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P A P E R

CMOS and Memristor-Based
Neural Network Design for
Position Detection

By Idongesit E. Ebong, Member IEEE, and Pinaki Mazumder, Fellow IEEE

ABSTRACT | Most hardware neural networks have a basic

competitive learning rule on top of a more involved processing

algorithm. This work highlights two basic learning rules/

behavior: winner-take-all (WTA) and spike-timing-dependent

plasticity (STDP). It also gives a design example implementing

WTA combined with STDP in a position detector. A comple-

mentary metal–oxide–semiconductor (CMOS) and a memristor-

MOS technology (MMOST) design simulation results are

compared on the bases of power, area, and noise handling

capabilities. Design and layout were done in 130-nm IBM pro-

cess for CMOS, and the HSPICE model files for the process were

used to simulate the CMOS part of the MMOST design. CMOS

consumes 2:9� 10�4 cm2 area, 55-�Wmax power, and requires

a 3-dB SNR. On the other hand, the MMOST design consumes

6� 10�5 cm2, 15-�W max power, and requires a 4.8-dB SNR.

There is a potential to improve upon analog computing with the

adoption of MMOST designs.

KEYWORDS | Neural network applications; neural networks;

spike-timing-dependent plasticity (STDP); unsupervised learn-

ing; winner-take-all (WTA)

I . INTRODUCTION

Neuromorphic engineering is not a new approach to infor-

mation processing systems. It particularly gained momen-

tum in the 1980s with the amalgamation of learning rules

and very large scale integration (VLSI) technology [1]. The

growing transistor integration density in complementary

metal–oxide–semiconductor (CMOS) enabled better sim-

ulation of neural systems in order to verify models and

nurture new bio-inspired ideas. Since then, the neuro-

morphic landscape has changed and neuromorphic chips
and programs are now available that cater to specific

applications and tasks.

Technological advancement has always been both

friend and foe to neuromorphic networks. Neuromorphic

networks are essentially more valuable in instances where

parallel computing is necessary. In order to perform neu-

romorphic computing effectively, a large number of pro-

cessing elements (PE) are needed [1]. In current CMOS
technology, the density and connectivity required for more

sophisticated neuromorphic systems does not exist. This

has led many neuromorphic chips to implement various

schemes that utilize virtual connectivity between proces-

sing elements.

The shortcomings of CMOS in terms of density and

parallel computing encouraged more complex neuro-

morphic system designs. Although design complexity
increased, the number of neurons, synapses, and connec-

tions that can be simulated is orders of magnitude below

the integration density of neurons in the human brain.

Human beings, possessing neurons that operate in the

millisecond range, can perform arbitrary image recogni-

tion tasks in tens to hundreds of milliseconds, while very

powerful computers would take hours if not days to per-

form similar tasks. This lapse between digital computing
and biology (specifically, the human brain) gives motiva-

tion for exploring technologies with connection densities

that surpass anything CMOS can offer.
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In addition to processing capability, reduction of power
consumption also drives the development of neuromorphic

circuitry, because CMOS approaches scaled to perform

neuromorphic functions consume too much power. From a

power perspective, the best neuromorphic hardware is no

comparison against the human brain (weighing about

1.5 kg). The brain can handle driving during rush hour

traffic with a power budget of about 20 W. IBM’s state of

the art supercomputer on the other hand, weighing in at
227 metric tons and taking up 5500 ft2 of area [2], requires

close to 3 MW to simulate a few seconds of rush hour

driving. The amount of processing the human brain can

perform in a short time with low power consumption

compared to the CMOS digital computer shows that the

neuromorphic paradigm is very much worth exploring, if

not to expand the field of neurocomputing, then at least to

help illuminate various methods that may be incorporated
into the digital computing world to bridge the gap between

processing capability, speed, and power requirements. The

idea of a dedicated power plant for one brain simulator

seems a waste of energy resources.

Low power and high device integration in nanotech-

nology have reignited a spark in the advancement of neu-

romorphic network in hardware as shown by Türel [3] and

Zhao [4]. The BCrossnets[ approach shown in [3] provides
evidence of the design problems and methods of incorpo-

ration of resistive nanoscale devices in crossbar topology

with CMOS circuitry to design neuromorphic circuitry.

Nanotechnology, specifically memristors as postulated by

Chua [5], shows much promise in this area because it may

overcome the inability to reach densities found in

biological systems. This inability is reduced by two factors:

the first is the small size of the memristors with respect to
their functionality, and the second is the ability to connect

the memristors with crossbars. Connecting these nanode-

vices (memristors) with nanowires (crossbars) has been

shown to increase device integration significantly [6]. De-

vice integration in memristor-MOS technology (MMOST)

is expected to improve in the age of memristors and cross-

bar scaling. A hypothetical study of a cortex-scale hardware

performed in [7] shows that the use of nanodevices in a
crossbar structure has the potential of implementing large-

scale spiking neural systems. More complex algorithms

like Bayesian inference [8] have also been studied for

crossbar implementation, but these studies limit the cross-

bar array to digital storage. Analog use of the array would

be ideal to reap its full benefits.

Neuromorphic networks derive their behavior from

learning rules [9]. The networks have inherent governance
that maintains relationships between neurons and synap-

ses. Based on the myriad combinations of synaptic weights

and neuron behavior, the network at any given point in

time is unique. The focus of this paper will be on two

functional blocks, commonly found in neuromorphic hard-

ware implementations, used to determine these synaptic

weights and neuronal outputs. Specifically, the two

functional blocks are the winner-take-all (WTA) and
coincidence/synchrony detection.

This paper presents two core blocks of neuromorphic

computing algorithms prevalent in hardware implementa-

tions and contrasts a specific example of an MMOST de-

sign with a CMOS design. This work shows the advantages

of choosing an MMOST implementation for a simple WTA

architecture that utilizes spike-timing-dependent plasticity

(STDP). A new method of realizing STDP with the cross-
bar structure is also presented.

II . NEUROMORPHIC BLOCKS

A. Winner-Take-All
WTA is an algorithm whereby one neuron clearly inhi-

bits its neighbors in order to take the prize. This algorithm

is ubiquitous in neural network design applications [10]–

[14]. In addition, there exists a WTA variation, which

allows for design flexibility, called the k-WTA. In k-WTA,

two or more neurons might end up winning the prize. The

concept remains the same: inhibit and disrupt the firing
patterns of your neighbors in hope of spiking more than

every other neuron.

The MMOST array may be used to implement WTA

quite easily. Synapses can be modeled with memristors and

network connectivity can be attained with the crossbars as

shown in Fig. 1. The neurons, realized on CMOS, can

connect to every other neuron through memristor sy-

napses on the crossbar structure. This structure, as pro-
posed for resistive memories, fits just as well for the WTA

algorithm. A nonvolatile recurrent network implementing

WTA can be built with MMOST to take advantage of the

density that MMOST has to offer.

B. Coincidence Detection
Coincidence detection occurs when two spiking events

are linked and coded for in a certain way. This algorithm is
usually found in pattern recognition or classification sys-

tems whereby the neuromorphic network codes differently

an input train of pulses or spikes. Based on the level of

coincidence between different inputs to the network, the

Fig. 1. Recurrent network architecture showing an example of

how a WTA network can be connected using crossbars.

Ebong and Mazumder: CMOS and Memristor-Based Neural Network Design for Position Detection

2 Proceedings of the IEEE |



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

neural network responds appropriately. This global net-

work response is not the only way to use coincidence

detection.

Another way to use coincidence detection is to update

synaptic weights based on coincidence. This relates to the

plasticity of the synapse and governs the learning rule of

the synapse locally. In this form, the coincidence detection
is known as STDP [15]. There are two main forms of STDP:

symmetric STDP and asymmetric STDP (Fig. 2). Symmet-

ric STDP performs the same weight adjustments indepen-

dent of the spike order between the preneuron and the

postneuron while asymmetric STDP reverses weight

adjustment based on the spike time difference between

the preneuron and the postneuron.

STDP implementations utilizing the crossbar structure
have been proposed [16]–[18]. In their current state, they

do not provide much density gains when comparing

MMOST to CMOS. The implementations require pulse/

signal generations in the positive and negative directions

across the memristor. Snider [16] proposes a decaying pulse

width while Linares-Barranco and Serrano-Gotarredona

[17] and Afifi et al. [18] propose decaying signal ampli-

tudes. All of them suggested that implementations rely on
the additive effect of the signals across the memristor to

control the synaptic weight changes. The STDP synaptic

weight implementation in this work makes a linear ap-

proximation of the STDP curve in order to reduce the size

of the neuron.

The proposed STDP implementations are usually of
the form in Fig. 2. These synaptic behaviors, both asym-

metric and symmetric, have been implemented in CMOS

[20]–[22]. In the asymmetric STDP case, if the preneuron

spikes before the postneuron, the synaptic weight is in-

creased. If the order of spikes is reversed, the synaptic

weight is decreased. In both cases, the larger is the dura-

tion between the preneuron and the postneuron spikes,

the lesser is the magnitude of the synaptic change. Most
circuit implementations take advantage of the asymmetric

implementation.

The STDP implementation in this work is asymmetric

and is based on the equation in the form of

�Wðt2 � t1Þ ¼ Aþe�ðt2�t1Þ=�þ ; t2 � t1 > 0

�A�eðt2�t1Þ=�� ; t2 � t1 G 0:

�
(1)

The change in synaptic weight �W is dependent on

spike time difference between the preneuron and the

postneuron t2 � t1. Aþ is the maximum change in the po-

sitive direction, A� is the maximum change in the negative

direction, and both changes decay with time constants �þ
and ��, respectively.

Most implementations use capacitors and weak inver-

sion transistors to adjust �þ and �� in order to obtain decay

times in the hundreds of milliseconds [23]. An alternate

way to realize STDP in CMOS, when working under a

lower area budget, is to incorporate digital storage units

that can help remember spike states instead of using huge

analog capacitors to set time constants.

The total change in weight for a given synapse is the
summation of all positive and negative weight changes.

Over the learning period, the synapse will converge to a

certain weight value and will remain stable at that value.

The STDP concept was tested through Verilog simulations

whereby STDP was pitted against digital computation to do

a comparison under noisy conditions.

The network of interest for simulation was that of a 1-D

position detector whereby the location of an object is
determined by the two-layered neural network presented

in Fig. 3. The network consists of an input neuron layer

(neurons labeled n11 through n15) connected through

feedforward excitatory synapses to an output neuron layer

(neurons labeled n21 through n25). At the output layer,

each output neuron is connected to every other output

neuron through inhibitory synapses.

The network shown in Fig. 3 updates its synaptic
weights through STDP. Both excitatory (gray triangles)

and inhibitory (red triangles) synaptic weights are modi-

fied through STDP. The inherent competition resulting

when the output neurons spike help establish the weights

for all 20 inhibitory synapses. An object is presented to the

line of input neurons shown in Fig. 3. The object’s pre-

sence generates signals that affect the closest neurons to its

Fig. 2. STDP curves showing relationship between synaptic weight

change and the difference in spike times between the preneuron and

the postneuron. Symmetric STDP and asymmetric STDP are both found

in nature [19].
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position. For example, if the object is directly in front of

n13, then only n13 receives the object’s generated signals,

but if the object lies between n13 and n14, then both n13 and
n14 receive the input signals. The object’s position was

deciphered from the output neuron based on the relative

spiking frequency (or period) of the output neurons.

The 1-D position detection was simulated for two noise

conditionsVnoise-free condition and noisy conditionV
with different object locations. The noise-free case results

are trivial. If there is no noise in the input of the system,

then the output neuron results can be reduced to binary
outputsVspike or no spike. For example, in the noise-free

case, an object placed next to n13 causes n23 to spike while

the other input or output neurons do not spike. In this

noise-free case, the implementation of this position detec-

tion function could have been accomplished with digital

logic where input signals exceeding some threshold would

provide the desired output. In the noise-free case, when

the object is placed between n12 and n13, both n22 and n23

spike but the relationship between their spiking frequen-

cies is proportional to the input object’s exact location

between both n12 and n13. If the object is closer to n13, then

the spiking frequency of n23 is a little greater than n22. The

noise-free condition provides direct mapping of either a

spike or a no spike with neurons involved in receiving the

object’s input and those not receiving the object’s input.

The noisy condition case is a bit more interesting, and the
results are summarized in Table 1.

Table 1 provides results for the noisy case whereby all

neurons in the output layer spike due to the noise

background effect fed in through the input layer. The units

in the simulation are time units or simulation time steps.

Period is determined after weight stabilization has

occurred and the time between successive spikes becomes

fairly regular. The object’s position can be determined in
all three cases presented in the table. When the object is at

n13, n23 spiking period is the lowest (n23 is spiking the

most). When the object is between n12 and n23 but closer to

n13, n23 spikes the most but its spiking period is comparable

to n22. A second level processing can compare these two

neurons’ spiking period to determine the object’s location

relative to the two neurons that spike the most. Last, when
the object is exactly midway between n12 and n13, then both

n22 and n23 spike with the same spiking period.

An extension of these results may be used for motion

detection. Looking at the spiking response of n23, we may

conclude that the spiking period decreases as the object

moves away from n13. The advantages therefore seen in

using STDP are that by determining the object’s position

using the spiking frequency, the neural network can
withstand the effects in a noisy background while digital

threshold logic fails.

Two algorithms have been briefly described, and an

application showing a WTA example with STDP plasticity

in a 5 � 5 position array detector will be discussed in

Section IV. Two position detectorsVan MMOST version

and a CMOS versionVare simulated in SPICE in IBM 130-nm

technology. Section III presents the memristor model used for
the MMOST simulation.

III . MEMRISTOR MODELING

Many groups have shown memristive behavior in their

devices [24]–[26], but only a few have characterized their
devices for SPICE modeling and adaptation. The memris-

tor model used in simulation is similar to that developed

for the device made in HP Labs [27]–[30]. The nanodevice

made in HP Labs has two layers TiO2 thin film material.

One of the thin film layers is doped with oxygen which

reduces the resistivity of this layer, while the other layer is

left undoped. The total resistance of the nanodevice de-

pends on the resistance combination of both TiO2 layers.
The memristor’s resistance (memristance) can be modu-

lated by electrically biasing (current or voltage) the device.

The current through the device moves oxygen dopants

laterally, thereby widening (narrowing) the doped region

depending on bias direction [28].

The memristor model of HP labs gives rise to a device

whose resistance change is proportional to applied bias. If

Table 1 Verilog STDP Output Neuron Results for an Object Placed at

Different Locations on the 1-D Position Detection Line

Fig. 3. Neural network implemented in Verilog in order to determine

noisy performance of STDP in comparison to digital logic.
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applied bias is relatively low for a certain time span, then
the change in memristance is very small and can be neg-

lected. This idea allows for the establishment of a device

threshold whereby the memristor’s resistance is assumed

to be unchanged when bias is below this threshold

value. This memristor behavior is seen in Jo et al.’s a-Si

memristor [31]. Jo et al.’s memristor shows conformity to

the idea of a built-in threshold thereby allowing the au-

thors to use different voltage biases for read/write inter-
pretation. This memristor can withstand low current

without resistance change, and this quality is important for

the MMOST circuit design.

The memristor behavior already described allowed for

the creation of a threshold-based SPICE model propor-

tional to conductance change magnitude �C that follows

�C ¼ �M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVab � VthpÞð�Vab � VthnÞ3

q
þ Voff (2)

where M is an amplitude correcting factor, Vab is the

applied bias across the terminals of the memristor, and Vthp

and Vthn are both threshold voltages of the memristor with

a positive and negative applied bias, respectively. Voff

corrects and maintains a zero change with no applied bias.

Equation (2) works really well for a symmetric device, and

the simulation done in this work uses a device with the

same magnitude in threshold voltage for both positive and
negative directions. This threshold behavior, in conjunc-

tion with the linear-drift model presented in [30], is used

to implement a memristor with threshold characteristics.

The memristor threshold model does not assume zero

change below the applied threshold voltage. The change is

minimal but not negligible to some above threshold

changes as shown in a normalized plot of �C versus Vab

in Fig. 4. In circuit design, depending on application, the
voltage choices between read and write pulses will deter-

mine how the memristive device is used. The read pulse is
chosen to not cause drastic change in memristance, while

the write pulse is chosen to encourage higher levels of

conductance change than the read pulse.

Following the linear-drift model result (see [30] for

derivation details), memristance as a function of flux is

MT ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 � � ��R � �ðtÞ

Q0R2
0

s
(3)

where MT is the total memristance, R0 is the initial resis-

tance of the memristor, � can be viewed as memristor pin

configuration (þ1 for as is and �1 for switching the

memristor polarity), �R is the memristor’s resistive range

(difference between maximum resistance and minimum

resistance), �ðtÞ is the total flux through the device, and Q0

is the charge required to pass through the memristor for

dopant boundary to move a distance comparable to the
device width. The memristance MT cannot be larger than

the maximum resistance or smaller than the minimum

resistance of the device of interest.

For hand design purposes, it is useful to determine

appropriate pulse widths and approximate memristance

changes, because the change in memristance for each

pulse is very important. The exact role of the thresholding

factor �C needs to be quantified. By taking the derivative
of (3) with respect to �ðtÞ, the approximation of the

change of memristance is

�MT ¼
�R0 � � ��R ���= Q0R2

0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 � � ��R � �ðtÞ= Q0R2

0ð Þ
p :�C: (4)

Equation (4) shows us that for successive small changes

in �� whereby �ðtÞ is not affected significantly, then the

change in memristance �MT will respond with almost

constant step changes. The STDP design voltages for the

MMOST design take advantage of this localized constant
stepping for a range of �ðtÞ values. The concept is repre-

sented in Fig. 5 by graphing (3) with respect to �ðtÞ.
The plot in Fig. 5 suggests an analog mode and a digital

mode for the memristor. The modes of operation are

strongly linked to the concept of localized constant step-

ping range previously discussed. In Fig. 5, the decrease in

memristance seems nearly linear at first and then expo-

nentially increases. The nearly linear part of operation is
where we want the memristors to operate for the analog

neural network functionality. In this region of operation,

�ðtÞ G� 2.6 Wb, the memristance decreases by about

2–3 M� in response to every 1-Wb change in �ðtÞ. This

operating region is a design choice to allow for better

flexibility in choosing voltage levels and pulse widths.

Designs that desire higher changes with respect to chosen

Fig. 4. Normalized �C versus Vab showing proportional magnitude

of conductance change as a function of applied bias.�1 V can be viewed

as threshold voltages.
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applied biases will most likely operate in the region closer

to the digital device characteristics.

IV. POSITION DETECTOR APPLICATION

A. Architecture
Given a 2-D area, split up the area into a 5 � 5 grid

(Fig. 6). Each square on the grid represents the resolution

for the detector. A neuron resides at the center of each

square on the grid. The detector has a 2-D layer of neurons.

Each neuron is connected to its immediate neighbor

through synapses. Each synaptic connection is unidirec-

tional, so by having two connections, there is a bidirectional

information flow between neighboring neurons. Each neu-

ron is a leaky-integrate-and fire (LIF) neuron. Each has a
leaky capacitor that stores integrated input information.

The architecture in Fig. 6 is an extension of the 1-D

detector earlier discussed in Fig. 3. The difference is that

the 1-D case had a fully connected output layer whereby all

output neurons were connected to one another. The pro-

posal in Fig. 6 however only has local connections between

output neurons. This simplification was made because the

CMOS neuron with STDP synapses would consume too
much area. The simplification therefore limits the effec-

tiveness of the detector to local detection, but local detec-

tion within the fabric does not invalidate the comparison

between CMOS and MMOST made in this study.

Two design methodologies were taken in order to

achieve STDP. The first is the CMOS design which is based

on work with previous implementations in order to give a

basis for the state of the art, and the second is the MMOST
design used to specifically provide a new way of achieving

STDP with area-conscious neuron design. The CMOS de-

sign will be explained briefly because the implementation

is not exactly new, and the MMOST design decisions will

be expanded upon to show that STDP really can be im-

plemented in a way that does not consume too much area.

Last, the comparison results will be explicated in context so

apples are not compared to oranges due to different design
decisions. The design summary is given in Table 2.

1) CMOS Design: The CMOS design has a LIF neuron

with multiple inputs depending on the location within the

position detection fabric. The neuron is inspired by designs

with complimentary inputs, which has PMOS (pull-ups)

for excitatory inputs and NMOS (pull-downs) for inhibi-

tory inputs. Each neuron has only one pull-up and multiple
pull-downs depending on the location in the position de-

tector fabric, e.g., four pull-downs for neurons surrounded

by four neighbors.

The STDP synapse approach is similar to those already

presented in literature [20], [23] and the synapse schema-

tic is shown in Fig. 7. When the preneuron spikes, SPre

activates a switch that charges C1. When SPre deactivates,

C1 discharges exponentially, but the capacitor CWeight is
not updated until there is a postneuron spike event. A

postneuron spike event would activate SPost, therefore

allowing the evaluated output of the top comparator to see

CWeight. This explained sequence describes long-term

potentiation (LTP). The postspiking before the prespiking

would entail long-term depression (LTD). To reduce area,

the capacitors C1 and C2 were implemented with diode

connected NMOS transistors operating in weak inversion.
The voltage range between VCharge and VQ is made to be

about 100 mV. The decay shape of the voltages across C1

Fig. 6. Neuron layer connectivity showing position detector

architecture (circles are neurons and triangles are synapses).

The left figure shows the connectivity matrix while the right

figure shows the CMOS layout (190 �m � 152 �m).

Table 2 Design Summary for Both Proposed WTA CMOS and MMOST

5 � 5 Position Detector Arrays

Fig. 5. MT versus � showing two regions of operation for the

memristor. In the slowly changing region, the magnitude of

memristance change ranges from�2 to 3 M for every 1-Wb flux change.

The change in memristance increases drastically when � is >�2.5 Wb.

(Parameters used to simulate the analog memristor: R0 ¼ 18 M,

Q0 ¼ 5� 10�7 C, 4R � 20 M.)
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and C2 from VCharge to VQ is a function of the difference

between VCharge and VQ. By reducing the voltage range, the

decay seems to look more linear than exponential.

2) MMOST Design: The MMOST design will be delved

in more detail than the CMOS design. The design goal is to

take advantage of the memristor crossbar thereby simpli-

fying the synapse and making it a fraction of the size of the

CMOS synapse. The synapse itself is a simple memristor

whose changes respond to pulses of equal widths provided

through the neurons. Comparing the CMOS and MMOST

designs, the STDP mechanism is moved from the synapse
to the neuron.

The neuron design utilizes a new way of realizing STDP

by striking a tradeoff between neuron area and asynchro-

ny. The neuron implementation of STDP is depicted

graphically in Fig. 8.

Fig. 8 shows the spike patterns between a preneuron’s

output and a postneuron’s input (the memristor lies be-

tween these two terminals). In Fig. 8, the preneuron
spikes right before time t0, so at time t0, the preneuron’s

output is at 0 V. The 0-V level is held for four clock cycles

(from t0 to t3), and then pulses are allowed to pass for

another four clock cycles (from t4 to t8). Afterwards, the
preneuron’s output rests at a reference voltage VREFX.

The postneuron’s input exhibits a similar behavior as the

preneuron’s output, but instead of spiking before time t0,

it spikes sometime in the interval from t2 to t3. The

postneuron’s input is pulled to 0 V at time t3, as opposed

to time t0 as the preneuron’s output.

The preneuron’s output and the postneuron’s input

spiking patterns present a difference across the memris-
tor’s terminals, and this difference is shown in Fig. 8 as

Bpre[–Bpost.[ As explained earlier, the utilized memristor

is a threshold device, meaning its conductance experiences

greater change when a voltage greater than its threshold

voltage vth is met. The threshold is exceeded only by the

three pulses shown in Fig. 8. The neuron circuit that can

implement the spiking patterns depicted in Fig. 8 is shown

in Fig. 9.
The neuron in Fig. 9 is composed of an integrate-and-

fire circuitry, a path for passing an inhibitory current

signal Iin to the integrate-and-fire circuitry ðpassÞ, paths

for pulling the neuron’s input and output nodes high

ðadj1Þ, and paths for pulling both its inputs and output

nodes low ðadj2Þ. The control signals (pass, adj1, and

adj2) to turn each path on is controlled by the finite state

machine (FSM) shown in Fig. 10.
In Fig. 10, Start is the default stateVthe neuron is not

spiking, the neuron’s input and output voltages are at ref-

erence voltage ðVREFXÞ, pass is on, adj1 is off, and adj2
is off. When the neuron receives excitatory inputs from

the environment enough to cause a spike, then spike be-

comes 1, and in the next clock cycle, the neuron moves to

the next state Low. In the Low state, both the input and

output ports of the neuron are pulled to 0 VVthe neuron
has spiked, pass is off, adj1 is off, and adj2 is on. The

neuron stays in this state for four clock cycles (a counting

variable increments from 0 to 3) before moving to the

Pulse state. The Pulse state is the state where the neu-

ron passes the external pulse to both its input and output

portsVpass is off, adj1 is on, and adj2 is off. In order to

move from Pulse to Start, a counting mechanism is

employed for four clock cycles. This internal FSM resides
within each neuron. The simulation results that verify

STDP using this scheme are presented in Fig. 11.

The connectivity matrix (or architecture) in Fig. 6 is

therefore implemented for the MMOST design using this

scheme. The triangles that signify synapses are memristors

and the circles that signify neurons are implemented with

Fig. 9. Section IV-B presents the simulation results with

the comparison between CMOS and MMOST designs.

B. Results and Discussion
The CMOS design is an asynchronous design in which

minor perturbations on a neuron’s excitatory input can

cause a spiking event. The MMOST design is a clocked

design that synchronizes off-chip signals with the on-chip

logic. The MMOST design itself has asynchronous parts to

Fig. 7. CMOS synapse block diagram used to perform STDP. The

capacitors in this implementation take up the most area and

control the STDP time window.

Fig. 8. Preneuron and postneuron spiking diagram showing three

pulses above the memristor’s threshold. The below threshold pulses

do not affect conductance.
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it (neuron integration and signal input), but the timing of

change in resistance of the memristor is a synchronous

event. The WTA algorithm allows for spiking neurons to
inhibit one another while changing synaptic weights to

strengthen or weaken the inhibition. The change of synap-

tic weight for both the CMOS and memristor or MMOST

design qualifies as the ability for the chip to learn.

The advantage of choosing an STDP design is to capi-

talize on its noise handling capability. The lower is the

noise level, the lower is the difference between signal and

noise necessary for position detection. In comparing the
CMOS and MMOST designs, the MMOST design has a

higher potential because it consumes less area and requires

less operating power. The quoted values in Table 2 for the

MMOST design for both power and area are overestima-

tions, and yet it still outperforms CMOS on these specs.

This is without even considering potential synaptic and

neuronal densities that can be achieved.

1) Design Complexity: For the current implementation,

the timing of the CMOS circuitry is designed to perform

STDP in the tens of microseconds range in order to con-

serve area. This value can be adjusted by using bigger

capacitors (C1 and C2 in Fig. 7) to extend the time constant

or by putting the synaptic transistors (those that implement

switches and comparators) even more into subthreshold.
The CMOS design can become very complex when trying to

design for its most dismaying feature: volatility. Currently,

when the stimulus is removed, the weight decays expo-

nentially to its direct current (dc) steady state in about

100 ms, since synaptic weight is stored on capacitors. A

better design would save these weights to memory and

incorporate read, write, and restore schemes, which re-

quires careful timing requirements.
The chip area (5 � 5 array) for the CMOS design is

about 2.9 � 10�4 cm2 from the CMOS layout, while that

for the MMOST is about 6 � 10�5 cm2. The memristor

design area is an overestimation so it is likely to be much

less than the proposed value. From design automation, the

current logic for the memristor design is expected to take

about 488 minimum sized transistors. Since this automat-

ed design was not simulated for signal integrity, drive, etc.,
for a worst case scenario, we double this value by two in

order to account for various signal buffering, clock signal

regeneration, and via spaces to the crossbar structure. This

is a gross estimation, but it still shows that the memristor

Fig. 9. Neuron circuit that can provide spiking pattern shown in Fig. 8. The external pulse is an off-chip signal, and the switch signals

(pass, adjx) are generated by an FSM.

Fig. 10. FSM showing control signal generation. The switch from low to pulse and back to home is determined by a counter circuit

not described in this paper.
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design consumes �5 times lower area than the CMOS

design. This value can only improve because a custom de-

sign would use fewer transistors. The area estimation as-

sumes that the crossbar array area will be fully contained

over the CMOS area.

The area estimations, of course, are implementation
dependent. The assumptions here are that both CMOS and

MMOST detectors are operating without defects, the

problems associated with accessing specific devices in the

crossbar array are not addressed, and the crossbar array

stacks fit nicely on top of the CMOS circuitry. These as-

sumptions are implementation dependent because a

denser connectivity for the MMOST case would mean a

more complex connection scheme from CMOS neurons to
the crossbar array. For the CMOS case, denser connectiv-

ity would mean much larger area (due to additional STDP

synapses) and more complex connection scheme due to

finite number of metal layers.

2) Power: The CMOS design consumes less static power

than the memristor design mostly due to the fact that both

designs are operating under different supply voltages (1 V
for CMOS, 1.5 V for MMOST), and the memristor design

has only a few transistors operating in the weak inversion

region. The operating voltage difference is due to the fact

that memristors will need to exceed a threshold voltage in

order to change resistance, and the largest voltage across

the memristor with under the 1.5-V power supply is about

0.9 V. The static power can be reduced for later genera-

tions of the design by having a lower voltage supply and
using charge pumps to achieve required threshold voltages.

Although the static power consumption for CMOS is

lower, its maximum dynamic power is higher than that of

the memristor design. The memristor design consumes

15.6 �W while the CMOS design consumes 55 �W. The

memristor logic and comparators take up most of the power

due to heavy switching during spiking events. In the case

of CMOS, as neurons begin to inhibit one another, they

create or strengthen paths to ground allowing larger cur-

rent draw especially when both excitatory and inhibitory

inputs are activated. This current adds up pretty quickly as

the array size increases.

3) Noise: Both the CMOS and memristor designs were

tested with a jitter noise background between 0.1 and

0.3 V. The conclusion for testing under CMOS is that as

noise level increases, the required signal level to counter

this noise also increases. For example, at a noise level of

0.2 V, as long as the signal is at least 0.3 V, the neuron of

interest will spike accordingly. This is a 100-mV difference

between signal and noise. This value changes to 125 mV
while the noise level increases to 0.3 V. In real-world

computing, we do not expect the noise to be quite that

high, but as long as the signal level is above 0.425 V, the

neural network will work as designed.

For the memristor design, the noise level is actually

used to randomly assert the memristors at different con-

ductance states. Once the network is stabilized under a

certain noise level, the signal input is capable of tuning the
memristors around its signal level for the detecting pur-

pose. The noise levels used for simulation are similar to

that of the CMOS design (0.1, 0.2, and 0.3 V). At 0.3 V, as

long as the input is about 200 mV greater than the noise

level, then the signal is discernible.

V. CONCLUSION

We have explored the benefits of moving to an MMOST

design for STDP circuit implementation on the bases of

circuit area, power, and noise. The area considerations are

implementation dependent but scaling to denser networks

favor the MMOST design because a CMOS implementa-

tion will require more STDP synapses which greatly limit

connectivity. The power considerations show a mixed

Fig. 11. Verification of the STDP scheme. (Left) After multiple preneuron to postneuron spiking, the synapse resistance decreases in value.

(Right) Zoomed-in version showing multiple pulses and reference voltage.
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result because moving to synchronous STDP for the
MMOST implementation may actually waste more power

in the idle state than the CMOS implementation. Dynamic

power numbers are better for MMOST so a more active

circuit would take advantage of the MMOST design. The

noise considerations show that both designs are compara-

ble. This may change however with device scaling as both

memristors and CMOS transistors become more suscepti-
ble to noise. h
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