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Abstract—This paper presents a fully integrated implementa-
tion of a multivalued-logic signed-digit full adder (SDFA) circuit
using a standard 0.6- m CMOS process. The radix-2 SDFA cir-
cuit, based on two-peak negative-differential-resistance (NDR) de-
vices, has been implemented using MOS-NDR, a new prototyping
technique for circuits that combine MOS transistors and NDR de-
vices. In MOS-NDR, the folded current–voltage characteristics of
NDR devices such as resonant-tunneling diodes (RTDs) are emu-
lated using only nMOS transistors. The SDFA prototype has been
fabricated and correct function has been verified. With an area of
123.75 by 38.7 m2 and a simulated propagation delay of 17 ns, the
MOS-NDR prototype is more than 15 times smaller and slightly
faster than the equivalent hybrid RTD–CMOS implementation.

Index Terms—CMOS, multiple-valued logic, negative differen-
tial resistance, negative resistance, quantum electronics, resonant-
tunneling diode, RTD.

I. INTRODUCTION

T HE signed-digit number system [1] can be used in adder
circuits to eliminate carry propagation by removing the de-

pendency of the carry output function on the carry input signal.
To restrict carry propagation, these number systems employ re-
dundant representation, in which a number different from zero
can be expressed in more than one way. In signed-digit adders,
it is possible to perform addition of two arbitrary size num-
bers in constant time. Redundant algorithms can therefore help
to significantly improve arithmetic circuit performance in ap-
plications with large operand sizes. In contrast, conventional
ripple-carry adders have worst-case propagation delays which
are proportional to the numberof digits involved in the op-
eration. Even though alternative approaches such as carry look-
ahead can reduce the propagation delay to time, the
improvement is achieved at the expense of additional circuits
that cause irregularity in chip layout and make the adder circuit
less amenable to comprehensive testing. Signed-digit systems
have been adopted in the development of experimental high-per-
formance arithmetic circuits [2]–[5], but signed-digit adders are
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Fig. 1. I–V characteristic of an RTD.

difficult to implement in compact circuits with conventional de-
vice technologies due to the multivalued nature of signed digits.

Scaling provides diminishing returns in performance im-
provement of field-effect devices as dimensions in integrated
circuits shrink to deep-submicron levels. At the same time,
quantum effects such as resonant tunneling arise which result
in interesting new device characteristics that can be exploited in
the creation of extremely fast and compact circuits [6]. Among
the host of quantum technologies, resonant-tunneling diodes
(RTDs) [7] are the most promising and appear to be imminently
viable for commercial introduction. A typical current–voltage
curve of an RTD is shown in Fig. 1. This curve is described
by its peak and valley voltages, and , by the peak and
valley currents, and , and by the second voltage. Two
positive-differential-resistance regions, PDR1 and PDR2, and a
negative-differential-resistance region, NDR, are distinguished
in the RTD – curve. Two or more RTDs can be stacked
in series to obtain a multipeak current–voltage characteristic.
Since one stable operating point can be associated with each
PDR region, multipeak RTDs are extremely useful in the
implementation of multiple-valued logic circuits. Multivalued
logic (MVL) can help alleviate critically limiting problems of
interconnect complexity that are arising in VLSI and ULSI
chips. This is possible because multivalued signals convey
more information than binary signals, thus requiring fewer
interconnects to transmit similar bandwidth of information [8],
[9].

It is very attractive to envision circuits which combine the
advantages of resonant-tunneling diodes with the features of
a technology like CMOS, which offers low power dissipation
and very large integration levels. Recently, it has been reported
[10]–[12] that it may be possible to achieve resonant tunneling

0018–9200/01$10.00 ©2001 IEEE



GONZLEZ et al.: CMOS IMPLEMENTATION OF A MULTIPLE-VALUED LOGIC SIGNED-DIGIT FULL ADDER 925

TABLE I
COMPARISON OFADDITION TECHNIQUES

using, for example, a heterostructure. Thus far, how-
ever, silicon-based RTD technology has not matured to the level
at which RTD–CMOS circuits can be reliably fabricated to val-
idate these circuit ideas.

This paper presents a multiple-valued logic signed-digit full
adder (SDFA) circuit based on NDR devices such as resonant-
tunneling diodes [13]. The operating principle of the proposed
SDFA circuit has been presented in [14]. In Table I, the SDFA
full adder is compared to a conventional binary full adder in
terms of speed and circuit area. TheQMOScolumn gives the
area and simulated delay of a quantum-MOS implementation
of the SDFA cell. In quantum-MOS, the efficient cointegration
of resonant-tunneling diodes and MOS transistors is assumed
to be possible. The delay of the QMOS implementation was re-
ported in [14], and it was obtained using parameters of a 2-m
CMOS process. The column labeledBinary Full Adderincludes
information for a generic full adder cell, also designed in the
same 2- m CMOS process used for the SDFA implementation
of [14]. The figures included in Table I indicate that it will take
an operand size of just two digits to produce similar worst-case
propagation delay values for a QMOS parallel adder based on
SDFA cells and a CMOS ripple-carry adder built with binary
full adder cells. This indicates that the SDFA can provide sig-
nificant speedup of addition for multibit adders since addition
of operands of any length can be accomplished in the time re-
quired for a 2-bit binary addition.

The novelty of this work is in the application of a new proto-
typing technique [15] that has been proposed recently. This new
technique, which is based on the idea of reproducing the–
characteristics of RTDs using only MOS devices, is simple and
inexpensive, and can lead to the prototyping of RTD–CMOS
circuits without the severe limitations of other methods such as:

1) large area overhead;
2) inability to integrate large-scale NDR circuits;
3) poor switching speeds;
4) increased design turnaround time;
5) increased process complexity;
6) increased cost.

The advantages of this prototyping technique in implementing
multiple-valued logic circuits is demonstrated via the devel-
opment of a fully integrated SDFA circuit prototype [13]. In
[14], the CMOS portion of the RTD-based SDFA circuit was
fabricated using a standard process and discrete external reso-
nant-tunneling diodes were electrically connected to the chip.
This approach inserts parasitic circuit elements of such signif-
icance that useful measurements of performance parameters,
such as speed or power consumption, are completely impeded.
A second, and perhaps more sophisticated, approach reported in
the literature [16], [17] involves fabricating the RTDs on a III–V

Fig. 2. Scheme for parallel addition using the signed-digit full adder (SDFA)
cell.

substrate and then, by means of a thin-film transfer and bonding
procedure, grafting the RTDs onto a silicon substrate where the
CMOS portion of the circuit has been prefabricated. However,
as is justified in Section V, the hybrid RTD–CMOS integration
process is disadvantageous for prototyping NDR circuits.

The rest of this paper is organized as follows. Section II de-
scribes the principle of operation of the proposed signed-digit
adder circuit. In Section III, the nMOS-based NDR circuit is
described. The adder prototype implementation is discussed in
Section IV. Finally, Sections V and VI present results and con-
clusions, respectively.

II. SIGNED-DIGIT ADDER OPERATION

This section presents a brief description of the SDFA circuit
operating principle. For a detailed description, the reader is re-
ferred to [14].

Fig. 2 shows the connection of the SDFA cell as a building
block in a parallel adder. Signals, , , , and are three-
valued current signals. The addition is obtained by
simple wired summation of currents. The SDFA block generates
a two-digit representation of input signal such that

, where is the radix of the number system. The
final sum output is also generated through wired
current summation. This scheme implements amodified signed-
digit arithmetic [1]. It is observed in Fig. 2 that the SDFA block
has an input that is connected to the wired summation result

of the adjacent less significant digit slice. The use of input
is explained below.

For correct operation, output functionsand must be de-
fined so that they always represent the arithmetic value

as defined in the preceding paragraph. A definition of the
SDFA output functions which meets this requirement is shown
in Fig. 3. Notice that there are two pairs of output functions.
The active pair is determined by the value of . Each SDFA
cell in the parallel system must determine if the adjacent cell is
generating a carry output or in order to know
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Fig. 3. SDFA block output functions and their description by means of three
literal signalsl , l , andl .

the range of values it is allowed to generate for its interim sum
output, . Since the sum result is generated by the wired cur-
rent summation and , must
not be equal to 1 or 1 when is equal to 1 or 1, respec-
tively. This scheme is enabled by the redundancy of the number
system, and it eliminates carry propagation by makinginde-
pendent of .

Consider the following example of an addition performed by
the system shown in Fig. 2. The allowed values for the digits
represented in the diagram are

Digits with negative values are identified with a bar above the
integer. Assume that the inputs applied to the system have the
values , . The algebraic values of
the applied inputs then are , . From Figs. 2 and
3, the addition procedure is

augend
addend

wired sum

interim sum
carry

wired sum

The resulting sum is , which has the alge-
braic value .

As seen in Fig. 3, literals , , and include all the multi-
valued logic switching thresholds contained in functionsand
. This set of literal signals can thus be used to control switched

current sources to synthesize the SDFA output functions, as is
explained in Section IV. Generating literalsand is relatively
easy, since each of them contains only one threshold point. Lit-
eral , on the other hand, contains four threshold points, which
makes its implementation the task of greatest complexity in the

Fig. 4. Compact circuit for implementing literall .

adder cell. It is possible, however, to generate functionwith
a compact circuit based on resonant-tunneling diodes. The pro-
posed design, shown in Fig. 4, consists of the series connection
of a resistor, , and a two-peak RTD . Two single-peak RTDs
are connected in series to generate the required two-peak–
characteristics. The input of the circuit is voltage, which is
proportional to the current sum . The voltage com-
parator senses and digitizes, the voltage at node , and iso-
lates node from the rest of the adder cell.

The behavior of with respect to can be described using
the load-line method. In Fig. 5(a), the RTD and resistor currents
are plotted with respect to . In the figure, the RTD charac-
teristics are represented by a piecewise linear model. Since the
voltage applied across the RTD is , the RTD current
curve is mirrored along the axis and its position along the
axis is determined by the value of. The bias current is always
found at the intersection of the two– curves. Assuming that
most of the bias current flows through resistor, is propor-
tional to this current and its transfer characteristic with respect
to is as shown in Fig. 5(b). Given an adequate value for the
reference voltage , the voltage comparator generates literal

by digitizing as shown in the figure.
To select the value of resistance, the – characteristics of

the NDR elements have to be taken into account. It was proven
in [14] that should be as close as possible to the absolute
value of the negative differential resistance of the NDR element,

, in order to maximize the swing
of voltage . Other aspects that play a role in the tradeoff for
selecting are the delay of signal with respect to input
and the desired input resistance of the adder circuit [14].

III. NMOS-BASED NDR CIRCUITS

In the signed-digit adder implementation presented in this
work, RTDs are emulated by a configuration of four nMOS tran-
sistors which exhibits negative differential resistance. This con-
figuration, which is studied in detail in [15], is referred to as
MOS-NDR circuitin the rest of this paper. The following para-
graphs give an overview of the MOS-NDR circuit operation and
the corresponding transistor sizing for the intended SDFA de-
sign.

The MOS-NDR circuit used in this work is shown in Fig. 6.
This circuit was derived from a -type topology described in
[18]. Transistor has been added to model the PDR2 region
of the RTD characteristics. As in other NDR-producing FET
circuits, Transistor needs to be taken from cutoff to sat-
uration and then back to cutoff as the voltage applied between
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Fig. 5. (a) The load-line method is used to describe the behavior of the voltage
at nodeA. (b) Generation of literall by comparison of voltageV to reference
voltageV .

Fig. 6. The four-transistor MOS-NDR circuit emulates the RTDI–V
characteristics. Two possible ways of applyingV are shown.

nodes and increases. To achieve this, the voltage at the gate
of has to decrease as the applied voltage increases, which
is made possible by connecting the gate of to the output
of the inverter formed by and . It is to be noted that
the bias voltage for the inverter can be applied at any one of the
two positions shown in Fig. 6.

Fig. 7 shows the simulated variation in the current–voltage
characteristics between terminalsand of the MOS-NDR
circuit as the sizes of Transistors and are changed.
If the ratio of is increased, decreases faster as
rises, and hence the NDR region occurs at a lower voltage re-
ducing both and . This is shown in Fig. 7(a). When is
made wider, the drawn current increases, causingto increase
while remains the same, as shown in Fig. 7(b).

Even though device and process engineers describe an RTD
by means of its peak-to-valley current ratio (PVCR) and peak
current density (PCD), circuit designers are usually concerned
with the five parameters , , , , and when it comes
to designing an RTD-based digital circuit. It is therefore impor-
tant that the MOS-NDR circuit can be sized to generate an–
curve which has the same, or approximately the same, five pa-
rameter values.

To find the best transistor sizing in the MOS-NDR circuit
such that a given RTD characteristic is emulated, the following
methodology is used. First, hand calculations are performed to
derive approximate transistor sizes for achieving the peak region

Fig. 7. Simulation results showing the effect of varyingW=L of (a)MT1 and
(b)MT2 while holdingV constant.

specifications. Using SPICE simulation, it is then verified if the
resulting circuit produces approximately an RTD-like charac-
teristic with a significant NDR region. Next, starting from the
hand-calculated sizes, a circuit optimization tool is used to find
the optimal values of the transistor sizes that would give the
best possible fit for the target current and voltage values. The
tool that has been used for this purpose is CUMIN [19], which
is a SPICE-based flexible direct-search optimization software
in which any arbitrary cost-function can be defined very easily.
The following cost function has been defined and used in sizing
the MOS-NDR circuit:

Cost

where variables with a caret represent the values corresponding
to a particular circuit.

Using the method described above and the current–voltage
characteristics required for the SDFA circuit, an optimal sizing
for the MOS-NDR circuit was obtained. The optimization was
carried out using the 0.6-m MOSIS CMOS process parame-
ters, where the specified zero-bias threshold voltages for N and
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Fig. 8. (a) SimulatedI–V characteristics of the sized NDR circuit. (b)
Two-peak current–voltage characteristics of two MOS-NDR circuits connected
in series with appliedV of 4 and 4.25 V.

P devices are, respectively, V and V.
The resulting sizes are presented in Table II, and Fig. 8(a) shows
the simulated – characteristics of the optimized circuit with

V. Notice that the obtained current–voltage char-
acteristics (solid line) and the intended characteristics (dotted
line) are very similar. Since a two-peak– curve is required in
the SDFA cell, two instances of the MOS-NDR circuit are con-
nected in series, as is done with actual RTDs when a multipeak
characteristic is needed. The ability of the MOS-NDR circuit
to produce multipeak characteristics was verified, as shown in
Fig. 8(b).

The fast switching speeds of the RTDs in conjunction with
their bistable nature can be utilized to design several types of
logic styles [20]. Such logic styles could potentially lead to
compact high-performance digital circuits and systems. For in-
stance, binary logic styles using RTD–CMOS combination have
been explored and system application of such building blocks
has been evaluated [21]. The MOS-NDR prototyping method
used in the research presented in this paper has recently been
successfully applied to the emulation of such binary QMOS
logic gates [15]. Other types of logic styles using RTDs could
similarly be redesigned using the method presented here. Inci-
dentally, digital logic circuits are not the only beneficiaries of

TABLE II
MOS-NDR OPTIMIZATION RESULTS

Fig. 9. SDFA cell circuit schematic diagram.

the NDR characteristics of devices such as RTDs. It has been
shown that NDR circuits can be useful in low-loss inductor de-
sign. Such techniques are common in CMOS RF circuit design
(for example, [22]). The applicability of our current method to
such cases is beyond the scope of this paper.

IV. CIRCUIT IMPLEMENTATION

If literals , , and , shown in Fig. 3, are available, it is
relatively easy to generate theand SDFA output functions
by means of switched current sources. This idea is used in the
signed-digit adder cell circuit shown in Fig. 9.

Three voltage comparators, one for each literal, are used in
the circuit. The generation of by means of two NDR circuits,
a resistor, and a voltage comparator has been discussed in Sec-
tion II. Literals and can be implemented by threshold de-
tection circuits using voltage comparators. The threshold levels
of these circuits match the switching points of output function

when . The reference voltages for the comparators
are primary inputs of the chip for greater prototype flexibility,
but it will not be difficult to generate the threshold levels inter-
nally once the technology is fully developed.

The voltage comparator used in this prototype consists of a
simple source-coupled differential pair, a current-mirror pull-up
configuration, and three static CMOS inverters in the output
stage. The purpose of the output inverters is to provide signal
buffering and to generate the complements of the literals as well
as their true values. Availability of the literal signals and their
complements allows the use of a single type of transistors in the
circuitry which generates current output signalsand .
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Fig. 10. SDFA cell layout for a 0.6-�m process. The expanded block corresponds to the MOS-NDR subcircuit. Dimensions are noted in micrometers.

Output currents and are generated by means of transis-
tors through , seen in Fig. 9, as follows. Output function

requires only three MOS transistors. This part of the circuit
is simple due to the similarity between functionand literal

. Transistor injects a current equivalent to one logic level
when is high. These states correspond to in the
transfer function shown in Fig. 3. States are han-
dled by transistors and , which inject a current equiv-
alent to two logic levels or no current at all, depending upon
the value of . In the portion of the circuit corresponding to
output , transistors and produce the basic stairway
form of the carry function for . Transistors and

ensure that the correct output current levels for signalare
produced when . This is achieved by injecting a cur-
rent equivalent to one logic level at the operating points where
output is affected by the value of , that is, at .
In the circuit diagram of Fig. 9, is a binary signal which
indicates if . To our advantage, the behavior of
is identical to that of literal , as seen in Fig. 3. For this reason,
output is taken directly from the second comparator of
the SDFA circuit. In a parallel signed-digit adder, ports
and of contiguous stages are connected together. Notice,
however, that a carry propagation chain is not formed, since at
each stage is not a function of .

Layout for the circuit shown in Fig. 9 has been designed and
fabricated using a standard 0.6-m CMOS process technology.
The resulting layout is presented in Fig. 10, which also shows
an expanded closeup view of the MOS-NDR subcircuit. Fig. 11
shows a chip microphotograph of the fabricated circuit. The
SDFA layout occupies an area of 4789.125m . Of this area,
only 531.36 m (11.1%) is used by the two MOS-NDR sub-
circuits. The layout shown in Fig. 10 includes the resistor
and two output load resistors implemented by MOS transistors
biased as active load elements. The two output load resistors act
as transducers which permit easy observation of output currents

and by means of simple voltage measurements.

Fig. 11. Chip microphotograph of fabricated signed-digit adder prototype.

V. RESULTS AND DISCUSSION

Functionality of the signed-digit adder prototype has been
verified through experimental measurements. Fig. 12 presents
oscilloscope traces which confirm correct operation of the
SDFA cell. As seen in the figure, measurements were made for
the two possible values of the condition versus 1. The
measured dc transfer characteristics are in good agreement with
the intended output functions, seen in Fig. 3. However, there
exists a noticeable difference in the logic levels of the measured
output signals and the desired functions. For example, while
the difference between levels1 and 0 of voltage is around
300 mV, the swing between levels 0 and1 is 450 mV. This
peculiarity arises because the output signal is measured in
the prototype by converting the output currents into voltages
by means of on-chip active loads. It is necessary to point out
that the axis of the signal traces shown in Fig. 12 describes
input voltage , but in oscilloscope traces theaxis usually
corresponds to time. To carry out this measurement, the input
signal had to be ramped with an extremely low slow rate. It
was possible, in this way, to confidently arrange the traces as
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(a) (b)

Fig. 12. Measured results at low speed showing the transfer characteristics of the SDFA cell. (a)InZ = L. (b) InZ = H .

dc transfer curves. This measurement is useful in determining
the voltage levels, 1.3, 2.0, 2.7, 3.4, and 4.1 V, of input signal

which correspond to logic levels “2” through “ 2,”
respectively.

A good estimate of speed performance for the adder circuit
can be obtained from computer-aided circuit simulation.
In order to make this estimate as accurate as possible, the
simulation model includes parasitic elements introduced by
the interconnecting wires. The estimated worst-case delay for
the circuit is 17 ns, and it is for the transition of input from
logic level “ 1” to level “ 2”, that is, from 3.4 to 4.1 V. Note
that this delay corresponds to the intrinsic circuit performance,
since in the experiment the circuit drives no additional output
load besides the layout parasitic capacitances and the capac-
itances of the circuit transistors. Fig. 13 shows oscilloscope
traces corresponding to an experiment which was carried out to
measure the propagation delay of the SDFA prototype circuit.
The experimentally measured delay—1.4s—is much higher
than the delay estimated by simulation. This large delay is
caused by the fact that the SDFA circuits produce weak multi-
valued voltage signals since the output currents are converted
to voltages by means of active loads working as transducers.
These weak signals, in turn, have to drive the large chip output
pads and the load presented by the inputs of the measurement
instrument (oscilloscope). Moreover, the experimental setup
was not designed for precise measurements of high-speed
parameters and, hence, additional parasitics and delays that
cannot be included in the simulation model may be present.

Table III presents a comparison of three implementations of
identical SDFA circuits. The first column includes the layout,
circuit area, and worst-case delay of a hybrid RTD–CMOS
prototype, the second column contains similar information
for the MOS-NDR implementation, and the third column
presents a QMOS SDFA that assumes viable RTD-MOS
cointegration. The worst-case delay in all columns was ob-

Fig. 13. Measurement of worst case gate delay, including delay of the chip
pads.

tained by computer-aided simulation of circuits extracted
from the layout geometries, including parasitic capacitances.
In the table, the circuit layout images are drawn to scale and
all implementations are based on the same 0.6-m process
technology. As was explained earlier in the paper, the hybrid
RTD–CMOS technique consists of fabricating the RTDs on a
III–V substrate and then grafting the RTDs onto the Silicon
substrate containing the prefabricated CMOS portion of the
circuit. As shown in Table III, the circuit area of the hybrid
RTD–CMOS prototype is more than 15 times that of the
MOS-NDR implementation due to the enormous size of the
RTD landing area and its bonding pads as compared to the area
of the CMOS circuitry. Also shown in Table III is the fact that
the worst-case propagation delay of the MOS-NDR SDFA is
comparable to that of the hybrid RTD–CMOS prototype while
it uses a significantly smaller area.

The MOS-NDR approach is a prototyping technique that
allows efficient verification of circuit concepts based on NDR
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TABLE III
SDFA PROTOTYPECOMPARISON

devices. MOS-NDR is not intended as the final realization
of a given design. Instead, projected figures for the intended
RTD-MOS circuit more accurately reflect the potential of
NDR circuits assuming a viable process technology. It should
be noted that as compared to the result presented in Table I,
the delay value of the QMOS SDFA reported in Table III
is larger since the circuits compared in Table III utilize
voltage comparators for literal generation instead of the faster
threshold-modified inverters used in [14]. Comparators are
used in this design to allow for variations in the post-fabrication
– characteristics of the MOS-NDR circuits. These variations

may occur because of nonavailability, at the time of design, of
binned SPICE device models that can very accurately model
transistors with widely varying -ratios such as those used
in the MOS-NDR circuits.

VI. CONCLUSION

The implementation of a signed-digit full adder circuit based
on NDR devices has been presented. The SDFA circuit proto-
type takes advantage of MOS-NDR, a new prototyping tech-
nique proposed in [15]. The MOS-NDR technique enabled the
design and fabrication of a fully integrated version of the adder
circuit using a standard 0.6-m CMOS process technology. The
new SDFA implementation provides a 15:1 reduction in circuit
area, as compared to the area of a hybrid RTD–CMOS version
of the same circuit. At the same time, the worst-case propaga-
tion delay of the MOS-NDR prototype is similar to that of the
hybrid RTD–CMOS SDFA implementation. A disadvantage of
the MOS-NDR implementation technique is that the RTD-emu-
lating circuit requires a bias voltage. In our design, since two
RTDs are connected in series, two separate bias voltages are
necessary.
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1 Introduction

Increasing the speed of arithmetic logic circuits has been, and still is, of extreme importance in the field

of computing and signal processing circuits. On one hand, throughputs of the order of few gigaoper-

ations per second are now conventional in large scientific vector processors and supercomputers [1].

This kind of performance is usually achieved by means of fast, densely integrated circuit technologies

and highly parallel organizations. On the other hand, advanced signal processors with clock rates of the

order of gigahertz are required for future system applications such as digital microwave receivers [1].

Speed in these processors is usually limited by the latency of their arithmetic units, especially that of

multipliers.

Carry signals propagating through long chains of logic, as is the case in conventional ripple-carry

adders, significantly hurt performance in arithmetic systems. In conventional adders, the worst-case la-

tency is proportional to the number of digits involved in the operation, that is, the size of the operands.

Moreover, multiplier circuits cascade a number of adders to sum the partial products. The importance

of carry propagation effects is evident, considering that operand sizes tend to increase with the con-

stant strive for greater processor power and precision. A standard for floating point arithmetic [2], for

example, specifies 52-bit mantissas for the double-precision floating-point operands. Having addition

latency proportional to 52 times the delay of an adder cell is obviously unacceptable, considering that

the length of logic paths between latches is highly constrained in modern pipelined high-performance

microprocessors.

Redundant number systems reduce or eliminate carry propagation chains in digital arithmetic cir-

cuits. In these number systems, redundancy is owed to the fact that, contrary to the case of conventional

systems, redundant numbers can have more than one representation. For instance, in a radix-4 system

with the digit set f�2��1�0�1�2g, numbers 0020, 0100, 1020, and 1100 all have arithmetic value 8.

Redundancy allows addition algorithms in which carry propagation is completely eliminated. In these

algorithms, a proper intermediate representation of the operand digit summation, x i �yi, is selected so

that the final addition result can be generated using half-adders that do not require nor generate carry

signals. More details on redundant arithmetic systems are given in Section 2.

Even though redundant addition techniques offer great improvements in computing performance,

efficient circuit implementations of these algorithms have been traditionally difficult to achieve. A
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simple way to understand these difficulties is by noting the fact that digits in redundant systems are

often not binary. This forces a departure from traditional binary logic circuits and conventional circuit

techniques and technologies. In this work, we survey digital circuit implementations of redundant

arithmetic algorithms. Conventional binary logic circuit techniques, described in Section 3,have been

applied in redundant arithmetic systems by encoding redundant multivalued digits into two or more

binary signals. It is interesting to study the evolution of circuit implementations of redundant arithmetic

systems and appreciate the different circuit techniques that have been inspired. Such circuit techniques

often explore non-traditional areas of digital circuit design. Section 4 presents multiple-valued logic

and current-mode circuits. These circuits are intend as a better match of the need for operation with non-

binary digits. Heterostructure and quantum devices are used in alternative circuit techniques, described

in Section 5, intended for very compact designs capable of operating at extremely high speeds.

2 Redundant Number Systems

This section presents the basic concepts of redundant arithmetic. Signed-digit arithmetic [3], a special

case of redundant arithmetic, is described in more detail and is used to introduce the properties that

characterize redundant arithmetic systems. Such properties include, among others, the number format,

the addition algorithm, the valid digit set, and the proper radix values. Other redundant number systems

are addressed using Parhami’s unifying generalized signed-digit number representation [4].

2.1 Signed-digit number representations

Signed-digit systems were conceived with the purpose of implementing totally-parallel addition [3],

where carry propagation is eliminated. Carry propagation is eliminated by making each digit of the

resulting sum a function of only two input digits. This is made possible by the redundancy of the

number representation since a proper intermediate representation of the operand digit summation, x i �

yi, is selected so that the final addition result can be generated using half-adders that do not require nor

generate carry signals. The totally-parallel addition algorithm can also be used to perform subtraction

operations. The followingparagraphs present the most important characteristics of signed-digit systems

and the basic principles of the corresponding addition algorithm.
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Figure 1: Totally-parallel addition approach in signed-digit number representation [3].

2.1.1 Properties of signed-digit number systems

The algebraic value of a signed-digit number is given by

Z �
m

∑
i��n

zir
�i

where r is a positive integer called the radix. In a redundant representation with radix r, each digit can

assume more than r values, whereas in conventional number representations digits can assume exactly

r values. The values of the radix and the number digits, z i, should satisfy the condition of a unique

representation for the algebraic value Z � 0. It is then easy to prove that the algebraic value Z is zero if,

and only if, all digits of its signed-digit representation have the value z i � 0. It is also evident that the

sign of the algebraic value Z is determined by the sign of the most significant non-zero digit. Similarly,

the signed-digit representation of �Z, the additive inverse of Z, is obtained by changing the sign of

every non-zero zi digit of Z.

Fig. 1 depicts the totally-parallel addition approach in the signed-digit arithmetic system. The

addition of two digits x i and yi is totally-parallel if two conditions are satisfied. First, the sum digit s i is

function only of the operand digits, x i and yi, and the carry digit ci�1 from the adjacent digit position.

Second, the carry digit to the next position c i is function only of the operand digits, x i and yi. Totally-

parallel subtraction xi �yi is realized as the totally-parallel addition of x i and the additive inverse of yi,

that is, xi�yi � xi ���yi�.

Totally-parallel addition of two digits is performed in two steps, as depicted in Fig. 1. In the first

step, a transfer digit output ci and an interim sum output wi are generated such that

xi �yi � rci �wi� (1)
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In the second step, the final sum digit s i is obtained as

si � wi �ci�1� (2)

The required and allowed digit values for each of the variables involved in the two-step addition

process can be derived from the definition of totally-parallel addition and from the addition algorithm

described by (1) and (2). The most important results of such derivation are as follows (for a complete

analysis see [3]):

1. The smallest sufficient set of values for the carry digit is c i � f�1�0�1g.

2. The upper bound for the magnitude of the interim sum is jw ij � r�2.

3. The lower bound for the radix value is r � 2.

4. For an odd radix, ro � 3, the required (minimum) set of values for operand digits x i and yi consists

of the sequence of ro�2 integers

�
�

1
2
�ro�1� � � � � ��1�0�1� � � � �

1
2
�ro�1�

�
�

5. For an even radix, re � 4, the minimum set of values for operand digits xi and yi consists of the

sequence of re�3 integers

�
�

�
1
2

re�1

�
� � � � ��1�0�1� � � � �

1
2

re�1

�
�

Minimum sets are the only allowed for radix-3 and radix-4 systems. For r � 4, however, there is

more than one valid set of digit values. The sequence of integers

f�a���a�1�� � � � ��1�0�1� � � � �a�1�ag

meets the requirements for signed-digit number representations, where

1
2
�ro�1�� a � ro�1 or

1
2

re�1 � a � re�1�

ro is an odd integer ro � 3, and re is an even integer re � 4. All signed-digit number representations can

be described in terms of the allowed radix values and the allowed z i digit values. The redundancy of a

signed-digit system is said to be minimal when a � 1�2�r o� 1� or a � 1�2re� 1, and the redundancy

is maximal when a � ro�1 or a � re�1.
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2.1.2 Signed-digit addition and subtraction

Two signed-digit numbers are added by means of the totally-parallel additionalgorithm described by (1)

and (2). The rules for obtaining wi, ci, and si can be determined given the set of allowed values of wi,

wmin and wmax, as follows. From (1),

wi � �xi �yi�� rci

where

ci �

������
�����

0 if wmin � xi �yi � wmax

1 if xi�yi � wmax

�1 if xi�yi � wmin

and

si � wi �ci�1�

Example 2.1 — Signed-Digit Addition(Radix 10).

The allowed values for the digits are:

wi : 5�4�3�2�1�0�1�2�3�4�5;

ci : 1�0�1;

si�xi�yi : 6�5�4�3�2�1�0�1�2�3�4�5�6�

Digits with negative values are identified with a bar above the integer. The addition operands are

x � 4�25143 (algebraic value X � 3�75137), and y � 2�33021 (algebraic value Y � �2�32979). The

addition procedure is as follows:

augend x: 4 . 2 5 1 4 3

addend y: 2 . 3 3 0 2 1

Step 1): 0�2 0�5 10�2 0�1 10�4 0�2

Step 2): 0 1 0 1 0

Sum s: 2 . 6 2 2 4 2

The resulting sum is s� 2�62242, which has an algebraic value S� 1�42158� 3�75137�2�32979�
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2.2 Other redundant number systems

Stored-carry, stored-borrow, and the binary signed-digit (BSD) number systems are examples of other

useful redundant arithmetic systems. In [4], Parhami proposed a generalized signed-digit number rep-

resentation (GSD) where Avizienis’ signed-digit system is named the ordinary signed-digit number

system (OSD). In the generalized number system, the OSD and BSD systems are unified and other use-

ful redundant number representations such as stored-carry and stored-borrow are included as special

cases.

The generalized signed-digit number system is a positional system (a weight is associated with each

digit position) with the digit set f�α��α� 1� � � � �β� 1�βg, where α � 0, β � 0, α�β� 1 � r, and

r is the radix of the number representation. The excluded case α�β� 1 � r results in non-redundant

number representation systems which cover the conventional radix-r system with α � 0 β � r�1 as a

special case. GSD number systems cover the following special cases.

1. Binary stored-carry (BSC): r � 2, α � 0, β � 2

2. Radix-r stored-carry (SC): α � 0, β � r

3. Binary stored-borrow (BSB or BSD): r � 2, α� β � 1

4. Radix-r stored-borrow (SB): α � 1, β � r�1

5. Binary stored-carry-or-borrow (BSCB): r � 2, α � 1, β � 2

6. Radix-r stored-carry-or-borrow (SCB): α � 1, β � r

7. Minimally redundant symmetric signed-digit: 2α � 2β � r � 4

8. Ordinary signed-digit (OSD): r � 3, 1
2 r � α � β � r

Minimally redundant: α � β � b 1
2 rc�1

Maximally redundant: α � β � r�1

Radix-r stored-carry number representation systems use the digit set f0�1�2� � � � �rg. The special

case r � 2 leads to the binary stored-carry (BSC) number system. The main use of BSC numbers is in

multioperand addition (multiplication). A BSC number can be added to a conventional binary number,

producing a BSC result, using a set of full adders without carry propagation. The stored-carry number
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Table 1: Radix-2 Redundant Binary Encodings

Encoding Bit Values
Sign-mag Sign 0 0 1 1

Mag. 0 1 1 0
Digit value 0 1 -1 X

Borrow-save Borrow 0 1 0 1
Sum 0 1 1 0
Digit value 0 0 1 -1

Carry-save Carry 0 0 1 1
Sum 0 1 0 1
Digit value 0 1 1 2

systems have been adopted in many implementations [5–8]. Radix-r stored-borrow number systems use

the digit set f1�0�1� � � � �r�1g. The special case r � 2 leads to the binary stored-borrow (BSB) number

system, also known as binary signed-digit (BSD) number system. BSD numbers have been used for

representing intermediate temporary values in high-speed multiplication and division algorithms such

as Booth’s recoding algorithm for multiplication [9]. Two BSD numbers can be added by a limited

carry circuit. Implementations using the BSD number system are described in [10–13].

3 The Redundant Binary Approach

In redundant binary logic, each redundant digit is encoded by two or more bits and computation is

performed by means of conventional binary logic families such as static or dynamic CMOS. A radix-2

redundant digit, for example, can be encoded by two binary digits as seen Table 1. The digit set

f1�0�1g has two well known encodings, namely, sign-mag and borrow-save [14]. In sign-mag the two

bits represent a magnitude and a sign, respectively, whereas in borrow-save one bit is positive (sum)

and the other is negative (borrow). This section describes implementations of redundant arithmetic

algorithms by means of conventional binary logic circuits.

The main use of redundant binary logic is in multipliers. In high-performance (parallel) multipliers,

most of the circuit area is dedicated to adder blocks which sum together partial products to generate the

final multiplication result. Consequently, the performance of this type of systems depends heavily on

the speed of the adder circuits. Multipliers are very suitable for redundant addition techniques because
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several stages of addition can be performed without conversion to the standard binary representation.

Most high-performance multipliers use a tree structure to increase parallelism in the addition of partial

products [15].

3.1 Early tree multipliers

In 1964, Wallace [15] proposed a fully combinational multiplier in which partial products are added

by a tree of pseudoadders. A pseudoadder sums together three binary numbers and produces two

output numbers whose sum equals that of the three inputs. The pseudoadder operates without carry

propagation and it can be implemented using full adders, with the third input number being fed to the

carry inputs of the full adders and the second output number being formed by the set of carry outputs

of the adder cells. By arranging a group of pseudoadders in a tree structure, several additions are

performed in parallel. This improves the speed of multiplication and makes the delay proportional to

the logarithm of the number of partial products. Fig. 2 depicts a 20-input Wallace tree made of 18

pseudoadders. The pseudoadder is also named a 3:2 compressor because it has three inputs and two

outputs. A lot of work has been done on the implementation of compressor-based multipliers, and the

4:2 compressor approach is one of the most popular at the present time [16–19].

The Wallace tree approach and other carry-save implementations [6] use redundant binary repre-

sentation. In these schemes, addition results are expressed as the sum of two numbers. A quantity

can therefore be represented in several different ways, thus making the system redundant. If the pair of

output numbers is considered as the addition result, it is easy to verify that the pseudoadder implements

totally-parallel addition by noting that each digit of the result is function only of the input digits of the

corresponding compressor.

To obtain the normal binary representation of the result, it is necessary to use a conventional adder

to sum the pair of resulting numbers. This step involves carry propagation, which implies a penalty

on performance. In multipliers this problem is compensated by accumulating the speed-up of several

compression steps before a single conventional addition takes place at the end of the process. The

process in which the two resulting numbers are added together can be regarded as a conversion from

redundant representation to normal binary representation [11].

In [6], a carry-save multiplication algorithm similar to the Wallace tree approach is described. The

basic difference between these schemes is that the carry-save adder produces the carry-save sum of two
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Figure 2: Wallace tree for a 20-input adder.

carry-save inputs, while the Wallace tree pseudoadder produces the addition of three binary numbers

represented by the sum of two binary numbers. In a unifying way of describing the algorithms one

could say that Wallace uses 3:2 compressors and Vuillemin uses 4:2 compressors as the basic addition

elements.

Another type of redundant adder tree implementation is based on borrow-save or sing-mag rep-

resentations [11]. The main distinguishing characteristic of this approach is that digits can assume

negative values. While the digit set in the carry-save scheme is f0�1�2g, the set of digit values in the

borrow-save and sign-mag approaches is f1�0�1g. This digit set is characteristic of a radix-2 signed-

digit number system, which was named a modified signed-digit number system in [3]. Again, the

functional characteristics of this type of algorithms are not very different from those of the carry-save

methods. The signed-digit redundant binary adder can also be regarded as a 4:2 compressor.

Compressor-based multioperand addition schemes are very similar to each other. The main differ-

ence is in their theoretical basis and the way this drew the path to the corresponding addition algorithm

itself. The rest of this section presents practical VLSI implementations of redundant binary arithmetic

schemes. The designs described involve parallel multipliers that implement redundant arithmetic by

means of conventional binary logic. There are two main classes of multiplier implementations, taking
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the theoretical treatment of the arithmetic as the classification criterion, namely, carry-save multipliers

and redundant binary multipliers.

3.2 Carry-save multipliers

Most of the implementations under this category are based on Wallace’s approach [15]. Here, we

describe four of the most representative multiplier designs that have been reported. All of the imple-

mentations are based on some type of MOS process (NMOS and CMOS), and all of them use some

form of the carry-save adder basic cell.

3.2.1 Pipelined multiplier

The first multiplier circuit to be discussed was published in 1986 by Noll et al. [20]. The multiplier is

organized as an array of carry-save adders (3:2 compressors). As seen in Fig. 3, the tree architecture

is not followed in this implementation. Avoiding the tree architecture allows for a much more regular

layout, which helps reducing the design cycle time and increasing integration. However, using the

array architecture comes at the cost of increased latency. This implementation offers a high throughput

because the system is maximally pipelined, which means that there is a storage element after each adder

level in the array. In this way, the clock period has to be sufficiently large to allow the propagation of

the signal only through a single compressor cell. This multiplier can operate up to 330 MHz; a very

good performance, considering the technology being used. According to the authors, high performance

is achieved by making a more efficient use of the hardware. In the maximal pipelining approach, at any

given time, all the compressor levels are performing a computation. This contrasts with the non-piped

approach, where only one of the compressor levels is active at a time.

Noll’s approach was demonstrated by means of an 8�8-bit multiplier prototype. Fig. 3 depicts a

block diagram of the test chip. Note that the circuit only computes the most significant 8 bits of the

16-bit result. One of the contributions of this work is an improved carry-save cell design (shown in

Fig. 4). This cell design excludes the time for charging and discharging the multiplier lines (inputs x

and y) from the critical path. The test circuit was developed using a 1-micron NMOS technology. The

circuit consists of 5,480 MOSFET transistors, and the active area is 0.6 mm 2. The power dissipation

is 1.5 watts, with a supply voltage of 3 volts. An operating frequency of 330 megahertz at room

temperature was achieved, and a latency time of 55 nanoseconds is produced by the 18 pipeline stages.
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3.2.2 Stanford pipelined iterative multiplier

Another interesting implementation of the carry-save approach is the Stanford Pipelined Iterative Mul-

tiplier (SPIM), presented by Santoro et al. in 1989 [16]. In this case, the main goal of the design effort

was to develop a multiplier architecture which was faster and more area efficient than a conventional

array. Santoro’s architecture combines the pipelined Wallace tree approach using 4:2 compressors and

an iterative accumulation approach to implement a 64�64-bit multiplier. By using iterative accumula-

tion, the size of the circuit is significantly reduced while performance specifications are still met. SPIM

was able to provide twice the performance of a comparable conventional full array at one-fourth the

silicon area [16].

Fig. 5(a) shows the block diagram of the SPIM datapath. Booth encoders reduce the number of

partial products by half [9]—in this implementation the circuit encodes 16 bits per cycle. The Booth-

encoded bits control the Booth MUXs in blocks A and B. The A and B MUX outputs drive an eight-

input Wallace-tree of 4:2 compressors. Each pipe stage uses one 4:2 compressor. The D block is a

carry-save accumulator which also contains a 16-bit hard-wired right shift to align the partial sum from

the previous cycle to the current partial sum to be added. The pipeline registers are indicated as black

bars in the block diagram of Fig. 5(a), and the multiplication process can be appreciated in Fig. 5(b).

The latency of the multiplier is 7 cycles, but the circuit can be clocked at high speed due to the short
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A. F. González and P. Mazumder 14

In1 In2 In3 In4

CinCout

Carry Sum

4:2

(a)

CSA

In1 In2 In3 In4

Cin

C S

CSA
C S

Carry Sum

Cout

(b)

Figure 6: The 4:2 compressor basic cell. (a) Block diagram. (b) A 4:2 compressor implemented with
two carry-save adders.

length of each pipe stage. The combined result of the approach is a somewhat better multiplication

delay, as compared to other designs, using a very compact circuit. Needing only one-fourth of the

area used by its counterparts, this design achieves significant savings in hardware. This factor is very

important in VLSI systems like microprocessors, where as many complex systems as possible have to

be integrated in a single chip. For Santoro’s scheme to work, it is necessary to clock the multiplier at a

higher rate than the rest of the system. To solve this problem, the multiplier uses a controllable on-chip

clock generator.

SPIM was implemented using a 1.6-microns CMOS process. The core of the chip has 41,000 tran-

sistors and a size of 3.8�6.5 mm2. The on-chip clock generator runs at 85 megahertz, and the la-

tency for a 64�64-bit multiply is under 120 nanoseconds with a pipeline rate of one multiply every

47 nanoseconds. The latter rate is obtained considering that a multiply operation can be started every

four cycles. Fig. 6 shows the design of the basic 4:2 compressor cell. One possible implementation of

this cell is based on using two 3:2 carry-save adder cells. This design is used to ease the analysis of

performance and comparison with other multiplier designs.

3.2.3 CMOS multiplier with improved parallel structure

An important category of multiplier design is that in which the main objective is to achieve high-

performance, without having strong constraints in resources (circuit area) as is the case in SPIM. An

important instance of this type of multiplier is the work by Nagamatsu et al. [17, 18]. The main char-

acteristic of these implementations is that the complete Wallace tree of compressors is built and it is
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Figure 7: Tree multiplier architecture implemented by Nagamatsu. (a) Block diagram. (b) Logic circuit
diagram of the 4:2 compressor.

operated in a fully combinational fashion. In this way, the latency of the multiplication operation is re-

duced to the minimum because a single step is required, and because there is no extra delay introduced

by pipeline latches.

Nagamatsu et al. built a 32�32-bit multiplier [17] applying the modified Booth algorithm to reduce

the number of partial products by half, and using a Wallace tree of 4:2 compressors to sum the partial

products as seen Fig. 7(a). The 64-bit adder used to obtain the final result relies on the carry-select

technique which helps reducing carry propagation. Fig. 7(b) shows the logic circuit of the 4:2 com-

pressor. With this approach, the authors were able to obtain a multiply time of 15 nanoseconds, the

best reported performance up to that time. The test chip has a core of 27,704 transistors in an area of

2.68�2.71 mm2, and it was fabricated in a 0.8-micron, triple-level interconnect CMOS process. The

power dissipation reported by the authors was 277 milliwatts at an operating frequency of 10 megahertz

(clock for input and output registers).

Mori et al. presented an improved version of their previous work in [18]. In this case, the size of

the multiplier was increased to 54�54 bits, but the basic approach remained the same. The organiza-

tion of the multiplier also consisted of a tree of 4:2 compressors that sum the set of partial products.

Booth encoding of the multiplier operand was also adopted. The main architectural difference lies on
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the design of the 108-bit final adder. Instead of using only the carry-select approach for reducing carry

propagation, the new version of the multiplier implemented a combination of the carry-select and the

carry lookahead (CLA) addition methods. Three main innovations helped the new version of the mul-

tiplier achieving better performance. These innovations are (a) the use of a more advanced fabrication

process technology with reduced minimum feature size (0.5 micron), (b) an improved 4:2 basic com-

pressor cell circuit design based on pass transistor logic, and (c) a modified 108-bit final adder design.

Fig. 8 depicts the 4:2 compressor circuit. An improved circuit design for the XOR logic gate, shown in

Fig. 8, was used to reduce the propagation delay of the 4:2 compressor basic cell. Besides shortening

the simulated XOR gate delay to 87.5% of that in the conventional approach, the number of transistors

is reduced from ten to seven. Using the proposed approach, the new multiplier achieved a multiplica-

tion delay time of 10 nanoseconds. The test chip required 81,600 transistors, and its circuit area was

3.62�3.45 mm2. The test circuit dissipated 870 milliwatts when clocking the input and output registers

at 100 megahertz.

3.2.4 Regularly structured tree multiplier

Another multiplier implementation which uses the Wallace tree approach is the 54�54-bit regularly

structured tree multiplier [19], proposed by Goto et al. From the architectural point of view, this

multiplier is very similar to those that have been described here [17, 18]. Goto’s multiplier uses Booth

recoding and a Wallace tree of 4:2 compressors. An important distinction of this implementation, from

the architectural point of view, is the use of a Manchester adder scheme in the final adder (CPA). The

main contribution of this work stems from the proposed layout design methodology. To simplify the

design process, the authors divide the tree into subcircuit modules that are reused in the construction of

the complete tree. The key of the approach is that the wiring scheme is repeated in the modules. In this

way, the proposed design method solves one of the most serious problems of Wallace tree multipliers,

that is, complicated layout and wiring design. The Wallace tree used to have the drawback of being

difficult to layout, due to the irregularity of interconnection among the compressors of the tree. This

drawback is eliminated in Goto’s implementation, however, by the design of subcircuits that include

a wiring scheme that allows them to be replicated in the circuit layout. Two important improvements

are obtained by this approach. First, the design cycle is significantly reduced by using tightly coupled,

recurring blocks. Second, the resulting layout is better because it features shorter interconnect lengths,
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reduced circuit area, and higher speed performance. Fig. 9 shows the division scheme of the multiplier

and depicts the building blocks devised by the authors. In the figure, block 7D is the basic block, and

two of them are used to construct block 14D. Similarly, two 14D blocks constitute the complete tree.

As in the previous examples, Goto’s multiplier was demonstrated using a test chip. In this case,

fabrication was done using a 0.8-micron, triple metal, CMOS process. The 3.36�3.85 mm2 circuit

included 82,500 transistors. A multiplication delay time of 13 nanoseconds was obtained in the exper-

iments. This result compares well to the fastest multiplication delay of a 0.5-micron implementation,

which is of 10 nanoseconds. Goto’s design is expected to perform even faster than 10 nanoseconds with

an implementation using the more advanced 0.5-micron CMOS process. In the experiments, power dis-

sipation was 875 milliwatts, with a clock frequency of 40 megahertz. An important difference in circuit

implementation, with respect to the multiplier in [18], is that Goto’s circuits [19] are designed using

fully static CMOS logic gates, while the other design uses pass transistor gates. Using fully static

CMOS allows Goto’s design to reduce power consumption.

Table 2 summarizes the most important characteristics of the carry-save multiplier implementations

presented.
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Table 2: Summary of Carry-Save Multiplier Characteristics

Approach Ref Size (bits) Speed Technology Power Transistors
Pipelined Array [20] 8�8 330 MHz 1.0 µm NMOS 1.5 W 5,480 (core)
SPIM [16] 64�64 47 ns 1.6 µm CMOS 360 mW @ 85 MHz 41,000 (core)
Parallel Structure [17] 32�32 15 ns 0.8 µm CMOS 277 mW @ 10 MHz 27,704 (core)
Parallel Structure [18] 54�54 10 ns 0.5 µm CMOS 870 mW @ 100 MHz 81,600
Regular Structure [19] 54�54 13 ns 0.8 µm CMOS 875 mW @ 40 MHz 82,500

3.3 Redundant binary architectures

The redundant binary architecture is very similar to a Wallace tree approach. Takagi et al. pointed out

these similarities in [11], and referred to Vuillemin’s algorithm [6]. The main difference with respect to

Vuillemin’s work is that Vuillemin uses the carry-save number representation, with digit set f0�1�2g,

and Takagi uses the redundant binary representation, with digit set f�1�0�1g. The redundant binary

representation allows an easier implementation of two’s complement integer multiplication.

3.3.1 High-speed multiplier using a redundant binary adder tree

Harata et al. presented the first integrated circuit implementation of a multiplier using a redundant

binary architecture in 1987 [12]. Harata’s circuit uses the redundant binary multiplication algorithm

described in [11]. The basic idea of the algorithm is to speed-up multiplication by using a tree of

redundant binary adders to realize the addition of the partial products as seen in Fig. 10. This approach

makes the multiply delay proportional to the logarithm of the operand size, while in array multipliers

this proportion is linear. The proposed idea is very similar to the Wallace tree approach, and it can be

said that Harata’s multiplier actually is a Wallace tree. The distinctive characteristic, however, is the

realization of the compressor by a redundant binary adder. According to the authors, using a tree of

redundant binary adders allows a regular cell array layout implementation, which solves the drawback

of layout irregularity in Wallace tree implementations. There is no significant difference between the

two approaches in terms of speed performance.

Fig. 10(a) shows the basic architecture of the multiplier clearly depicting the tree structure of the or-

ganization. Using this architecture, n partial products are added together in a time proportional to log 2 n.

Note that even though the multiplier operands are 16-bits long, the partial product generator block gen-

erates only eight, instead of 16, partial products because it uses Booth’s recoding technique [9]. This
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Figure 10: Diagram of a 16�16-bit integer multiplier [12]. (a) Block diagram. (b) Redundant binary
adder cell.

multiplier internally uses a redundant binary representation as described in Section 2.2. Redundant

binary adders (RBA) perform addition of two n-digit redundant binary numbers in a constant delay

time, irrespective of n, due to the totally-parallel addition characteristic of the number representation.

The last block in the organization (CLA) is a carry lookahead adder which converts the resulting sum

represented by a redundant binary number into the two’s complement representation of the result. The

conversion adder has carry propagation and that is why a fast addition approach such as carry lookahead

(log2 n delay) is used.

The redundant binary adder cell, seen in Fig. 10(b), determines the performance and the size of the

multiplier because it constitutes the delay path of the multiplier and it is the most instantiated cell in

the design. The implementation of this adder cell makes Harata’s multiplier a redundant binary design

because it uses binary signals to represent signed digits of the set f�1�0�1g. Since the input redundant

signals (xi, yi, and ci�1) are encoded in binary format, standard binary gates perform the computations

and generate redundant output signals (z i and ci) encoded in the assumed binary format. The schematic

diagram in Fig. 10(b) shows how the carry output signal is generated without any involvement of

the carry input signal—this eliminates the carry signal propagation path usually present in arithmetic
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circuits.

The approach was demonstrated using a 16�16-bit multiplier test chip. The authors considered

and evaluated three options for realizing the layout of the circuit—they selected the layout topology

which allows simple signal flow, makes good use of repeatability, and has good extensibility. The

chip was fabricated using a standard enhancement/depletion NMOS process with a 2.7-micron design

rule. The transistor count of the multiplier is 10,600. The authors report a multiplication time of

120 nanoseconds.

3.3.2 High-speed MOS multiplier using redundant binary representation

Kuninobu et al. implemented a high-speed multiplier and divider using redundant binary represen-

tation [21]. This multiplier is actually an improved version of the work presented in [11, 12]. The

approach is basically the same: a multiplier using Booth recoding where the partial products are added

together by means of a binary tree of redundant binary adders. This multiplier is part of the floating

point unit for a microprocessor built by the authors. This work is interesting because it shows the im-

portance of the multiplication algorithm proposed by Takagi in [11]. There are three main innovations

that help this algorithm to keep up to date in the high-performance VLSI world. First, the new circuit

implementation uses a 0.8-micron, 2-layer metal CMOS technology which is far superior to the ini-

tial 2.7-microns E/D NMOS process technology. Second, the authors use an extended Booth recoding

which they call redundant binary Booth algorithm. And third, the redundant binary adder cell uses a

redesigned logic circuit which is smaller and faster. Fig. 11 presents the logic circuit schematic diagram

of the RBA cell in the new multiplier implementation. According to the authors, the fabricated micro-

processor performs single- and double-precision floating point multiplication in 100 nanoseconds.

3.3.3 An 8.8-nanosecond 54�54-bit multiplier using redundant binary architecture

Makino et al. presented important work on redundant binary arithmetic in [13,22]. Makino’s multiplier

became the fastest multiplier of the time with an 8.8-nanosecond multiply delay. The implementation

is very similar to other redundant binary designs that we have discussed here. The design uses a tree of

redundant binary adders to add partial products in a parallel fashion which allows a delay proportional

to the logarithm of the operand size. However, the authors identified three problems that affect the per-

formance of redundant binary multipliers. First, additional circuits are used to convert binary numbers
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Figure 11: Logic circuit of the redundant binary adder cell used in [21].

to their redundant binary representation. Second, most of the redundant binary adder (RBA) designs are

not superior to the 4:2 compressor cells used in non-redundant implementations. And third, the carry

propagate adder that converts the redundant binary result into the final binary product is as slow as the

conversion adder used in non-redundant approaches. By attacking these problems, the authors obtained

a multiplier design of improved performance. The three problems were attacked in the following ways.

Using the borrow-save representation, seen in Table 1, helped solving the problem of normal-to-

redundant conversion. In borrow-save representation, the digit is represented by the sum of a positive

(sum) and a negative (borrow) bits. In this way, two partial products paired together form a redundant

binary number. The conversion process only requires a set of inverters to obtain the complement of

the borrow partial product. It is necessary to perform this inversion of bits because the inherent sign of

the borrow bits is negative. The bit-wise inversion of the borrow partial product only gives the one’s-

complement of the number, and the two’s-complement is necessary to invert the sign of the number.

The authors solve this problem by forming an additional partial product with all the sign bits of the

inverted partial products.

Makino proposed and improved design of the redundant binary adder cell in order to attack the

problem of inferior redundant binary adder circuits. Fig. 12 depicts the logic diagram of the proposed
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redundant binary adder cell. The adder cell design was improved by eliminating OR gates and multi-

input complex gates. The authors also took advantage of CMOS circuits by using pass-transistor logic.

Finally the problem of the final representation conversion was solved by designing a conversion

method specialized for the redundant-to-normal conversion. The new method uses a carry generation

circuit constructed only with simple selector circuits. The design is a kind of carry-select method.

Fig. 13 shows a block diagram of the carry generation circuit. Besides its reduced delay and transistor

count, the new conversion method has the advantage of being easy to layout because the circuit has a

regular structure with simple interconnection.

The authors built a 54�54-bit multiplier chip for demonstration of the multiplication scheme. The

circuit uses 78,800 transistors, which is the lowest transistor count reported for this application. The

measured multiplication delay was 8.8 nanoseconds. Power dissipation was 540 milliwatts with 100-
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Table 3: Summary of Redundant Binary Multiplier Characteristics
Approach Ref Size (bits) Speed Technology Power Transistors
RBA Tree [12] 16�16 120 ns 2.7 µm NMOS N/A 10,600
RB Representation [21] 54�60 100 ns a 0.8 µm CMOS 4 Wb 1,000,000c

RB Architecture [22] 54�54 8.8 ns 0.5 µm CMOS 540 mW @ 100 MHz 78,800

aFor a Floating Point multiplication
bMaximum for the whole processor
cIn the whole processor

megahertz clock speed. The chip was fabricated with a 0.5-micron, triple metal CMOS process tech-

nology.

Table 3 presents the most important characteristics of the redundant binary multiplier circuits de-

scribed in this section.

4 Current-Mode Multiple-Valued Logic Designs

In current-mode circuits, signal values are represented by levels of current rather than voltage. Current-

mode circuits allow wired current summation, where the sum of two or more digits is obtained by the

simple connection of wires in a summing node. In this way, the addition of two multivalued current-

mode signals is realized without using active elements. Wired current summation is the main motivation

for the use of current-mode circuits in arithmetic applications.

4.1 Early current-mode implementations

In 1977, Dao et al. [23] presented one of the first current-mode circuits for multiple-valued logic. In

that work, Integrated Injection Logic (I2L) was used for implementing a functionally-complete set

of multiple-valued functions. Even though no mention is made of redundant arithmetic, the work

is a precursor of later current-mode implementations. The main advantages of multiple-valued logic

identified in [23] are: high logic density, reduced interconnection area, and high production yields.

Dao decided to implement a four-valued logic instead of the more popular three-valued logic due to

the better convertibility between four-valued and binary representations. The operating principle is

based on threshold logic. Several implementations were proposed, ranging from basic multivalued

functions (max, min, complement, successor, and literals) to arithmetic functions (quaternary adder

and full product generator) and storage circuits (latches and flip-flops).
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Other precursor current-mode implementations are [24,25]. In [24], Freitas et al. presented circuits

for conversion of four-valued current-mode signals to and from standard binary signals. In [25], Current

et al. described four-valued full adder circuits. Although the circuits proposed do not involve redundant

arithmetic, they are very significant because of two reasons. First, the authors identified the advantage

of wired summation of logical currents for compact implementation of addition operations [25]. Sec-

ond, Current and Freitas recognized the importance of making multivalued circuits more practical by

using standard fabrication technologies such as CMOS and by using simple operation principles.

Yamakawa developed current-mode circuits for multivalued logic [26] and fuzzy logic [27]. He

also recognized the advantage of an easy implementation of addition through current signal summing

in current-mode circuits. In [26], an approach for quaternary logic circuits based on MOS devices is

described. The approach was named a hybrid mode of operation because signals are represented as

currents but voltages are used internally in the threshold switches to control pass transistors. Among

the various circuits proposed in [26] are a quaternary multiplier and a quaternary divider but these

arithmetic circuits do not exploit redundant or signed-digit number systems. In [27], a comprehensive

set of fuzzy logic operators was developed using a MOS-based current-mode approach.

The first work on current-mode redundant arithmetic circuits was presented by Kawahito, Kameyama,

and Higuchi in [28]. Kawahito et al. described the design of a totally-parallel adder based on a radix-4,

signed-digit, redundant arithmetic system using standard MOS devices. The authors named this circuit

a signed-digit full adder (SDFA). An important characteristic of the circuits proposed in [28] is the use

of bidirectional currents, that is, currents flowing in two directions. Bidirectional currents are necessary

because the signed-digit number system has positive and negative digits, and the direction of current

flow efficiently represents the sign. The work developed by Kawahito, Kameyama, and Higuchi is the

most comprehensive on current-mode redundant arithmetic circuits [7, 8, 10, 29–39].

4.2 Current-mode redundant arithmetic in Japan

The following paragraphs summarize the work conducted by Shoji Kawahito, Tatsuo Higuchi, and

Michitaka Kameyama on current-mode circuit implementations of redundant arithmetic systems.

One of the most important building blocks in redundant arithmetic systems is what Avizienis called

a totally-parallel adder [3]. Kawahito et al. developed a current-mode, radix-4 adder which performs

totally-parallel addition (signed-digit full adder) [10, 28–30, 32]. Fig. 14(a) shows a block diagram of
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Figure 14: (a) Block digram of the signed-digit addition approach developed by Kawahito et al. in [28].
(b) Output functions of the radix-4 signed-digit full adder.

the addition approach proposed in [28]. The signed-digit full adder (SDFA) circuit implements the

functionality of the generic totally-parallel adder described in Section 2.1.1. Specifically, the authors

proposed current-mode circuits that realize output functions c i and wi according to (1) with r � 4. The

outputs of the circuit are bidirectional current-mode signals. Therefore, Step 2 of the addition process

seen in Fig. 1 and described by Equation (2) is achieved by simple wired current summation of signals

wi and ci�1. The output functions of the SDFA cell are depicted in Fig. 14(b), and they are obtained

using the expressions given in Section 2.1.2 (with w min � �2 and wmax � 2). Note that the input to the

SDFA cell is zi � xi �yi, and that this signal is also obtained by means of current summation.

Fig. 15(a) shows the block diagram of the current-mode signed-digit adder cell proposed by Kawahito.

Block BDI is a bidirectional current input circuit whose generic circuit implementation is shown in

Fig. 15(b). This block is used to decompose the bidirectional current-mode input signal into a couple

of unidirectional current-mode output signals. There is one output (x �) for positive input flow (I�) and

another output (x�) for negative input flow (I�). Block TD is a threshold detector circuit whose circuit

is shown in Fig. 15(c). This block provides a current output of m units when its input current is greater

than the threshold current, T . Finally, blocks n and p are NMOS and PMOS current mirrors whose

circuits are shown in Fig. 15(d). Besides inverting the direction of the input current signal, current

mirrors n and p can be used to scale the current level of the input signal or to replicate the input signal
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Figure 15: Current-mode signed-digit full adder design. (a) SDFA block diagram. (b) BDI circuit. (c)
TD circuit. (d) n and p current mirrors.

so that it can be applied to different nodes. The latter use is required since fanout is restricted to one in

current-mode circuits.

The operation of the SDFA circuit is very simple. The TD blocks in Fig. 15(a) detect the conditions

for the generation of the carry signal. One threshold detector works when the input current is positive

and the other works when the input current is negative. The interim sum output, w, is obtained by

transferring the input current, z, to the output and conditionally adding or subtracting four current units

when the output carry is �1 or 1, respectively. In this way, the transfer function shown in Fig. 14(b) is

generated using three regions of operation in the circuit.

Other important circuits were necessary to have a complete solution to the signed-digit multivalued

implementation problem. The SDFA circuit has very low noise immunity because any variation of

input z is reflected at output w. To solve this problem, Kawahito et al. designed a signed-digit quan-
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Figure 16: Signed-digit quantizer (a) input and (b) output.

tizer (SDQ) [28]. The function of the quantizer is to recover current levels for signals that have been

transmitted through several arithmetic modules. With the signed-digit quantizer, output function w of

the adder cell is converted from what is shown in Fig. 16(a) to the function depicted in Fig. 16(b).

Another important circuit described in [28] is the current-to-binary voltage converter, which obtains

the binary sign-magnitude representation of a number in radix-4 current-mode multivalued representa-

tion. No separate binary voltage-to-current converter circuit was described in [28]. Instead, since the

proposed SDFA cell is intended for building a signed-digit multiplier, the binary-to-current conversion

is performed by the product generator circuit.

The circuits developed by Kawahito et al. [28] offer a simple, clean, and efficient approach. The

proposed SDFA cell is very compact, but it is not clear that the quantizer can be excluded from the

SDFA cell and regarded only as an occasional element in a system. An important problem of the

implementation, which is also present in other current-mode circuits, is power consumption. Since the

signals are represented as currents, current-mode implementations can consume significant amounts

of power. Another problem of the design is in the implementation of the threshold functions. The

method for threshold detection used by Kawahito does not provide the gain and noise immunity of

voltage-mode binary logic gates and it can be potentially very slow.

A subsequent SDFA design [29] included changes in the transfer functions which allowed for a

simplification of the circuit. Using the redundancy of the number system, it was possible to modify

the SDFA transfer functions, c and w, at operating points z � �2 and z � 2. For z � �2, the change

consisted of making w � 2 and c � �1 instead of the original w � �2, c � 0 (see Fig. 14(b)). Simi-

larly, for z � 2 the change consisted of making w ��2 and c � 1 instead of the original w � 2, c � 0.
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Note that Equation (1) still holds for the modified transfer functions. Notice also that, unlike its pre-

decessor, the modified transfer function is an odd function, which allowed the aforementioned circuit

simplification. For details on the modified circuit see [29,30]. In addition to refining the initial designs

and constructing prototypes to demonstrate their feasibility, the authors also achieved improvements

on the device technology aspect. While the first design [28] used a standard CMOS technology, later

versions employed a special CMOS process incorporating p-channel depletion MOSFETs [29]. The

p-channel depletion MOSFETs are used to implement very compact current sources (see [29]). The

authors fabricated a current-mode 32� 32-bit multiplier [32] using the ideas described in the previous

paragraphs.

4.2.1 Improvements and evolution of the approach

After presenting the first multivalued current-mode circuits for redundant arithmetic, Kameyama, Kawahito,

Higuchi, et al. further developed their initial circuits and ideas in order to improve the appeal of the ap-

proach. Their efforts were focused at improving characteristics such as speed, noise immunity, power

dissipation, and circuit complexity. This Section describes two of the approaches aimed at improving

multivalued current-mode circuits: source-coupled logic and positive-digit arithmetic.

Source-coupled logic

Multiple-valued logic current-mode circuits such as those described in the previous subsection have

some disadvantages which become more prominent in deep submicron MOS technologies. First, the

delay of a multivalued logic circuit is larger than that of a conventional binary digital circuit because

the current in MOS transistors is proportional to the square of the gate voltage. In deep submicron

technologies, this problem is aggravated by reduced operating voltages. A second important problem

is related to power dissipation, which designers always try to keep as low as possible. Hanyu et al.

recognized the necessity of developing new multivalued current-mode circuits with high switching

speeds and low operating voltages [37]. Since the largest portion of the delay in current-mode circuits is

due to current threshold gates such as the one shown in Fig. 15(c)), the authors proposed a new approach

named dual-rail source-coupled logic which was specifically developed to improve the operation of

threshold gate circuits.

Fig. 17(b) shows the new threshold detector presented in [37] while Fig. 17(a) shows the original
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Figure 17: Current-mode threshold detector circuits. (a) Conventional circuit. (b) Dual-rail source-
coupled circuit.

design. These circuits use depletion p-type MOSFETs for implementing better current sources. The

new threshold detector is very similar to the original version of the circuit. The main difference is

that current logic signals are represented as differential pairs in the source-coupled threshold detector.

Unfortunately, the dual-rail source-coupled design requires routing two wires for each logic signal.

Also, in the current threshold detector circuit, it is necessary to have two current comparator transistors

(M4 and M5 in Fig. 17(b)) and two output current switches (M7 and M8).

The modified threshold detector circuit has a reduced switching delay due to the current source

transistor M6 always being on. In the conventional threshold detector circuit, the largest switching

delay is generated in the falling transition of the input current, x. In this transition, the capacitance at the

gate node of the output switch (M3 in Fig. 17(a)) is charged to a high voltage, which should eventually

turn off the PMOS current switch. In this operation, the voltage at the gate of M3 should be large enough

to turn off M2 and M3. That is, Va � VDD �VDS�M2 �VGS�M3, where VDS�M2 � 0 because the output

current y � 0 and VGS�M3 � �VT . Here, �VT represents the threshold voltage of the PMOS transistor

M3. Therefore, the capacitance at the gate of M3 should be charged to a voltage level Va � VDD�VT ,

and the switching delay is proportional to this voltage level. On the other hand, in the source-coupled

threshold detector circuit, the voltage at the gate of the output switch being turned off, M7 or M8,

is not required to turn off the current source device, M6, because the operation consists simply of

diverting its current to the alternative current switch, M8 or M7. Then, V a � VDD �VDS�M6 �VGS�M7,
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where VDS�M6 � �jVTU j, VTU is the threshold voltage of the PMOS transistor M6, and VGS�M7 � �VT .

Therefore, Va �VDD�VT �jVTU j, which is reduced by jVTU j as compared to the conventional threshold

detector design and. Note that the switching delay is directly proportional to V a.

As it was mentioned, the main advantage of the dual-rail source-coupled approach is on switch-

ing delay reduction. It is important to note, however, that this improvement is subject to conditions of

matching of the coupled devices and symmetry of the rising and falling input signals, x and x �. Also note

that the speed advantage of the new approach comes at the expense of increased circuit and interconnect

complexities. The authors evaluated the characteristics of their approach through the implementation

of a radix-2 signed-digit adder circuit. This adder was verified by means of simulation, and its perfor-

mance characteristics were compared to those of the conventional current-mode implementation and

binary implementations.

Positive-digit current-mode implementations

A further step in the evolution of current-mode implementations of redundant arithmetic systems con-

sisted of modifying the signed-digit arithmetic proposed in [3]. Kawahito et al. [7] proposed redundant

arithmetic circuits based on positive-digit number representations. This type of number representation

uses digit sets including only positive digits (e.g., f0�1�2�3g in radix 2) instead of the symmetric digit

sets used by signed-digit systems (e.g., f�1�0�1g in radix 2). In positive-digit number systems, the

redundancy needed for achieving totally-parallel addition is obtained by using more digits than the

required by conventional radix-r number systems. In other words, the radix-r positive-digit number

representations use digit sets of q� 1 values of the form f0�1� � � � �r� 1� � � � �qg, where q � r. The

main advantage of the positive-digit approach is that it eliminates the use of bidirectional current-mode

circuits, thus making the designs more simple. Fig. 18(a) shows a current-mode circuit which imple-

ments radix-2, q � 3, positive-digit addition. The positive-digit adder cell uses 28 transistors, and the

simulation experiments showed a reduction in delay time.

4.3 Multivalued current-mode circuits in France

Even though a significant portion of the research on current-mode redundant arithmetic circuits has

been developed in Japan by Kameyama, Higuchi, Kawahito, et al., researchers in other parts of the

world have made important contributions to the field. We have developed a current-mode, radix-2,
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Figure 18: Schematic circuit diagrams of a (a) radix-2 positive-digit adder cell and (b) its corresponding
signed-digit implementation.

signed-digit adder using MOS devices and resonant-tunneling diodes [40]. That work is discussed in

Section 5. The following paragraphs describe other current-mode circuits which have been developed

in France.

Etiemble, Navi, et al. developed current-mode circuits for redundant arithmetic applications [41,

42]. In [41], Etiemble et al. proposed the limited-carry addition. This approach is based on the bi-

nary stored-carry number system. The proposed implementation uses multiple-valued logic and signal

representation based on current levels, hence the use of current-mode logic circuits. The binary stored-

carry number system is a special case of redundant number representations with radix 2 and the digit

set f0�1�2g (see Section 2.2). The basic approach followed by Etiemble et al. for the implementation

of limited-carry adders consists of using a basic functional block, several copies of which can be com-

bined together to form a binary stored-carry adder cell. This approach makes the design task an easy

one because only one relatively simple circuit has to be developed and then instantiated several times.

The simplest example of a limited-carry adder is the two-input adder described in [41]. In the

binary stored-carry number system, the two inputs of the adder are three-valued current-mode signals.

Since the sum p of the two three-valued input signals produces a six-valued result, it is then necessary

to first decompose the three-valued operands into their binary components. This task is performed by

the three-valued current input to binary current output converter (3BC) block. This block is the basic



A. F. González and P. Mazumder 33

functional unit used to build the two-input binary stored-carry adder. Fig. 19(a) shows the symbol of

the 3BC block and the corresponding functional operation. The function table for the 3BC block shows

that outputs x1 and x0 are, respectively, the carry and sum components of input x. The two-input binary

stored-carry adder is built using five 3BC cells, as shown in Fig. 19(b). This design is based on the

following expression for the sum of the input operands:

p � x�y � 2c2
out �2c1

out �w� (3)

Where w is the interim sum and c2
out and c1

out are carry output signals. Notice that p is a six-valued

signal, and that its binary decomposition works out as follows:

p � 2p1� p0 (4)

� 2�2p1� p0�1��2p1� p0�0 (5)

� 4p11�2p01�2p10� p00� (6)

From (3) and (6), the expressions for the carry output signals and the interim sum obtained as

c2
out � p11 (7)

c1
out � p11� p10� p01 (8)

w � p00� (9)

This is the functionality implemented by the top four 3BC cells of the adder shown in Fig. 19(b). The

fifth 3BC cell is used to sum w, c1
in, c2

in, and tin, and to generate transfer output signal t out .

Circuits implementing the 3BC cell in CMOS and ECL technologies are shown in Figs. 19(a)

and 19(b), respectively. Please note that the CMOS 3BC cell circuit is very similar to the current-mode

threshold detector in [28]. Actually, two threshold detectors are used in the circuit, one for each of the

outputs of the 3BC cell, x1 and x0. The ECL implementation is shown in Fig. 19(d), and it has the

disadvantage of requiring voltage references VR0 and VR1.

One of the most important contributions of the work presented in [41] is the simplicity and modu-

larity of the design. Circuit complexity has traditionally been one of the drawbacks of multiple-valued

logic implementations. The two-input binary stored-carry adder proposed by Etiemble et al. fully ex-

ploits the concept of current-mode wired summation. Wired summation of current signals is the only

function used in the circuit besides the required multivalued current to binary current conversion per-

formed by the 3BC cells.
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Figure 19: Current-mode limited-carry adder implementation by Etiemble et al. [41]. (a) 3BC cell, the
basic building block of a two-operand adder. (b) Block diagram of the two-input adder. (c) Current-
mode CMOS implementation of the 3BC cell. (d) Current-mode ECL 3BC circuit.
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Table 4: Comparison of Current-Mode Redundant Adder Implementations

Approach Ref Delay Technology Power Transistors
Conventional SD [28] 2.3 ns 0.8-micron CMOS 10.04 mW 34
Positive-Digit [7] �1.3 ns 28
Source-Coupled SD [37] 1.6 ns 0.8-micron CMOS 10.52 mW 50

Table 4 presents a comparison between current-mode redundant adder implementations. The infor-

mation contained in the table was obtained from [7] and [37]. Unfortunately there was no performance

information available for the implementations developed by Etiemble et al. [5]. Hanyu reported the

construction of layout prototypes for different types of radix-2 signed-digit adders in [37]. Using these

prototypes and circuit simulation, Hanyu was able to compare a conventional 34-transistor signed-digit

adder with a source-coupled 50-transistor adder built using the same process technology. Rows one

and three of Table 4 correspond to the results obtained by Hanyu in his comparison experiment. In [7],

the propagation delay of the redundant positive-digit adder is given in terms of equivalent gate delays.

Since that work presents a comparison with the delay of the conventional signed-digit current-mode

adder, it was possible to estimate the propagation delay of the positive-digit implementation in a 0.8-

micron CMOS process using the delay information for the conventional signed-digit adder presented

in [37]. The estimated delay value for the positive-digit adder using a 0.8-micron CMOS process is

included in the second row of Table 4. From the table it is clear that the positive-digit redundant adder

has clear advantages over its counterparts, in terms of propagation delay and device count.

5 Other Implementations

With MOS technology nearing the limits of device shrinking, the study of alternative fabrication tech-

nologies for integrated electronics becomes essential. It is very important to build ultrafast arithmetic

circuits. Advanced signal processors with clock rates of the order of gigahertz are required for future

system applications such as digital microwave receivers, digital signal processors, and digital RF mem-

ories [1]. Carry propagation chains are especially detrimental in ultrafast computation, and they can

be completely eliminated by means of redundant arithmetic techniques. However, the sole elimina-

tion of carry propagation chains is not sufficient in ultrafast applications like the ones mentioned. It

is thus necessary to resort to high-speed integrated circuit technologies and circuit techniques, such as
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emitter-coupled logic, compound semiconductor devices, and resonant-tunneling quantum electronic

devices. This section is divided in two parts. The first part describes emitter-coupled logic imple-

mentations of redundant arithmetic. The second part surveys redundant arithmetic circuits based on

resonant-tunneling quantum devices and heterostructure devices.

5.1 Implementations using emitter-coupled logic

The emitter-coupled logic (ECL) family was for a long time predominant in high-speed binary logic

applications. ECL circuits achieve high speed due to the use of non-saturating transistor operation

in differential (emitter-coupled) transistor pairs. Some researchers explored the application of ECL

techniques in the implementation of very fast redundant arithmetic circuits [1, 43].

In 1987, Luo et al. [43] proposed bipolar ECL circuits for implementing redundant carryless adders

using a three-valued logic with the digit set f�1�0�1g. The basic logic building block devised in that

work was called the J-operator, which takes one three-valued input and generates one binary output.

Depending on the type of J-operator, the output signal is high for one or two of the logic voltage

levels at the input of the gate. Consequently, in a three-valued system there can be six different types of

J-operators. The voltage levels of the binary output of the J-operator equal the maximum and minimum

voltage levels defined for the three-valued logic system. It is easy to observe that described functionality

of the J-operator matches that of the multivalued logic literal described by other authors [44]. Luo et al.

analyzed the redundant adder functions and found expressions for them in terms of logic combinations

of J-operations of the primary inputs (xi, yi, xi�1, yi�1). A redundant adder circuit was proposed which

uses five J-gates and four AND-OR combinational blocks. The authors report the final redundant adder

design using 20 ECL gates, including J-operators, AND, and OR gates. Considering that each of these

gates requires at least six transistors and a number of resistors, it is easy to find out that the cost of

implementation is rather high. The work by Luo et al., however, is a good example of the early search

for fast redundant adder implementations using alternative high-speed circuit techniques.

Another application of emitter-coupled circuits in redundant arithmetic was proposed by Lutz J.

Micheel in [1]. Searching for very fast arithmetic circuits, Micheel applied ultrafast integrated circuit

technologies to multiple-valued ECL circuits in positive-digit and signed-digit arithmetic. Micheel

studied the feasibility of pipelined, carry-propagation-free adders and multipliers operating at clock

frequencies of the order of two to ten gigahertz using heterojunction bipolar transistors (HBTs) imple-
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mented in III/V semiconductor compounds.

A block diagram of the positive-digit adder circuit proposed in [1] is shown in Fig. 20(a). Micheel’s

ECL circuit implements a P2,4 arithmetic, which was introduced by Kawahito et al. in [7]. The algo-

rithm P2,4 is a positive-digit arithmetic using the digit set f0�1�2�3gwith internal operations performed

in radix 2. The system shown in Fig. 20(a) accomplishes addition in three steps using two carry transfer

digits, C1
i and C2

i . In order to implement addition correctly, the positive-digit full adder (PDFA) should

have the output functions depicted in Fig. 20(b). As seen in the block diagram, the final summation

digit Si is obtained by adding the interim sum output W 0
i and one carry transfer digit from each of

the two contiguous lower-significance cells, C 1
i�1 and C2

i�2. Micheel proposed the circuit depicted in

Fig. 21 to implement the three PDFA output functions. The circuit is based on the threshold operation of

emitter-coupled pairs. In the schematic diagram, the triangular symbol corresponds to a simple emitter-

coupled pair comparing the input voltage (left input) to the reference voltage (right input). The larger

symbols with two reference inputs represent multivalued logic literal generators made by combining

two emitter-coupled pairs. The output pulse (low or high) occurs when the input voltage level lies be-

tween the two input threshold voltages. The output pulse is low or high depending on which transistor

of the emitter-coupled pair (left or right) the output is taken from. The operating principle of the PDFA

circuit is now easy to explain. A ladder of resistors and transistors generates all the threshold voltages

which correspond to switching transitions in the output functions. The threshold emitter-coupled pairs

and the literal generators then draw current levels which are combined together by resistors to convert

the current summation from the related literals and threshold pairs to voltages.

Based on circuit simulation, Micheel estimated the PDFA operating clock rates of 1.4 to 1.6 gi-

gahertz using an AlGaAs/GaAs HBT system. GaAs HBT devices, however, have a large bandgap of

1.52 electron-volts, a base-emitter turn-on voltage above 1.2 volts, and large minimum emitter sizes.

As shown in the circuit diagram, it is necessary to connect several base-emitter junctions in series,

making high supply voltages necessary and, consequently, increasing power consumption. The authors

proposed indium phosphide (InP) technology to solve the problem. With the new technology, the base-

emitter turn-on voltage can be reduced by 780 millivolts with respect to the GaAs system. The expected

operating clock frequencies in the new technology are of the order of four to ten gigahertz. Another

important disadvantage of the the circuit proposed by Micheel is that it uses a large number of devices.
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Figure 20: P2,4 positive-digit adder arithmetic system. (a) Block diagram. (b) PDFA output functions.

iCi
1

i

iCi

C1
i

W0

2 W0

W0

GND

GND

i
Z

V(w  )

V(c  )2

1V(c  )

0

V

I

EE

0

VEE

5.5 5.5

4.5

3.5 3.5

2.5

3.5

1.5 1.5

0.5

Figure 21: Positive-digit adder circuit schematic.
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5.2 Redundant arithmetic using quantum electronic devices

Quantum devices with resonant-tunneling characteristics offer ultrahigh switching speed and dense

functionality that can lead to compact, ultrafast circuit implementations [45]. The high functional

density of devices such as resonant-tunneling diodes (RTDs) is due to their fold-back I-V characteris-

tics. The effect associated with every folded I-V characteristic is called negative differential-resistance

(NDR): a section of the curve where the device current decreases with increasing voltage across the

terminals. The presence of one NDR region originates two positive differential-resistance (PDR) re-

gions. Since each PDR region can support one stable circuit state, the RTD is inherently bistable. By

stacking several RTDs in an epitaxial process, the devices are connected in series and a multiple-peak

characteristic with several PDR regions [46] is obtained. This makes RTDs an important asset in the

design of multiple-valued logic circuits where digits assume more than simply two values, as is the

case in redundant arithmetic. Many multivalued logic circuits using resonant-tunneling devices have

been developed [46–50]. The rest of this section describes redundant arithmetic implementations using

resonant-tunneling quantum devices.

5.2.1 Multivalued redundant arithmetic using nanoelectronic devices

Lutz Micheel et al. described circuit applications of quantum and heterojunction devices in redun-

dant arithmetic logic [51]. Their work concentrates on three-terminal multiple-peak devices such

as resonant-tunneling bipolar transistors (RTBTs) and resonant-tunneling field effect transistors (RT-

FETs). These devices are fabricated by placing resonant-tunneling diodes in the emitter epitaxial stack

terminals of heterojunction bipolar or hot electron transistors, respectively. Micheel et al. described a

very compact circuit that implements the radix-2 positive-digit algorithm (PD2,4) using multiple-peak

RTDs and field effect transistors.

One of the circuits described in [51] implements positive-digit addition of type PD2,4. This algo-

rithm, illustrated in Fig. 20, is identical to the one used in [1]. Fig. 22 shows a simplified schematic

diagram of the PD2,4 adder circuit using multiple-peak resonant-tunneling field effect transistors (M-

RTFETs). The circuit consists of three identical multilevel folding amplifiers whose inputs are con-

nected by a binary-weighted resistor ladder. Output function W i is generated by the folding amplifier

which is closest to the input. As the input voltage Z i increases from VREF , the three output voltages

start low because VREF turns on the gate voltage of the input FETs in the three folding amplifiers. In the
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Figure 22: Positive-digit adder circuit using multiple-peak resonant-tunneling FETs.

Wi amplifier, when the first valley voltage of the MRTD is reached, the resulting reduction in current

flow causes the input FET to switch off. The active load depletion FET then pulls W i high to VDD. As

the input voltage Zi further increases, this cycle is repeated for all the peak and valley voltages of the

MRTD. In this way, the proper interim sum transfer function is generated. Output signals C i�1 and Ci�2

are obtained in a similar fashion. The resistor ladder, however, divides Z i so that two and four times the

input voltage are required to generate the switching transitions of C i�1 and Ci�2, respectively.

Since the redundant arithmetic circuits proposed by Micheel et al. are at early stages of develop-

ment, there is no experimental information available on the performance of the proposed circuits yet.

The idea proposed by Micheel is to implement these powerful arithmetic circuits using ultrafast de-

vices with concentrated functionality such are resonant-tunneling diodes and hot electron transistors.

This concentrated functionality leads to very efficient circuit implementations requiring few devices.

The combination of all these factors is expected to yield very fast, power-efficient redundant arithmetic

circuit implementations.

5.2.2 Signed-digit adder using MOS transistors and quantum devices

A new multivalued signed-digit adder uses resonant-tunneling diodes and MOS transistors [40]. A

radix-2 arithmetic system was implemented using a three-valued logic with the digit set f�1�0�1g.

Even though it is not currently possible to cointegrate RTDs and MOS devices, various efforts towards

a technology which will integrate NDR and MOS elements are being conducted [52–54]. It is therefore

necessary to develop and study circuits combining the two types of technologies in order to learn how
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Figure 23: Totally-parallel addition algorithm implemented in [40]. (a) Block diagram. (b) SDFA
output functions.

the leading technology can be enhanced by quantum devices.

Fig. 23(a) depicts a block diagram of the signed-digit addition approach used in [40]. Symbols x i,

yi, ci, wi, and si represent three-valued, current-mode signals. The addition of x i and yi is achieved by

wired summation of currents. The function of the SDFA block is to convert the summation input signal,

z, to a two-digit representation of the sum using digits c and w as follows: rc�w � z, where r � 2.

The final sum output, si, is obtained by wired current summation of the interim sum output, w i, and

the incoming carry signal, ci�1. Fig. 23(b) shows the transfer functions for the interim sum w and the

carry c outputs of the SDFA cell. All the digits in the diagram are positive because the circuit uses only

positive currents. In this case, the digit 0 is represented by a current level “3”, digit �2 is represented

by current “1”, and so on. There are two pairs of transfer functions, and the working pair is selected

by the value of zi�1. Signal zi�1 is used to determine if ci�1 ���1, so that the SDFA cell is allowed to

generate an output w ��1 without causing invalid s current levels to be produced by the output wired

current summation.

As seen in Fig. 23(b), literals lit1, lit2, and lit3 contain all the switching threshold points that

describe output functions w and c. The three required literal signals are generated in different blocks

of the circuit as seen in Fig. 24. These literal signals are then used to control switched current sources,
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Figure 24: Circuit diagram of the complete SDFA cell.

which in turn synthesize the SDFA output functions. Signal V α indicates if zi�1 � �1 and its behavior

is identical to literal lit2, which also reduces circuit complexity. Fig. 24 shows a circuit diagram of

the proposed signed-digit adder. Please note that the circuit includes three literal-generating blocks

and two output function synthesizing blocks. There is one current switching block for the interim sum

output and one for the carry output. It can be seen in the diagram that literal lit1 is generated using only

a two-peak RTD, a resistor, and a CMOS inverter. This is a very compact implementation considering

the sophisticated behavior defined for lit1 in Fig. 23(b).

The main advantage of the proposed design when compared to other redundant adder implementa-

tions is compactness, which is primarily due to the non-linear characteristics of RTDs. Also, current-

mode of circuit operation, in which digits are summed by merely connecting their wires together [55],

enabled us to reduce the transistor count. Using only 13 CMOS transistors, five resistors, and a two-

peak RTD, the total number of active and passive devices used in the proposed SDFA circuit is only 19.

From the simulation result, the estimated propagation delay for the circuit is 3.5 nanoseconds.

Table 5 presents the most important characteristics of the redundant adder circuits described in this

section.
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Table 5: Summary of Redundant Arithmetic Circuits Using Alternative Technologies
Approach Ref Speed Technology Device Count
RB2 [43] N/A Silicon Bipolar ECL 150a

PD2,4 [1] 1.6 GHz GaAs HBT 53b

PD2,4 [51] N/A M-RTFETs 21
SDFA [40] 3.5 ns RTD+CMOS 19

aConservative estimate from available information in the paper.
bEstimated from simplified circuit diagrams.

6 Discussion and Conclusions

The preceding sections survey implementations of redundant arithmetic algorithms. For each of the

implementations, the operating principle is presented and the main advantages and disadvantages of

the approach are discussed. The designs are classified in three main categories, namely, conventional

binary logic circuits, current-mode multivalued logic circuits, and circuits based on heterostructure

and quantum electronic devices. For each of the identified implementation categories, the designs are

evaluated and compared with each other in terms of their speed, power consumption, and the number

of devices they require. In this section, we present a general comparison of the implementations which

is independent of the design classification.

To compare the implementations of different design categories with each other, it is necessary to

adopt a subject of comparison which is common to all the identified design categories. This common

element is the single-digit adder cell because it contains similar functional power in all the implemen-

tations. In conventional binary logic designs, the single-digit cell corresponds to a 4:2 compressor or

a carry-save adder cell (both used in multiplier circuits). In current-mode multivalued logic designs

and in heterostructure and quantum electronic implementations, the single-digit cell finds the form of a

signed-digit or a positive-digit adder. Table 6 presents the attributes of the different single-digit adder

cells surveyed. The table indicates the type of implementation for each entry by separating groups of

designs with horizontal lines.

With the possible exception of the algorithm descriptors in the second column, the meaning of the

entries in Table 6 should be clear. In the first three rows of the table a specific acronym indicates the

type of implementation, where CSA stands for carry-save adder and WTC stands for Wallace-tree

compactor. The other rows use an algorithm descriptor consisting of a two-letter acronym followed

by a digit and, optionally, the letter “M”. The two-letter acronym describes the type of algorithm as
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Table 6: Comparative Summary of Redundant Adder Cells
Ref- Delay Power Device Year

Algorithm erence Technology (ns) (mW) Count Published
CSA [20] 1.0-µ NMOS 3 *a 45 1986
WTC [17] 0.8-µ CMOS 1�9 * 56 * 1990
WTC [18] 0.5-µ CMOS 1�2 58 1991
RB-2 [12] 2.7-µ E/D-NMOS 23 * 74 1987
RB-2 [21] 0.8-µ CMOS 1�3 * 42 1993
RB-2 [22] 0.5-µ CMOS 0�89 56 1996
SD-2-M [28] 0.8-µ CMOS 2�3 2�51 34 1986
PD-2-M [7] 0.8-µ CMOS 1�3 * 28 1991
SD-2-M [37] 0.8-µ CMOS 1�6 2�63 50 1994
RB-2 [43] Si Bipolar ECL 150 * 1987
PD-4-M [1] GaAs HBT 0�62 53 * 1992
PD-2-M [51] M-RTFETs 21 * 1993
SD-2-M [40] 2-µ CMOS + RTD 3�5 2�3 19 1997

aAsterisks indicate values inferred from published information.

follows: RB stands for redundant binary, SD stands for signed-digit, and PD stands for positive digit.

The digit in the descriptor specifies the radix of the number system being used. Finally, the optional

letter “M”, when present, indicates that the implementation uses multiple-valued logic. For example,

the algorithm descriptor in the last row of the table specifies a signed-digit, radix-2, multivalued logic

implementation.

Some designs were excluded from the comparison in Table 6 because no details of the implemen-

tation of the adder cells are included in the original work. Similarly, there were performance charac-

teristics in some of the designs which were not specified, and it was necessary to infer their values

from information contained in the paper. Inferred parameter values are marked with an asterisk. It

was necessary to leave some blank entries in the table since, in some cases, it was not possible to infer

with confidence all the parameters for all the designs and, in other cases [43,51], the designs were only

described at the functional and operating principle levels and were not demonstrated experimentally.

Table 6 displays the three types of single-digit cell implementations. The top group in the table

corresponds to conventional binary logic designs, the second group includes current-mode MOS im-

plementations, and the bottom group clusters implementations based on heterostructure and quantum

devices. Please observe that, as one could expect, there have been many more implementations relying

on conventional binary logic than on each of the other two approaches. While six implementations be-

long to the conventional binary logic group, only three are in the current-mode multivalued logic group.

Another interesting observation is that a great majority of the designs surveyed involve MOS-related
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technologies. In the table, 10 out of 13 designs, 78%, use MOS devices. This is also an expected result

given the predominance enjoyed by MOS technology in the world of integrated electronics.

In general, alternative implementations based on current-mode multivalued logic, heterostructure

devices, or quantum electronic circuits can be helpful in reducing the number of circuit elements re-

quired to build an arithmetic circuit while, at the same time, increasing the speed performance. More-

over, in multivalued logic circuits, the number of interconnecting wires required to achieve certain

data bandwidth is reduced. This is of particular importance in VLSI and ULSI systems where there

is an ever-increasing predominance of interconnections on circuit area, speed, and power consump-

tion [47, 56]. While alternative techniques offer good prospects for improvement, their development is

still at early stages. Being more mature, MOS technology has the advantage of a greater integration

capacity and a constant ongoing improvement of its state-of-the-art. It is therefore not possible to con-

clude from the comparison made in Table 6 that conventional binary logic implementations in MOS

technology will be replaced by alternative circuit techniques in the immediate future.
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