameters of RTD’s, RITD’s, and TD’s. Note
That at the Swing Voltage, the Device Current in the Second PDR
Region Reaches the Peak Current (See Also Fig. 10). The Speed
Index Is the Ratio of the Peak Current over the Device Capacitance

V. CONCLUSIONS

It is generally agreed that the continued miniaturization
of transistors and IC’s may open a revolutionary regime
for novel semiconductor devices and circuits. Research in
nanoelectronics today stands at a frontier of semiconductor
science and engineering. The RTD is considered to be
a major nanoelectronic device at the center of nanoelec-
tronic research. In this review, we have addressed the
following questions. How well do we understand RTD
device operation? How accurately are we able to model
its I–V characteristics and other properties? What basic
requirements are there for application in digital logic in
terms of the dc I–V characteristics? How realistic it is
that the desired I–V characteristics can be attained with
available material and device structures? These issues were
discussed, and recent accomplishments as well as impedi-
ments were reviewed.

Numerical modeling is playing an increasingly important
role as a tool for gaining insight into nanoelectronic device
operation and providing guidance for device design. Quan-
tum transport modeling and computer simulation tools will
be very valuable for conceiving new device concepts and
exploring novel nanostructures. Sophisticated RTD models
have been developed with varying levels of success in re-
producing and predicting the I–V characteristics. Accurate
predictions of the I–V characteristics for different material
systems and device structures are difficult to achieve. This
is due to uncertainties in material growth and device process
data as well as in the material parameters, especially
when complicated materials and structures are involved.
Therefore, more accurate characterization and calculation
of material and structural parameters are needed for further
development. We also note that RTD models, including
multiband and scattering effects, can become quite com-
putationally expensive and demand significant human and

computer resources, including a good understanding of ad-
vanced quantum physics. Tradeoffs between modeling cost
and accuracy should be considered for specific applications.

RTD’s are very promising nanoelectronic devices for
digital logic circuit application due to their intrinsically
high-speed NDR characteristics at room temperatures. In-
tegrated circuits made from the III–V semiconductors are
the most likely opportunity for technology insertion, but
if a material system compatible with silicon technology
could be achieved, the circuits could also be developed
for silicon very large scale integration. Another concern
for practical RTD applications is that achieving uniformity
in resonant tunneling current, which depends exponentially
on the parameters of the tunneling barriers, presents a
serious challenge for circuit design and performance. How-
ever, recent progress indicates thatin situ probing of the
epitaxial growth, with real-time feedback into the growth
process, may adequately achieve this goal. Nanoscience and
nanotechnology are broad fields, highly interdisciplinary in
breadth and depth. It may take years for RTD’s to become
routine workhorses in future electronics. Whether or not
RTD’s will achieve their promise may also be aided by
advances in other areas of quantum devices, such as single
electronic devices and quantum MOS transistors now under
active research.
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