
Fig. 1 Neuromorphic architecture showing neurons and synapses. 
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 Abstract — An analog CMOS neuromorphic design 

utilizing spike timing dependent plasticity and memristor 
synapses is investigated for use in building a multi-purpose 
analog neuromorphic chip.  In order to obtain a multi-purpose 
chip, a suitable architecture is established and several functions 
with the proposed architecture are shown.  Using the IBM 90 
nm CMOS9RF process, neurons are designed to interface with 
Verilog-A memristor synapse models to perform the XOR and 
Edge Detection functions. 
 
 Index Terms – memristors, spike-timing-dependent-
plasticity, neuromorphic network 
 
 

I.  INTRODUCTION 

 Chua postulated the concept of a missing element in 
1971 [1], but this element was only recognized in 2008 by 
HP Labs [2].  The memristor has evoked research interest in 
the advent of limits to CMOS scaling according to Moore’s 
Law.  The memristor has been elected as an addition to 
revolutionize mass connectivity and programmable logic 
arrays (PLA) [3, 4], digital memory [5], chaotic circuits [6],  
and neuromorphic networks [7]. The digital memory 
approach is currently the most promising, since through 
fabricated arrays it has exposed drawbacks to memristor 
crossbar arrays, as well as proposed methods to counter these 
limitations. Knowledge from the memory approach will 
certainly aid in other memristor applications.1 
 This paper uses the nonlinear analog memristor model 
for HP Labs’ fabricated device in a neuromorphic 
architecture that is adapted through spike timing dependent 
plasticity (STDP) [7].  The adaptation provides a 
conceivable way of demonstrating learning circuits that can 
stabilize in the presence of noise.  Learning is both 
structurally and environmentally motivated.  The proposed 
neuromorphic structure or architecture highlights the 
resilience of memristors and provides a fabric to building 
larger systems.  The functions performed by the simulated 
neuromorphic chip are XOR and edge detection.  In addition 
to these two functions, the realization of a sampled Gaussian 
kernel for the use of a filter, AND operation, OR operation, 
and many other functions are possible with the proposed 
architecture. 
 The next section (Section II) provides a description of 
the architecture, how supervised learning is achieved, the 
neuron block level design and the synapse modeling, and 
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Section III shows the simulation results for the XOR and 
Edge Detector.   
 

II.  ARCHITECTURE 

A. Overall Neuromorphic Architecture 
 The basic processing of the neuromorphic architecture is 
shown in Fig. 1.  The neurons are shown in circle and 
implemented in CMOS while synapses are shown with 
arrowed lines and are implemented with memristors.  
Excitatory synapses are in red, and inhibitory synapses are in 
black.  The architecture is amenable to STDP synapses 
whereby the spike timing between pre-neuron and post-
neuron determine how much the memristive synapses will 
adjust. For more detail on STDP implementations with 
memristors, see [7]. 
 The STDP implementation used here is based on a 
linear approximation seen in the response of mushroom 
bodies [8].  The linear approximation is more desirable to 
memristor design because it allows the use of constant pulse 
widths to change memristors.  The adjustment on how much 
change the memristor undergoes depends on the number of 
pulses a memristor sees.  This simplifies and reduces neuron 
size by allowing the use of a common external pulse 
generator for all neurons in the proposed architecture.  This 
design decision was made to move the spiking behavior 
outside of the neuron since spike generation with respect to 
synapse changes consume most of the area in a CMOS 
design.  More details on the spiking behavior are given in the 
neuron design presented in the next section. 

2011 11th IEEE International Conference on Nanotechnology
Portland Marriott
August 15-18, 2011, Portland, Oregon, USA

978-1-4577-1515-0/11/$26.00 ©2011 IEEE 431



Fig. 3 (Top) Neuron block diagram showing important features 
(Bottom) Neuron spiking patterns used to achieve STDP 

Fig. 2 Training mode using prescribed XOR training scheme 
(Top) Inhibitory synapses unchanged during training 

(Bottom) Excitatory synapse trained using timestamps 

 The neuromorphic architecture is composed of input 
neurons and output neurons, and based on the chosen 
structure of inhibitory to excitatory synapses, various 
functions can be obtained.  The XOR and Edge Detector 
have the same synaptic weight profile, but a different 
function, like a Gaussian kernel would have a different 
profile.  The basic architecture shown needs pre- and post-
processing circuits to interface with other systems.  The post-
processing side may contain adders and integrators to 
convert spiking outputs of the spiking neurons to leveled 
signals, while the pre-processing side would convert DC 
level signals to spiking inputs for the neurons.  Each function 
will have different post-processing requirements; the 
architecture is meant to be barebones to allow for different 
functionality based on synaptic weight adjustments. 
 The training process involves using input patterns to 
adjust memristors to the desired relative values between 
excitatory and inhibitory synapses.  On simulation startup, 
weights can either be initialized to a low value, or initialized 
to a random pattern and learned to low values.  Using 
different input patterns, the memristors can be trained to 
predetermined weights or relative weights between 
excitatory and inhibitory synapses. For example, starting in a 
low weight state, n11, n13, and n15 can be made to spike at 
frequencies that cause n21, n23, and n25 to spike thereby 
strengthening excitatory synaptic connection between these 
neurons according to STDP rules.  This input pattern will not 
affect the inhibitory synapses due to the rules of STDP 
requiring pre-neuron and post-neuron to spike.  After these 
synapses are trained to weights approximately twice the 
inhibitory synaptic weights, neurons n12, n14, and n16 are 
used to train the excitatory synapses between n22, n24, and 
n26. 
 This training scheme is designed for the XOR and edge 
detection profile and allows the tuning of excitatory synapses 
without affecting inhibitory synapses as shown in Fig. 2. The 
synapse naming follows the convention “pre-neuron_post-
neuron.” In Fig. 2, the XOR training is done for 30 ms to get 
a resistance profile for the excitatory neurons around 
~5.6 MΩ. The tuning of the memristors to exact resistance 
values is hard to do therefore in a system, a timer would be 
used to stop training.  This training scheme hints that the 
neurons have two different modes determined by a control 
signal deciding on either a training mode or running mode.  
The difference between the two modes lies in the voltage 
levels used for both.  The training mode uses voltage levels 
that influence the memristors more than the running mode.  
The simulation results shown for the XOR and edge 
detection operation use the learned memristor resistance 
values of ~10 MΩ and ~5.6 to 6.8 MΩ for the inhibitory 
synapses and the excitatory synapses, respectively.  The 
simulation results are shown in the run-mode – learning has 
stabilized, and voltages adjusted so memristors are fairly 
static. 
 
B. Neuron Design 
 The neuron design used is based on previous work [9].  
The design uses a leaky-integrate-and-fire (LIF) neuron 

coupled with external pulses to relay information from one 
layer to another. Fig. 3 provides a block diagram view of the 
components of the neuron.  The integrate and fire circuitry 
holds a storage node and a comparator that provides a bi-
level spike signal whenever the storage node reaches the 
comparator threshold.  As hinted in Fig. 1, the neuron has 
excitatory inputs that add on to the storage capacitive node, 
and inhibitory inputs that subtract charge from the storage 
node.  The external pulse is used to determine the spike 
pattern on the output after a neuron spikes.  The spiking 
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Fig. 4 XOR simulation results showing: (a) Input A (n11 and n12) = “0,” and Input B (n13 and n14)= “0,” so Output (n22 or n23)= “0.” (b) Input A (n11 
and n12) = “0,” and Input B (n13 and n14)= “1,” so Output (n22 or n23)= “1.” (c) Input A (n11 and n12) = “1,” and Input B (n13 and n14)= “1,” so Output 

(n22 or n23)= “0.” (d) Input A (n11 and n12) = “1,” and Input B (n13 and n14)= “0,” so Output (n22 or n23)= “1.” 

activity is governed by a finite state machine (FSM) that is 
not shown. 
 The spiking scenario is further explicated with the 
bottom timing diagram in Fig. 3.  At the presence of a spike, 
the spiking neuron first moves both its output and input from 
a reference voltage (VREFX) to 0V for four clock periods and 
then emits four pulses that directly bias memristors seeing 
these pulses before returning to its resting potential of VREFX.  
The sample spike pattern shown in Fig. 3 hints at the nature 
of the synapse used in this design.  A threshold is designed 
within the synapse that allows only a voltage difference that 
exceeds the threshold to register as a valid change to the 
memristor between the “pre-neuron” output and the “post-
neuron” input.  Depending on the order of the spikes, the 
memristor state either reduces or increases resistance. 
 
C. Synapse Modeling 
 The synapse model is based on the nonlinear drift 
diffusion model of a charge based memristor presented in 
[10].  The synapse consists of memristors that are coupled 
with diodes in an anti-parallel configuration in order to instill 
the makings of a threshold device.  This synaptic realization 
is due to the fact that crossbar devices are leaky and MIM 
diode isolation is one of the methods used to combat the 
effect of leaky devices and mitigating the effects of sneak 
paths. 
 The nonlinear behavior of the sandwiched doped/ 
undoped TiO2 HP Labs memristor is governed by (1) and (2) 
and implemented behaviorally in Verilog-A. 
 

 
(1) 

 
 (2) 

 
The doped region width  is modulated according to (1) 
with the window function definition expressed in (2).  For 
SPICE simulation the memristor model was implemented 
with parameter , memristor width nm, and 
dopant mobility . RON = 20 kΩ in this 
case, but with proper operation, the memristor is not driven 
to its lower limit of RON. 
 

III.  SIMULATION RESULTS 

A. XOR Simulation  
 The neuromorphic architecture is simulated in Cadence 
Analog Environment with IBM 90nm CMOS9RF process. 
The XOR simulation setup does not use all six input-output 
neuron pairs.  Four neuron pairs are needed for the XOR 
operation.  For example, to find the XOR between logic 
signals A and B, input A would be given to n11 and n12 while 
input B would be passed on to n13 and n14.  The outputs 
would be read from the sum of n22 and n23. Fig. 4 provides 
the results for the XOR operation for all cases.  Fig. 4a 
provides results for the case when both inputs A and B are 
Logic “0” thereby producing no spiking behavior at the 
outputs.  Fig. 4b and Fig. 4d provide the scenarios when one 
input is Logic “1” and the other input is Logic “0.”  In 
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Fig. 4b, Input A is Logic “0” and Input B is Logic “1.” The 
result from the simulation shows that n23 spikes in a pattern 
that signifies Logic “1” while n22 does not spike at all. The 
XOR post processing will integrate and add the results of n22 
and n23 to obtain a final verdict.  The spiking behavior of 
either n22 and n23 should be deciphered as a Logic “1” by the 
post-processing circuitry.  Fig. 4d provides results and works 
in a similar way to Fig. 4b except this time, instead of n23 
spiking and n22 not spiking, n23 does not spike but n22 spikes. 
The results from post-processing will be the same as the 
previous case. 
 Lastly, Fig. 4c shows the case when both inputs A and B 
are Logic “1.”  The results show that neither n22 or n23 spikes 
therefore providing output results similar to Fig. 4a.  As 
expected, the XOR operation is verified with all test cases 
and shows that the neuromorphic architecture works as 
expected.  Due to the bidirectional nature of the output node, 
Logic “0” when inputs do not induce spiking is different 
from Logic “0” when inputs induce spiking.  For example, 
the Logic “0” seen for n11 & n12 in Fig. 4d looks different 
from that of Fig. 4a.  The disturbance seen is directly related 
to the spiking behavior of the second layer of neurons that 
directly cause a disturbance in the output node of the input 
neurons. 
 
B. Edge Detection and XOR Simulation 
 The edge detector operation is similar to XOR as shown 
in Fig. 5.  In Fig. 5, the input neurons {n11,…,n16} receive 
“011110” respectively, and they cause the output neurons 

{n21, …, n26} to produce “010010” respectively.  In the input 
pattern, there are two edges, i.e. between n11 and n12 and 
between n15 and n16, and the neural network configuration 
was able to extract these edges in the output spiking pattern.  
The post-processing on the edge detector will integrate each 
output to determine output logic level. 
 The verification of the edge detector is done by showing 
another pattern with input neurons {n11,…,n16} receiving 
“100110” respectively.  This pattern clearly has two edges 
between n13 and n14 and between n15 and n16.  Another 
observation here is that since there is no wrap-around effect 
in the neural architecture, the neural network identifies Logic 
“1” values at the extremes as edges. This design decision is 
architecture dependent and behavior may be changed by 
modifying the synaptic weights of the synapses controlling 
neuron behavior at the extremes. The result for the input 
pattern “100110” turns out to be “100110” and the post-
processing for the edge detection should be able to extract 
the position of the edges quite clearly. 
 The CMOS neuron is scaled down from 130 nm CMOS 
process to 90 nm.  In addition to process migration, the 
inclusion of synaptic weight dependent excitatory inputs was 
made.  The neuron design migrated from a mostly saturation 
design to a mostly subthreshold design to improve power 
efficiency.  When conducting the simulation for edge 
detection and XOR, the average power consumption per 
neuron during the spiking is about 0.3 μW which is more 
than an 8X saving over [9]. 
 

Fig. 5 (Left) Edge detection simulation results for input pattern “011110” produces output pattern “010010.” 
(Right) Edge detection simulation results for input pattern “100110” produces output pattern “100110” 
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III.  CONCLUSION 

 A neuromorphic architecture made with memristors is 
presented.  The architecture is shown to perform the XOR 
and edge detection operations after a supervised learning 
process.  The design is simulated in 90 nm IBM CMOS 
process with power consumption while spiking at 0.3 μW.  
The amenable architecture is great for the memristor 
crossbar design, allowing the area savings possible with 
building crossbars above CMOS circuitry.  The overall 
purpose of this work is to explore low level computing 
components that can utilize nanodevices in a manner that 
encourages parameter adjustment to facilitate on-site tuning 
when necessary. 
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