
Fig. 1 Neuromorphic architecture showing neurons and synapses.

Multi-purpose Neuro-architecture with Memristors

Idongesit Ebong, Durgesh Deshpande, Yalcin Yilmaz, and Pinaki Mazumder

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109
Email: idong@eecs.umich.edu, durgesh@umich.edu, yalciny@eecs.umich.edu, mazum@eecs.umich.edu

 Abstract — An analog CMOS neuromorphic design

utilizing spike timing dependent plasticity and memristor
synapses is investigated for use in building a multi-purpose
analog neuromorphic chip. In order to obtain a multi-purpose
chip, a suitable architecture is established and several functions
with the proposed architecture are shown. Using the IBM 90
nm CMOS9RF process, neurons are designed to interface with
Verilog-A memristor synapse models to perform the XOR and
Edge Detection functions.

 Index Terms – memristors, spike-timing-dependent-
plasticity, neuromorphic network

I. INTRODUCTION

 Chua postulated the concept of a missing element in
1971 [1], but this element was only recognized in 2008 by
HP Labs [2]. The memristor has evoked research interest in
the advent of limits to CMOS scaling according to Moore’s
Law. The memristor has been elected as an addition to
revolutionize mass connectivity and programmable logic
arrays (PLA) [3, 4], digital memory [5], chaotic circuits [6],
and neuromorphic networks [7]. The digital memory
approach is currently the most promising, since through
fabricated arrays it has exposed drawbacks to memristor
crossbar arrays, as well as proposed methods to counter these
limitations. Knowledge from the memory approach will
certainly aid in other memristor applications.1
 This paper uses the nonlinear analog memristor model
for HP Labs’ fabricated device in a neuromorphic
architecture that is adapted through spike timing dependent
plasticity (STDP) [7]. The adaptation provides a
conceivable way of demonstrating learning circuits that can
stabilize in the presence of noise. Learning is both
structurally and environmentally motivated. The proposed
neuromorphic structure or architecture highlights the
resilience of memristors and provides a fabric to building
larger systems. The functions performed by the simulated
neuromorphic chip are XOR and edge detection. In addition
to these two functions, the realization of a sampled Gaussian
kernel for the use of a filter, AND operation, OR operation,
and many other functions are possible with the proposed
architecture.
 The next section (Section II) provides a description of
the architecture, how supervised learning is achieved, the
neuron block level design and the synapse modeling, and

 The authors would like to thank HRL, DARPA, and NSF for partly
supporting this work.

Section III shows the simulation results for the XOR and
Edge Detector.

II. ARCHITECTURE

A. Overall Neuromorphic Architecture
 The basic processing of the neuromorphic architecture is
shown in Fig. 1. The neurons are shown in circle and
implemented in CMOS while synapses are shown with
arrowed lines and are implemented with memristors.
Excitatory synapses are in red, and inhibitory synapses are in
black. The architecture is amenable to STDP synapses
whereby the spike timing between pre-neuron and post-
neuron determine how much the memristive synapses will
adjust. For more detail on STDP implementations with
memristors, see [7].
 The STDP implementation used here is based on a
linear approximation seen in the response of mushroom
bodies [8]. The linear approximation is more desirable to
memristor design because it allows the use of constant pulse
widths to change memristors. The adjustment on how much
change the memristor undergoes depends on the number of
pulses a memristor sees. This simplifies and reduces neuron
size by allowing the use of a common external pulse
generator for all neurons in the proposed architecture. This
design decision was made to move the spiking behavior
outside of the neuron since spike generation with respect to
synapse changes consume most of the area in a CMOS
design. More details on the spiking behavior are given in the
neuron design presented in the next section.

2011 11th IEEE International Conference on Nanotechnology
Portland Marriott
August 15-18, 2011, Portland, Oregon, USA

978-1-4577-1515-0/11/$26.00 ©2011 IEEE 431

Fig. 3 (Top) Neuron block diagram showing important features
(Bottom) Neuron spiking patterns used to achieve STDP

Fig. 2 Training mode using prescribed XOR training scheme
(Top) Inhibitory synapses unchanged during training

(Bottom) Excitatory synapse trained using timestamps

 The neuromorphic architecture is composed of input
neurons and output neurons, and based on the chosen
structure of inhibitory to excitatory synapses, various
functions can be obtained. The XOR and Edge Detector
have the same synaptic weight profile, but a different
function, like a Gaussian kernel would have a different
profile. The basic architecture shown needs pre- and post-
processing circuits to interface with other systems. The post-
processing side may contain adders and integrators to
convert spiking outputs of the spiking neurons to leveled
signals, while the pre-processing side would convert DC
level signals to spiking inputs for the neurons. Each function
will have different post-processing requirements; the
architecture is meant to be barebones to allow for different
functionality based on synaptic weight adjustments.
 The training process involves using input patterns to
adjust memristors to the desired relative values between
excitatory and inhibitory synapses. On simulation startup,
weights can either be initialized to a low value, or initialized
to a random pattern and learned to low values. Using
different input patterns, the memristors can be trained to
predetermined weights or relative weights between
excitatory and inhibitory synapses. For example, starting in a
low weight state, n11, n13, and n15 can be made to spike at
frequencies that cause n21, n23, and n25 to spike thereby
strengthening excitatory synaptic connection between these
neurons according to STDP rules. This input pattern will not
affect the inhibitory synapses due to the rules of STDP
requiring pre-neuron and post-neuron to spike. After these
synapses are trained to weights approximately twice the
inhibitory synaptic weights, neurons n12, n14, and n16 are
used to train the excitatory synapses between n22, n24, and
n26.
 This training scheme is designed for the XOR and edge
detection profile and allows the tuning of excitatory synapses
without affecting inhibitory synapses as shown in Fig. 2. The
synapse naming follows the convention “pre-neuron_post-
neuron.” In Fig. 2, the XOR training is done for 30 ms to get
a resistance profile for the excitatory neurons around
~5.6 MΩ. The tuning of the memristors to exact resistance
values is hard to do therefore in a system, a timer would be
used to stop training. This training scheme hints that the
neurons have two different modes determined by a control
signal deciding on either a training mode or running mode.
The difference between the two modes lies in the voltage
levels used for both. The training mode uses voltage levels
that influence the memristors more than the running mode.
The simulation results shown for the XOR and edge
detection operation use the learned memristor resistance
values of ~10 MΩ and ~5.6 to 6.8 MΩ for the inhibitory
synapses and the excitatory synapses, respectively. The
simulation results are shown in the run-mode – learning has
stabilized, and voltages adjusted so memristors are fairly
static.

B. Neuron Design
 The neuron design used is based on previous work [9].
The design uses a leaky-integrate-and-fire (LIF) neuron

coupled with external pulses to relay information from one
layer to another. Fig. 3 provides a block diagram view of the
components of the neuron. The integrate and fire circuitry
holds a storage node and a comparator that provides a bi-
level spike signal whenever the storage node reaches the
comparator threshold. As hinted in Fig. 1, the neuron has
excitatory inputs that add on to the storage capacitive node,
and inhibitory inputs that subtract charge from the storage
node. The external pulse is used to determine the spike
pattern on the output after a neuron spikes. The spiking

432

Fig. 4 XOR simulation results showing: (a) Input A (n11 and n12) = “0,” and Input B (n13 and n14)= “0,” so Output (n22 or n23)= “0.” (b) Input A (n11
and n12) = “0,” and Input B (n13 and n14)= “1,” so Output (n22 or n23)= “1.” (c) Input A (n11 and n12) = “1,” and Input B (n13 and n14)= “1,” so Output

(n22 or n23)= “0.” (d) Input A (n11 and n12) = “1,” and Input B (n13 and n14)= “0,” so Output (n22 or n23)= “1.”

activity is governed by a finite state machine (FSM) that is
not shown.
 The spiking scenario is further explicated with the
bottom timing diagram in Fig. 3. At the presence of a spike,
the spiking neuron first moves both its output and input from
a reference voltage (VREFX) to 0V for four clock periods and
then emits four pulses that directly bias memristors seeing
these pulses before returning to its resting potential of VREFX.
The sample spike pattern shown in Fig. 3 hints at the nature
of the synapse used in this design. A threshold is designed
within the synapse that allows only a voltage difference that
exceeds the threshold to register as a valid change to the
memristor between the “pre-neuron” output and the “post-
neuron” input. Depending on the order of the spikes, the
memristor state either reduces or increases resistance.

C. Synapse Modeling
 The synapse model is based on the nonlinear drift
diffusion model of a charge based memristor presented in
[10]. The synapse consists of memristors that are coupled
with diodes in an anti-parallel configuration in order to instill
the makings of a threshold device. This synaptic realization
is due to the fact that crossbar devices are leaky and MIM
diode isolation is one of the methods used to combat the
effect of leaky devices and mitigating the effects of sneak
paths.
 The nonlinear behavior of the sandwiched doped/
undoped TiO2 HP Labs memristor is governed by (1) and (2)
and implemented behaviorally in Verilog-A.

(1)

 (2)

The doped region width is modulated according to (1)
with the window function definition expressed in (2). For
SPICE simulation the memristor model was implemented
with parameter , memristor width nm, and
dopant mobility . RON = 20 kΩ in this
case, but with proper operation, the memristor is not driven
to its lower limit of RON.

III. SIMULATION RESULTS

A. XOR Simulation
 The neuromorphic architecture is simulated in Cadence
Analog Environment with IBM 90nm CMOS9RF process.
The XOR simulation setup does not use all six input-output
neuron pairs. Four neuron pairs are needed for the XOR
operation. For example, to find the XOR between logic
signals A and B, input A would be given to n11 and n12 while
input B would be passed on to n13 and n14. The outputs
would be read from the sum of n22 and n23. Fig. 4 provides
the results for the XOR operation for all cases. Fig. 4a
provides results for the case when both inputs A and B are
Logic “0” thereby producing no spiking behavior at the
outputs. Fig. 4b and Fig. 4d provide the scenarios when one
input is Logic “1” and the other input is Logic “0.” In

433

Fig. 4b, Input A is Logic “0” and Input B is Logic “1.” The
result from the simulation shows that n23 spikes in a pattern
that signifies Logic “1” while n22 does not spike at all. The
XOR post processing will integrate and add the results of n22
and n23 to obtain a final verdict. The spiking behavior of
either n22 and n23 should be deciphered as a Logic “1” by the
post-processing circuitry. Fig. 4d provides results and works
in a similar way to Fig. 4b except this time, instead of n23
spiking and n22 not spiking, n23 does not spike but n22 spikes.
The results from post-processing will be the same as the
previous case.
 Lastly, Fig. 4c shows the case when both inputs A and B
are Logic “1.” The results show that neither n22 or n23 spikes
therefore providing output results similar to Fig. 4a. As
expected, the XOR operation is verified with all test cases
and shows that the neuromorphic architecture works as
expected. Due to the bidirectional nature of the output node,
Logic “0” when inputs do not induce spiking is different
from Logic “0” when inputs induce spiking. For example,
the Logic “0” seen for n11 & n12 in Fig. 4d looks different
from that of Fig. 4a. The disturbance seen is directly related
to the spiking behavior of the second layer of neurons that
directly cause a disturbance in the output node of the input
neurons.

B. Edge Detection and XOR Simulation
 The edge detector operation is similar to XOR as shown
in Fig. 5. In Fig. 5, the input neurons {n11,…,n16} receive
“011110” respectively, and they cause the output neurons

{n21, …, n26} to produce “010010” respectively. In the input
pattern, there are two edges, i.e. between n11 and n12 and
between n15 and n16, and the neural network configuration
was able to extract these edges in the output spiking pattern.
The post-processing on the edge detector will integrate each
output to determine output logic level.
 The verification of the edge detector is done by showing
another pattern with input neurons {n11,…,n16} receiving
“100110” respectively. This pattern clearly has two edges
between n13 and n14 and between n15 and n16. Another
observation here is that since there is no wrap-around effect
in the neural architecture, the neural network identifies Logic
“1” values at the extremes as edges. This design decision is
architecture dependent and behavior may be changed by
modifying the synaptic weights of the synapses controlling
neuron behavior at the extremes. The result for the input
pattern “100110” turns out to be “100110” and the post-
processing for the edge detection should be able to extract
the position of the edges quite clearly.
 The CMOS neuron is scaled down from 130 nm CMOS
process to 90 nm. In addition to process migration, the
inclusion of synaptic weight dependent excitatory inputs was
made. The neuron design migrated from a mostly saturation
design to a mostly subthreshold design to improve power
efficiency. When conducting the simulation for edge
detection and XOR, the average power consumption per
neuron during the spiking is about 0.3 μW which is more
than an 8X saving over [9].

Fig. 5 (Left) Edge detection simulation results for input pattern “011110” produces output pattern “010010.”
(Right) Edge detection simulation results for input pattern “100110” produces output pattern “100110”

434

III. CONCLUSION

 A neuromorphic architecture made with memristors is
presented. The architecture is shown to perform the XOR
and edge detection operations after a supervised learning
process. The design is simulated in 90 nm IBM CMOS
process with power consumption while spiking at 0.3 μW.
The amenable architecture is great for the memristor
crossbar design, allowing the area savings possible with
building crossbars above CMOS circuitry. The overall
purpose of this work is to explore low level computing
components that can utilize nanodevices in a manner that
encourages parameter adjustment to facilitate on-site tuning
when necessary.

REFERENCES
[1] L. O. Chua, “MEMRISTOR - MISSING CIRCUIT ELEMENT,” IEEE

Transactions on Circuit Theory, vol. CT18, no. 5, pp. 507-&, 1971.
[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The

missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, May,
2008.

[3] K. Iniewski, G. S. Rose, and H. Manem, "A Hybrid CMOS-Nano
FPGA Based on Majority Logic: From Devices to Architecture," CMOS
Processors and Memories, Analog Circuits and Signal Processing, pp.
139-161: Springer Netherlands.

[4] G. S. Snider, and R. S. Williams, “Nano/CMOS architectures using a
field-programmable nanowire interconnect,” Nanotechnology, vol. 18,
no. 3, pp. 11, Jan, 2007.

[5] M. Harika, S. R. Garrett, H. Xiaoli, and W. Wei, “Design
considerations for variation tolerant multilevel CMOS/Nano memristor
memory,” in Proceedings of the 20th symposium on Great lakes
symposium on VLSI, Providence, Rhode Island, USA.

[6] B. Muthuswamy, and P. P. Kokate, “Memristor-based chaotic circuits,”
IETE Technical Review, vol. 26, no. 6, pp. 417, 2009.

[7] B. Linares-Barranco, and T. Serrano-Gotarredona, “Memristance can
explain Spike-Time-Dependent-Plasticity in Neural Synapses,” in
Nature Precedings <http://hdl.handle.net/10101/npre.2009.3010.1>,
2009.

[8] S. Cassenaer, and G. Laurent, “Hebbian STDP in mushroom bodies
facilitates the synchronous flow of olfactory information in locusts,”
Nature, vol. 448, no. 7154, pp. 709-U12, 2007.

[9] I. Ebong, and P. Mazumder, “Memristor based STDP Learning
Network for Position Detection,” in 22nd International Conference on
Microelectronics (ICM), Cairo, Egypt, 2010, pp. 292-295.

[10] Y. N. Joglekar, and S. J. Wolf, “The elusive memristor: properties of
basic electrical circuits,” European Journal of Physics, vol. 30, no. 4,
pp. 661-675, Jul, 2009.

435

