
A Hexagonal Array Machine for Concurrent Multilayer Maze Routing 

by R. Venkateswaran and P. Mazumder 

In the late 80’s, the network of workstations (having a clock rate of about 30 MHz) became the de 
facto CAD design environment and replaced the mid-frame Vax machines. Our research vision was 
to develop distributed layout synthesis tools where coarse-grained tasks such as cell placement, 
floorplanning, compaction and chip testing  problems were solved by using Genetic Algorithms by 
running concurrently over multiple desktop computers. See our book on Genetic Algorithms for 
details. However, chip routing algorithms require fine-grained parallelism. That is why, we designed 
two co-processor chips: HAM and CHiRPS. They were designed and fabricated by us at that time to 
solve the emerging crisis of layout turnaround time due to aggressive scaling of VLSI chips.. 
However, in 1992 DEC alpha chips leapfrogged the clocking rate in the regime of 300 MHz by taking 
adavntages of several breakthroughs in CMOS process technology and subsequently Intel, which 
acquired DEC foundry in mid 90’s, made further advancements in process technology and ramped 
the clock speed to 3 GHz. This technological breakthrough had mitigated the needs for parallel 
CAD and the routing coprocessors we built at that time. Hexagonal Array Machine was designed and 
tested by R. Venketswaran and P. Mazumder in 1990. HAM coprocessor was later replaced by them 
by designing a general purpose multilayer routing chip that was named: Configurable Highly Routable 
Parallel System (CHiRPS). Please find the description of CHiRPS coprocessor in an accompanying 
paper that demonstrates how fast parallel routing can be achieved by polymorphic switch setting in 
the massively parallel ensemble of rudimentary processing elements in CHiRPS. The programmable 
coprocessor provided fast and efficient results for different styles of routing such as maze, line 
probe, channel, switchbox, general area, and so on 
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Coprocessor Design for Multilayer 
Surface-Mounted PCB Routing 

Ramachandran Venkateswaran, Student Member, IEEE, and Pinaki Mazumder, Member, IEEE 

Absfract-The printed circuit boards (PCB’s) for the 1990’s 
can be characterized by higher circuit densities, multiple routing 
layers, newer packaging technologies, and demand for lower 
manufacturing costs. The task of connecting all the traces on 
such a complex board will become more and more time con- 
suming. This paper presents the issues involved in the design of 
a special-purpose processing array system, called HAM, which 
will accelerate such compute-intensive wire routing tasks. It 
is especially suited for double-sided surface-mounted boards 
which require complex three-dimensional search operations over 
multiple wiring planes. The novel features of the design include 
a hexagonal interconnection scheme to improve workload dis- 
tributions during multilayer concurrent search operations and 
the VLSI custom design of the processors. Particular emphasis 
has been placed on the demands of maze routing such as in the 
allocation of the routing database on the multiple processors, 
design of buffer stores for maintaining the frontier-lists, etc. A 
novel scheme of cell-address propagation, which is quite differ- 
ent from the traditional grid-coordinate approach is discussed. 
This provides for rapid lookup of pertinent routing information 
and can be extended to any distributed memory multiprocessor 
system. A global pipelining scheme of cell updates and expands 
is discussed. Experimental results are presented relating the 
speedup to Merent criteria such as number of processors and 
size of the local memory for two different modes of parallel wave 
propagation. 

I. INTRODUCTION 
HE NEW generation printed circuit boards (PCB’s) can T be characterized by higher circuit densities, finer trace 

widths, multiple routing layers, stringent performance con- 
straints, complex packaging and manufacturing technology, 
and demand for lower manufacturing costs. Designers must get 
their products to the market fast or risk losing their competitive 
edge. This requires an integrated design solution uniting the 
power and convenience of automated tools with the interactive 
expertise of the designer. Several cost measures are often 
used in the routing process. For instance, nets pertaining to 
analog components such as op-amps need to be routed within a 
certain pre-specified length. Board manufacturability and ease 
of update are important routing requirements. Vias have to be 
intelligently used to provide compact multilayer routes for all 
the nets. Wirelength minimization is also important for min- 
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Fig. I .  Different via structures. 

imizing parasitic effects and is critical for high-performance 
designs. 

Also in terms of board manufacturability, the primary 
concem is the number of layers. Given an unlimited number 
of layers to play with, any router can attain 100% success rate; 
however, the additional layers greatly increase the manufac- 
turing cost and so typically the number of routing layers that 
are actually available is limited. Most automatic routers are 
frequently restricted to routing between pairs of layers using 
vias for feedthroughs, and can only be extended to multi-layer 
configurations by concatenating layer pairs. Since, this does 
not make use of the variety of via-structures that are becoming 
possible in addition to the traditional through-hole vias (Fig. 
l), it becomes all the more imperative that all layers be 
concurrently considered to achieve efficient multilayer routes. 
Though concurrent search can result in more compact boards, 
it is also more complex. Previously, routing algorithms could 
proceed by reaching the leads X ,  Y coordinates on any layer. 
Now it must be assumed that the terminal is available on only 
one surface at its X , Y  location. 

In addition, advances in packaging technology, such as the 
increasing use of sur$ace mounted devices have led to double- 
sided mount configurations. This opens up new problems such 
as whether to keep closely connected components on the same 
side, or to divide them between the two sides so as to increase 
compactness. In the absence of better solutions, the approach 
typically taken is to generate several initial placements and 
route each of them separately and choose the best one. This 
increases the time for routing by several time folds. 

One of the principal routing strategies that has been found 
to be capable of handling all these varied requirements in a 
flexible manner is the maze or flood router. First proposed 
in 1961 by Lee [l] ,  this alogrithm is still the mainstay of 
autorouting technology for PCB’s. It represents a general 
approach to routing (rather than a specific algorithm) and 
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further guarantees to find a path if one exists. The maze router 
can be extended for multilayer cases as well. However, it 
is computationally extremely expensive. One simplification 
is to first use faster approaches such as pattern routing to 
complete most of the easy connections which account for about 
85% of all the nets. Unfortunately, though, the last 10-15% 
of all traces require the most time and computing resources 
since they are often the most complex to route. It may also 
become necessary to rip-up and reroute existing connections 
to make way for these traces. This process typically requires 
three or four invocations of the Lee algorithm. Since the Lee 
algorithm is at its slowest when connections are not found, 
the speed problem becomes significant. Furthermore, it gets 
only more worse as this phase is often done interactively with 
expert designer interface and hence rapid response times are 
desirable. 

A custom-hardware implementation for maze routing can 
run as much as a thousand times faster than a general purpose 
computer if the routing processor architecture is ingeniously 
designed to exploit all the intrinsic data parallelism in the 
search operations. Hardware costs are rapidly decreasing and 
with the aid of VLSI it is now possible to construct a single- 
board hardware accelerator that can interface to a personal 
computer or workstation running routing software. Further- 
more, it is unlikely that the maze routing paradigm can be 
supplemented in the near future by any other because of its 
extreme flexibility, and because of the nonplanar nature of 
grids in complex multilayer PCB’s. Thus a routing processor 
supporting the general maze router with flexible cost capability 
does not suffer the risk of obsolescence as could be the case 
with other algorithm-specific solutions. This paper focuses on 
the practical issues in the actual construction of one such 
system, called Hexagonal Array Machine and acronymed as 
(HAM). Since multidimensional arrays are very difficult to 
implement, and since the sizes of the grids are not known a 
priori. HAM maps the grid onto a smaller number of pro- 
cessors connected in a hexagonal wraparound topology. The 
hexagonal interconnection scheme has been previously shown 
[2], to possess the best characteristics amongst other two- 
dimensional topologies for multilayer concurrent searching 
operations. 

The rest of the paper is organized as follows. In Section 11, 
we present a motivation for our work and summarize some 
of the previous work done. Section 111 describes the overall 
architecture and some issues pertaining to maze routing. A 
new and more practical scheme for address computation during 
wavefront propagation is presented. Section IV describes the 
VLSI design issues for the construction of the individual 
HAM processors. Issues such as memory and buffer storage 
organization, datapath and microprogrammed control are dis- 
cussed. The timing and instruction flow is described along 
with a critical path analysis. In Section V, we summarize the 
results of system level simulations which evaluate the effect 
of internal storage size, number of processors and mode of 
wavefront expansion (one wavefront or multiple wavefronts 
at a time) on overall performance. It may be noted that 
the distributed nature of computation proposed here is also 
applicable to other implementations as well. 

(a) (b) 

routing solution. 
Fig. 2. (a) A small double-sided SMT routing problem (b) The three-layer 

11. MULTILAYER CONCURRENT MAZE-ROUTING 

A. Maze Routing 

Maze routing is usually the only practical solution to do 
multilayer routing with double-sided surface mounted module 
placement. Maze routing consists of three main operations: 
the first prepares the board for routing by partitioning it into 
hundreds or thousands of cells. The size of the grid cells is 
determined by the pad spacing and other design rules being 
employed. All the structures on the board such as pads, copper 
areas, traces, tooling holes, etc. are marked in the cells to 
which they belong. After creating the grid, the maze router 
begins an “expansion” stage. The router examines all the grid 
points in larger and larger concentric rings around the source 
pad till the destination is reached. Simultaneously, the router 
assigns cost values to each cell in accordance to some metric. 
These metrics are based on a variety of routing variables such 
as heading toward the target, adding a via, making a comer, 
or using preferred routing layers. In fact, the popularity of 
the maze router stems from the capability to tailer the cost 
functions to meet almost any routing requirements. Once the 
target pad is reached a “backtrace” is performed to the origin 
pad from the target point along one of the lowest cost paths. 

B. Need for  Concurrent Multilayer Search 
One reason for multilayer search as was mentioned earlier 

is to minimize the total number of layers, thereby reducing the 
manufacturing costs of the board. The problem is more severe 
in double-sided surface-mounted PCB’s with multiple signal 
layers. For example, consider a three-layer SMT board with 
three modules Cl,C2, and C3 as shown in Fig. 2(a). Nets 
A and B represent interconnections between terminals on one 
side of the board while net C interconnects two terminals on 
the other side of the board. Net D, on the other hand, connects 
two pins on opposite sides. An optimal shortest path routing 
solution is shown in Fig. 2(b). Note the buried vias for net 
B, which allows net C to be routed beneath its terminals, 
could be readily found only by using concurrent search on all 
layers. 
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TABLE I 
SOME EXISTING ROUTING ACCELERATORS 

Accelerator Architecture Routing Model Comments 

Wire Routing Machine [7] 32 x 32 array with General purpose 280 pproc Maze routing for 1-2 layer grids with 

Interconnection Network PE design 

endaround rowlcolumn + 15Kh mednode detailedglobal wiring variable grid weighting 
wraparounds 

Distributed Array 64 x 64 array with global Bit-serial proc with Maze routing for 2-layers unit cost grids; 
Processor [8] rowkol buses for global memory detailedglobal wiring DAP is a commercial 

Toroidal Machine [9] 
movement machine 
Prototype 8 x 8 array with 
twisted torus wraparounds ROM and RAM detailedglobal wiring support for interactive 

MANURE2 [4] SISD microcode machine Custom designed bitmap + Maze routing for detailed Multilayer support by 

NEC ~ P D 7 8 0 0  PE + 8Kb Maze routing for 1-2 layers weighted grids; 

rip-up and reroute 

address + markkost wiring reconfiguring via-bits in 
processors bitmap; support for diagonal 

routing; staged expansions 

C. Previous Accelerators 

Routing accelerators can be broadly categorized as either 
SISD (single instruction single data) or SIMD (single in- 
struction multiple data) machines. The first category [4]-[6] 
consists of a conventional processor aided by special-purpose 
support hardware to speed up some of the computations in- 
volved such as address computations, frontier-list managment, 
etc. However, they do not capture the parallelism inherent 
within the algorithm. Instead, speedup is obtained by the 
elimination of operating system overheads and by efficiently 
performing some of the common operations in hardware. 

The SIMD systems account for the intrinsic data parallelism 
in maze routing. The primary idea is to use an N x N 
array of identical processing elements that have a one-to-one 
correspondence with the N x N grid plane and so achieve 
a linear runtime for finding a path. A major disadvantage 
with such “full-grid” machines is that they need O ( N 2 )  PE’s 
despite the fact that almost all of them are not utilized at the 
same time. Moreover, they cannot handle problem sizes which 
are bigger than the physical size of the processing array. This 
is solved by allowing for wraparound connections and making 
each PE in the array to be responsible for maintaining the 
status of several grid cells. Some of the designs which fall in 
this category are the Wire Routing Machine [7], the Distributed 
Array Processor [8], and the Toroidal Machine [9]. A brief 
comparison of these routers is provided in Table I. 

The HAM approach is also SIMD based. It improves on 
existing approaches in three main aspects. a) The individual 
compute elements have been custom designed keeping in mind 
the nature of data retrieval and manipulation operations re- 
quired for maze routing. Careful consideration has been given 
to the interprocessor communication demands which is often 
the bottleneck for previous routers. b) The second reason has 
to do with the mapping used to assign grid cells to processors 
so that the workload gets uniformly distributed. The mapping 
provides the maximum interprocessor cycle period, i.e., the 
minimum distance between two occurrences of the same 
processing element along any straight line (including diagonal 
lines) [ 2 ] .  c) The hexagonal interconnection which supports 
concurrent search in multiple layers needed in complex board 
routing. 

(plug-in accelerator board) 

pTf 
0 0  

Fig. 3. Overview of the HAM routing system. 

111. HAM SYSTEM ARCHITECTURE 

A.  General Organization 

In this section, we present the overall system organization. 
There are three levels of interfaces involved. The first deals 
with the external interface between the workstation and the 
accelerator. The second deals with the interface between the 
accelerator controller and the processors in the array and the 
third level is the one between the processors themselves. 

External Interface: Fig. 3 shows the HAM system organi- 
zation in a distributed CAD system running on a network of 
workstations. It is conceived of as a single board system that 
can be plugged into an expansion slot of any conventional 
workstation running CAD software. The layout software can 
therefore address the accelerator as a device whenever it needs 
to perform a maze routing operaton. Processors are organized 
in a two-dimensional lattice. The processor array operates 
under the supervision of a global control unit (GCU) which 
is responsible for interfacing with the host workstation, for 
performing the sequential parts of the algorithm and for issuing 
the commands which are performed by all processors in a 
lock-step fashion. 
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Fig. 4. Interprocessor communication interface. 

GCU/Array Interface: The HAM system is based on an 
SIMD model, wherein each processor basically executes the 
same instruction in the same clock cycle on its local data 
set. In each cycle, the GCU broadcasts an address to all 
processors which corresponds to a particular instruction stored 
in the processor’s control memory. The processors themselves 
lack any decision making capability. Sample instructions in- 
clude expand i n  direction d ,  backtrace, start a new wave- 
f ront  and so on. In addition, the GCU has access to the input 
and output ports of the processors so as to be able to perform 
initialization and obtain results in the end. 

Interprocessor Interface: Maze routing is highly commu- 
nication intensive, but the communications follow a near- 
neighbor pattern. Consequently, each processor is directly 
connected to six other nodes in the array. Communication is 
allowed only on these links. In particular, there is no message- 
passing mechanism between any two arbitrary processors 
in the array. This model therefore eliminates the need for 
any hardware message router. Also, the proposed system 
is based on a distributed memory model. Any changes to 
the memory contents is to be accomplished by message 
passing alone. This eliminates the need for complex data 
consistency and data coherency control present in a shared- 
memory system. In an ideal system, each processor will have 
six parallel ports to communicate with the six neighbors; 
but in our implementation we have opted for a single-port 
time-multiplexed scheme, wherein, in any one clock cycle, all 
processors in the array talk to their neighbor in one of the six 
directions. A multiplexer is placed at the input pins to select 
one of the 6 neighbor data, as shown in Fig. 4. This selection 
is based on the dir control bits generated by the processor. 

B. Maze Routing Requirements 

In the HAM system, as presented above, each processor 
has access only to its local memory, called grid memory, 
which stores the information pertaining to all the cells that 
are mapped onto that processor. In this paper, the per-cell 
storage format used is shown in Fig. 5.  The cost field stores 
the least cost path discovered to that cell from the source 
cell. The directional mask field is used for backtracing the net 
from the target cell to the source. The content of the status 
field is as shown in the figure and is used to control the wave 
propagation and backtrace phases. 

18 15 9 0 

Fig. 5. Information stored in grid-memory for each grid cell. 

During the maze algorithm, the processors constantly have 
to access their local stores and exchange information be- 
tween themselves through message-passing. This raises several 
interesting questions that become critical in determining per- 
formance. 

1) How does one processor inform the other as to the 

2) What is the message overhead during wave-propagation? 
3) How do wavefronts proceed? 
4) How do the processors keep track of the frontier list (i.e., 

cells that have been reached during wave propagation but 
which have not yet been expanded out)? 

1) Next-Cell Address Computation: Suppose two neighbor- 
ing grid cells c1 and cz are mapped to processors pl and p:! 
and their information is stored at addresses ml and mz in 
the respective local memories. Then, in the traditional grid- 
coordinate transfer scheme, pl communicates the ( x ,  y, z) grid 
coordinates of cz to pz;  which lacking other information has 
to search, possibly its entire memory, trying to determine the 
location (mz) where data for cz is to be stored. In [2] we had 
alluded to this problem and had suggested that it would be 
much faster to have pl communicate m2 directly to pz.  This 
is the basis of our address-transfer scheme. The message size 
for the address-transfer scheme is only [log[(kG,G,)/N]1 
bits for a k-layer G, x G, grid mapped onto an N-processor 
system. As opposed to this, transferring coordinates needs 
[(log k + log G, + log G,)]. Thus there is also a saving in 
the message traffic. 

The problem, therefore, is reduced to one of each processor 
determining the address to transmit to their neighbors in all 
six directions. An index-based mapping scheme was given 
an earlier paper [2] and is briefly summarized below. “Let 
c 1 .  CZ,  . . . , ck be the ordered list of cells to which processor p 
is assigned. The ordering is by a row-major traversal of cells 
one layer at a time. Then, we define INDEX[c;] = i .  Once, 
all the INDEX values are known, each processing element can 
calculate the difference Ad, between its INDEX value and the 
INDEX values of its neighbor in direction d .  Grid boundaries 
can be handled using a dummy value X.” Furthermore, it 
was shown that for the hexagonal mapping on N processors, 
the maximum absolute value of Ad is [max(G,G,)/Nl, 
independent of the number of layers k. 

Thus in this scheme, the entry for cell (2, y, z) is stored in 
the local memory of the mapped processing element at address 
(zk . . . zo, b, . . . bo)  where Zk . . . zo is the binary representation 
of z and b, . . .  bo is the binary representation of INDEX 

identity of the cell being expanded? 
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Boundary Frame Pad 
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Fig. 6. Padding scheme for a 2-layer 4 x 4 grid. 

[ z , g , z ] .  Then if ma is the address of the cell currently 
being expanded, the information passed to the neighboring 
processing element in direction d is the value (ma + Ad), 
where Ad is the difference stored at ma for direction d and 
so can be trivially computed. 

Padding Approach: The main problem with the above ap- 
proach is the additional amount of memory needed to store 
the A values. In fact for a grid of size 100 x 100 x 4 and 
N = 61, JAdJ 5 2 and thus 3 * 6 = 18 bits are needed for 
every cell. This is almost equal to the size of the information 
stored for the cell and is therefore not acceptable. 

Instead, we use a simpler modification which we call the 
padding approach. First a 1-cell rectangular frame is padded 
to the original grid and all these cells are marked blocked. 
These serve to delineate the boundaries of the grid and play 
the role of the dummy X INDEX values. Subsequently, the 
grid is padded in the X-dimension with as few dummy cells 
as are needed to make G, a multiple, say r of N .  Note that 
addition of dummy cells do not affect the routing as they 
are simply treated as blocked cells. This is shown in Fig. 6 
for a small 4 x 4 2-layer grid using a 7-node system. After 
the addition of the boundary frame, an additional column is 
needed to make G, = r * 7, r = 1. 

For the hexagonal mapping, each row has exactly T occur- 
rences of each PE. Visit the processors proceeding from layer 
0 to the last layer and going row-by-row within each layer. 
Then, if a cell c corresponds to the ith occurrence of the PE, 
information pertaining to it will be stored at address i in the 
grid-memory. From this, it can be concluded that the north, 
south, up and down neighbors of c will & stored at address 
i - T ,  i + T ,  i - rG,, and i + rG,, respectively, in the grid- 
memory of the respective PE’s. Moreover, the east and west 
cells will be stored at the same address z of the east/west 
neighbor. The exception is for the processor assigned to the 
leftmost boundary of each row when T > 1. This processor 
needs to send address i - 1 to and add1 to address received 
from its west neighbor. However, this requires only 1 bit 
of additional information to be stored with each cell. Also, 
since the grid size is known at the outset, the offsets can 
be precomputed reducing the address calculation and memory 
retrieval to very simple operations. 

2) BufSer Store Design: Each processor needs to maintain 
a list of frontier cells which have to be expanded in subsequent 
cycles. We refer to the unit maintaining the address of frontier 
cells as the buffer store. The simplest implementation of the 

buffer store is as a hardware stack. Other implementations in- 
clude a queue structure. Stacks are preferable for synchronous 
expansion while queues are better for asynchronous expansion 
as explained below. 

3) Expansion Style: A multiprocessor system running Lee’s 
algorithm can be built on two possible approaches for wave- 
front propagation. 

Synchronous: Here, the entire current wavefront is ex- 
panded before the next one is considered for 
expansion. It is possible here, due to multi- 
ple cell assignments, that certain processors 
which have cells on the new wavefront are 
forcibly kept idle till the expansion of the 
previous wavefront is completed. 

Asynchronous: In this mode of operation, at any cycle, any 
processor that has a cell that is yet to be 
expanded is allowed to do so. The concept 
of a wavefront has now to be interpreted as 
a collection of cells that have been reached 
from the source but have not yet been ex- 
panded. 

From the implementation point of view, the asynchronous 
mode is simpler; for the processors can simply inspect their 
buffer stores and if they find a cell start expanding it. The GCU 
only has to be informed when the target cell is reached. On the 
other hand, in the synchronous mode, each processor has to 
inform the GCU if it has any cells left on the current wavefront 
that are still to be expanded. This effect can be realized by 
maintaining two stacks, one for the current wavefront cells 
and one for the new wavefront cells. A special instruction has 
also to be added to the instruction set of the GCU to initiate 
a new wavefront. 

From the algorithmic point, when the wavefronts are al- 
lowed to proceed asynchronously, it is possible that one 
message may go racing out ahead of the others and cause 
one or more grid cells to be expanded incorrectly. This has 
the implication that when the target is first reached, the cost 
c (s , t ) ,  may not represent the shortest path from the source. 
This race effect can be minimized by adopting the policy 
of always expanding a frontier cell with the lowest cost or 
altemately adopting a queue data structure instead of a stack 
for the buffer store. 

Note, both the queue and two-stack structures can be 
realized using a single RAM module and two sets of counters. 
In case of the latter, one stack proceeds from the top down 
while the other proceeds from the bottom up. The counters 
denote the top of the two stacks and their roles can be 
interchanged at the start of a new wavefront. For the queue, 
the two counters mark the head and tail, respectively. 

IV. PROCESSOR ELEMENT DESIGN 

There are several engineering issues such as chip and 
board area, power consumption, timing, control mechanism, 
wireability, memory organization and so on that are crucial 
in determinig the viability of the accelerator. Furthermore, the 
desire to meet all these criteria at reasonable expense mandates 
that the individual processors of the accelerator array and the 
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Fig. 7. Block-level diagram of a processor. 

array controller be custom designed and not just built with 
general-purpose or off-the-shelf components. Since, our goal 
is ultimately to accelerate maze routing, this customization will 
be largely influenced by the typical operations to be performed 
therein. Within this framework, we wish to incorporate as 
much flexibility as possible so as to allow for different cost 
functions and expansion criteria to match the fabrication 
technology requirements. 

A. General Design Overview 

We consider the following four issues here: 
designing the datapath to include hardware support for 
commonly used operations and data-structure handling 
such as conversion between cell coordinates and memory 
address, computation of next cell address, maintaining 
frontier-list, and so on; 
designing the grid memory configuration so as to optimize 
access to the grid-related information; 
designing an appropriate instruction set; 
the global strategy for control of the processors. 

Fig. 7 shows a block-level diagram of the processor showing 
the major components. 

Control: We use a microprogrammable control-based de- 
sign. Each PE has a 32-word deep microstore that generates 
36 bits to control the datapath. A 5-bit address select one 
microinstruction each cycle. The control unit is pipelined so 
that while one instruction is being fetched, the previous one is 
being executed. It also allows for separate testing of the control 
and data sections of the PE by allowing the user to either read 
the contents of the microinstruction memory or to test the 
operation of the datapath under direct microcontrol. Since, the 
microstore can be downloaded at runtime, special instructions 
that make the full use of the parallelism afforded by the 
datapath can be designed and used for different algorithms. 
This approach makes it possible to run various versions of 
maze algorithms (and possibly other similar approaches) on the 
same hardware simply by reprogramming the control memory. 
This was considered important at least in the prototype version. 

Datapath: The main datapath is 10-bit wide and includes 
the input and the output units, a register file, and two PLA 
blocks called the Update unit and the Expand unit. As the 
names suggest, the update unit helps to update the status of 
the grid cell which is being expanded into; while the expand 
unit does the appropriate cost and status processing needed to 
expand a cell on the wavefront to the neighbors. With a small 
modification, the same logic can handle backtracing as well. 
There is a separate &bit datapath for handling the directional 
mask information and a 3-bit datapath for cell status. The 
operation of the datapath is controlled by the microcode bits 
generated in the control section. 

Memory: The grid-memory stores the data regarding each 
grid cell that has been assigned by the hexagonal map to 
the processor. It is organized into 4 equal banks to increase 
simultaneous access. This is useful for the grid-clearance phase 
for instance. During expansion the higher order two bits of the 
address are used to select the appropriate bank. A separate 
buffer-store, implemented using a 1K RAM and up-down 
counters is used to maintain the current frontier list at that 
processor, i.e., all grid-cells that have been mapped to that 
processor and which are in the current wavefront. 

B. Communication with Other PE's 

Each processor needs to communicate information to its 6 
physical neighbors. This data (address and cost information) 
is assumed to be 10-bit wide. In the prototype version, each 
processor is implemented in a separate chip with only one 
10-bit wide parallel input port and a separate 10-bit parallel 
output port. External switches are, therefore, needed to select 
the data from and to an appropriate neighbor during any clock 
cycle. The selection is based on the direction dir bits from the 
processor. In the current SIMD version, the dir bits are the 
same for all processors; consequently in one clock cycle all 
processors communicate to say their east neighbor (dir = 0) 
or north neighbor (dir = 2) and so on. 

This design, though slightly more complex, is adopted for 
the following reasons: (1) It reduces the pin count problem 
from 120 pins to 20. (2) Even if a cell is expanded and the 
information propagated to all six neighbors in parallel, the 
receiving processor has to sequentially process the data and 
update its grid store. (3) Parallel expansion in all six directions 
require that the next address and cost computation circuitry be 
replicated. 

The latter two problems are due to the fact that the expan- 
sion phase needs to access memory only once; whereas the 
receiving processor can receive messages from six neighbors 
in one cycle for six different cells; thus requiring six memory 
reads and writes. Serial communciation between processors 
could also solve the pin-count problem but not the algorithmic 
asymmetry in the update and expand operations. The typical 
scenario of computation and communication is shown in Fig. 
9. 

C. Timing 

Timing is a critical issue especially in the design of a mul- 
tiprocessor SIMD system operating under a global clock(s). A 
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Fig. 9. Flow of parallel expands and updates across processors. 

highly complex multiphase scheme can be counterproductive 
because of possible skews and other overhead. For maze 
routing, we found that a simple two-phase nonoverlapping 
clock strategy, as shown in Fig. 8, is adequate. The instruction 
issue is as follows. The memory address (external instruction) 
is maintained stable from the end of CPI to the end of CP2. 
At this time, the data is read into the master. During CPl, this 
data gets transferred from the master to the slave register in the 
control memory. Simultaneously, the memory address circuitry 
is precharged during CPl . The control signals controlling the 
operation of the processor are decoded from the output of the 
slave and thus remain stable from the start of one CP1 cycle 
to the next. 

The rest of the processor performs three main operations. 
SfarrExpand: This cycle is initiated at the start and it serves 

to select a cell on the current wavefront for 
expansion. The information pertaining to the 
cell chosen is obtained from the grid memory. 
Each processor maintains a list of addresses 
pertaining to its set of current frontier cells in 
a buffer store. The StartExpand cycle takes 
two CPl-CP;! cycles. During the first CP1 
cycle, the address at the top of the store is 
popped and is used to load the A2 latch. 
In the following CP2 cycle, the cost and 
expansion status is read from the grid memory 
and latched in the D2 register. The status of 
the grid memory is then updated (changed 
from wavefront to expanded) during the next 
CPl-CP2 cycle. 

During expansion operations, sometimes a 
given processor has no current cells on the 
wavefront. In such a case, the processor sends 
an address of 0. By making memory address 
0 a reserved word, the receiving processor es- 
sentially performs noops on this data. Address 
0 is not to be pushed into the buffer store; 
hence preventing it from being used in future 
expansions. 
Expanding a cell c on the current wavefront 
consists of computing the cost and address 
information to propagate to the neighboring 
processors. As mentioned previously, the ad- 
dress information identifies the expanded cell 
to the receiving processor. In the HAM system 
address computation is done using the padding 
scheme described before. The expand cycle 
takes two CPl-CP2 cycles. The Expand PLA 
computes the next-cell address during CPl 
and latches it onto the output ports during 
CP2; in the next CPl-CP2 cycle, it does the 
same using the cost information instead. This 
address and cost information is received and 
processed by the update unit of the neighbor- 
ing processor as described below. 
This consists of receiving information (address 
and cost) of a cell, say c being expanded 
from the input ports, accessing the grid mem- 
ory for the current status of c and updating 
the information as dictated by the maze al- 
gorithm. The A/D latches serve the role of 
address and data registers for this purpose. The 
whole operation is designed to complete in 
two CPl-CP2 cycles and is referred to as one 
update cycle. During the first CP1 on-period, 
the A latch gets loaded with the address for 
cell c. This value is held constant for the 
rest of the update cycle. The contents of the 
grid memory for that address is read and is 
available during the following CP2 cycle at 
which time it is latched into the D latch. 
During the second CP1 cycle, the latched cost 
information for c is compared with the new 

Expand: 

Update: 
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cost information received from the input port 
by the Update PLA and a new value (cost 
and status) is determined and is latched in 
the Z1 register. Next, during CP2, the new 
updated information gets written into the grid 
memory. This completes the update cycle and 
the processor then proceeds to receiving a new 
set of (address, cost) information pertaining to 
other cells being added to the wavefront. 

Fig. 9 summarizes the above activities for one expand 
and one update cycle. One way to view this is as a global 
pipelining of expand and update operations taking place across 
the processor array. In the steady state, each cell expand takes 
14 clock cycles: 2 to get the next cell on the wavefront; 2 
for expanding to one neighbor (for six neighbors). A read 
or write is performed on the memory whenever CP2 is on. 
The backtrace phase operates along the same lines as the 
propagation phase with the exception that there is no longer 
any need for the cost information. Backtrace proceeds by 
passing the address of the next cell, if it is to be included 
in the final net-route; 0, otherwise to the neighboring PE. The 
backtrace logic is considered as part of the Expand unit and 
is discussed later. Backtrace needs 8 clock cycles. 

D. Input and Next-Cell Units 

The input and next-cell units store cost information from 
the neighboring PE’s and from the memory. The Input unit 
is made up of two 10-bit latches A1 and D1. The two also 
serve as the address and data-registers for the grid memory. 
Their function is controlled by 3 microcode bits: aldl, dldl ,  
sand albus. The last is used to determine which of the latches 
actually place data on the A1 bus. The Next-cell unit comprises 
of latches A2 and D2 which serve a similar role. 

E. Update Unit 

The main function of the Update unit is to determine the 
new contents of the grid-memory during the expansion phase. 
It has 4 modes of operation controlled by the microcode bits 
fur and fu2. 

f u l  fu2 function 
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- 

0 0 SEL A 
0 1 SEL B 
1 0 INC A 
1 1 MAZE 

Maze Operation: This serves to perform the Update algo- 
rithm and is implemented as a PLA. The Update unit uses two 
sets of inputs. One set pertains to the grid-memory contents 
of the cell ao being updated. This has three components (CO, 

mo, so) which denote the current lowest cost to reach the cell, 
the directions from which the cell has been reached so far 
and the status of the cell. The second set of inputs has two 
components (cn, mn) where cn is the current cost to reach the 
cell; mn represents the direction of the sending processor w.r.t. 
this PE (i.e., east, or west neighbor, etc). 

The Update algorithm first checks if this cell is the target. If 
so a special end signal is activated which is caught by the GCU 
and used to terminate the wavefront expansion. Otherwise, if 
it is a new cell, then the new cost is used and the cell status 
is changed to wavefront. It is also possible for the same cell 
to be reached from more than one neighboring directions. If 
the new cost is less than the current lowest cost path, then it 
becomes the new lowest cost and the direction information is 
updated accordingly; if it is the same then only the direction 
part gets affected; otherwise the old memory contents remain 
unaffected. 

Update Algorithm 

Begin Update 
If old status (so)is FREE or TARGET) 

/*this is the first time this cell 

or (status is WAVEFRONT OR EXPANDED 

/*the new path is the least cost path, 

has been hit*/ 

and CO > cn) 

so accept it*/ 
Then CostOut = cn 

MaskOut = mn 
StatOut = WAVEFRONT 

CostOut = CO 

StatOut = so 
If (status is WAVEFRONT or EX- 

Else 

PANDED and CO = cn) 
/*alternate path of same cost*/ 
MaskOut = molmn /*bitwise or*/ 

MaskOut = mo 
Else 

Endl f 
Endi f 

End Update 

The directional mask information serves two main purposes: 
(1) it can be used in a flexible manner during the backtrace 
phase to retrace a path to the source, (2) it can be used 
during expansion to prevent spurious messages being sent. 
For instance, say processor 1 expands cell c1 and propagates 
the information to processor 2. Then processor 2 marks in its 
memory that it has received this information from processor 
1. Consequently, when processor 2 is expanding c2 (the cell 
adjacent to CI), it need not propagate the message back to c1. 

The output of the Update logic is latched into Z1 based on 
microcode bit zldl. There is another bit exp which if set to 
1 will force StatOut to EXPANDED during wave-propagate 
phase and to NET during Backtrace phase. The INC A mode 
of the Update logic is mainly used during the initialization 
process to step through the memory addresses in a sequential 
fashion; the SEL A and SEL B modes are used in the backtrace 
phase when the update algorithm is to be bypassed. Also, they 
allow flexibility in performing other computations if so needed. 
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Fig. 10. Local-memory organization. 

F. Expand Unit 

The Expand unit does the appropriate cost and mask pro- 
cessing needed to expand a cell on the wavefront to the 
neighbors. It also has logic to account for backtracing and 
has 4 modes of operation controlled by the microcode bits fe l  
and fe2. 

~ ~~ 

f e l  fe2 function 
0 0 SEL A 
0 1 SEL B 
1 0 A + B  
1 1 A - B  

Usually the B input consists of data from the register file. 
This could be the additive factors for the address calculation or 
the incremental cost to propagate in a certain direction. Note, 
the output is zerod out if the PeActive control signal is not 
True. 

In addition there is a backtrace logic which is operative 
during the backtrace phase. If it is determined that the cell 
under consideration has been labeled from multiple directions, 
then the direction chosen for the backtrace to proceed is the 
one that causes the fewest number of bends and layers changes. 
This is done using a priority encoder circuit which compares 
the direction from which the cell had been expanded and the 
direction from which the backtrace operation has reached the 
cell. 

G. Local-Memory Organization 

This serves to maintain information pertaining to each grid- 
point that is mapped onto that PE. The memory is implemented 
using a static RAM of size 1024 x 19. The memory needs to be 
accessed in every instruction cycle of the propagation phase. 

Also, during the initial set-up phase and during the cleargrid 
phase of the algorithm, the status fields have to be updated. To 
improve performance, it was decided to interleave the memory 
into 4 banks of 256 x 19 RAM’S. The two higher order bits 
of the address is used to select the appropriate bank. This 
permits the same location of all banks to be simultaneously 
written into in one memory cycle. 

Fig, 10 shows the grid-memory organization in more de- 
tail. The 2-bit fncode determines the memory operation. All 
readwrites take place during CP2. Address and input data 
are available at the end of CP1 and are held constant during 
CP2. The StatusLogic block is used to selectively change 
all Expanded or Wavefront status fields to Free when the 
ClearStatus command is issued. This essentially clears the grid 
and is to be performed upon completion of routing the given 
net and prior to starting the maze search for the next net. Thus 
the “clearphase” can be performed by all PE’s simultaneously 
in 256 cycles. The Memory Control Logic is responsible for 
activating the appropriate read or write signals. If the processor 
is inactive, no write is performed and thejhcode is in essence 
disregarded. 

H.  Buffer Store Organization 
During the wavepropagation, while the PE is expanding one 

cell of the old wavefront, it may receive up to 6 new addresses 
for other cells that map onto it and have been newly inducted 
into the wavefront. The PE has to keep track of these since all 
of them will have to be eventually expanded. The buffer store 
is needed as just updating the Status fields in the grid-memory 
is insufficient to identify wavefront-cells without undertaking 
a sequential search. 

The buffer store can be organized as either a pair of LIFO 
stacks or as a FIFO queue. This has been implemented using 
a 1024 x 10 RAM and a pair of up-down counters. During 

I 
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the wave propagation phase, as each address is received it gets 
pushed onto the top of the store. An unexpanded wavefront- 
cell can then simply be recovered by popping the top of the 
appropriate stack or queue. The counter is assumed to point 
to the next free location. Thus for PUSH, the RAM is written 
into during CPl; the counter is incremented in CP2. On the 
other hand, for POP operation, we decrement the counter in 
CP1 and access the memory in CP2. 

There is one additional complication, however. A particular 
grid cell can be reached from more than one direction. Con- 
sequently, if the address of such a cell is already in the store, 
then it should not be pushed in. The solution to this problem 
is to validate each PUSH. The control unit raises a pushvalid 
signal during CP2 if the address corresponds to a new cell. 
This information is determined by reading in a previous clock 
phase the corresponding Status field in the grid-memory. The 
counter is incremented only if pushvalid is true. 

I. Control Unit 
The control unit generates 36 microcode bits that are used 

to control the datapath and the memory units. Currently, the 
microinstruction memory is implemented as a 32 x 36 static 
RAM. This means that at any point in time 32 different 
instructions can be stored. This was felt to be sufficient 
for the maze-routing algorithms. An initial set consists of 6 
wave-expand, 1 wave-receive instruction (needs 3 4  microin- 
structions), 4 microinstructions for backtrace, 1 for clearing 
the grid, 3 for resetting various elements, 4 for initializing 
the status fields of the memory, and 10 for miscellaneous 
operations. The use of a static memory provides the ability to 
interrupt clocks between instruction definition and execution. 

A 5-bit address (instruction) selects one 36-bit microinstruc- 
tion every cycle. This gets loaded onto the master register 
in CP2 and then into the slave during CP1 from where it is 
decoded appropriately and connected to the different control 
points. Data can be shifted in and out of the mastedslave 
registers by setting SH. To load a new instruction into the 
memory, the data is serially shifted in (SI port) for 36 cycles 
and then WRT is activated to store the contents into the mem- 
ory. The Csel or chipsel input is used to disable a particular 
PE. This is useful for the initial setup of the grid-memory and 
final result gathering operations. When Csel is enabled the 
slave register is loaded with a microinstruction implementing 
the no-op operation. The control-block is combinational in 
nature and is used to activate the various control signals in 
the appropriate clock phase and also decode some fields of 
the microinstruction. (See Fig. 1 1 .) 

J.  Testing 
The chip has been designed keeping in mind the testing 

requirements. Testing can be done in two parts. In the first part 
the control section can be tested out by shifting in data into 
the pipeline register and observing the output at the PSO port. 
Once the pipeline register is verified, it can be used to test the 
microinstruction memory by storing data at specific locations 
and then loading them back into the pipeline register and then 
shifting the data out. Subsequently simple instructions can be 

1” 
FROM THE 
DATAPATB 

COMBINATIONAL 

-1 L 
S 

PSI - 
Fig. 1 I .  Control unit organization. 

TABLE I1 
AREA FOR THE MAJOR PE BLOCKS 

Unit Name Area (100 sq. Unit Name Area (100 sq. 
mils) mils) 

Input unit 1.79 (0.6%) Control unit 27.47 (9.1%) 
Next-cell unit 1.79 (0.6%) Datapath 53.30 (17.6%) 
Update unit 4.52 (1.5%) Buffer store 65.36 (21.6%) 
Exoand Unit 3.78 (1.25%) Grid Memorv 144.32 (47.7%) 

loaded into the RAM to test the functionality of the data path. 
The contents of all the datapath elements are observable at the 
output port by activation of the appropriate control signals. For 
instance, the operation of the A1 latch can be tested by loading 
test data from the input pins and then enabling the connection 
between the two R buses, the same data can be observed and 
verified at the output. Once this operation is verified, the A1 
latch can be made to store a grid memory address and test 
data can be written into and subsequently read out from the 
memory. 

K. Statistics 

A single processing element has been laid out in a 40- 
pin package with a die size of 200 by 220 mil (see Fig. 
12) using the Chipcrafter’ package. This includes 10 kbit 
of buffer-store memory and 19 kbit of grid memory which 
is sufficient for routing grids with as many as 64K grid 
cells on a five-dimensional processor array comprising of 61 
processors. A 1 -pm 2-metal 1-poly technology from National 
Semiconductors was employed. Table I1 shows the area in units 
of 100 sq. mils for the major components with-the percentage 
of total chip area shown in parentheses. 

The processor runs at a clock frequency of 16 MHz. An 
expand cycle takes 0.84 ps while a backtrace cycle takes 0.48 
ps. Thus the HAM system is capable of sustaining a little 
over 1 million expansions every second. These figures do not 
include the time for the initialization and communication costs 
with the host. However, such costs can be amortized over 

’ Chipcrafter is a trademark of Seattle Silicon Corp 
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Fig. 12. Layout of a single HAM processor. 

several nets and so HAM will continue to offer significant 
speedup over any uniprocessor solution. 

Clock Frequency: This is determined by the following con- 
siderations. 

The propagation delays of the Update and Expand units 
(denoted by t d u  and t d e ,  respectively). 
The setup and hold times of the various RAM compo- 
nents (grid memory, buffer memory , control memory) 
which are denoted by t , ,  and t h d ,  respectively. 
The access time (time before valid data is available at 
the output for a read operation or the minimum time for 
which the write pulse has to be activated to write in new 
data) which is denoted by tac. 
The time for the incrementing and decrementing of 
the counters which are part of the buffer store address 
circuitry for implementing the push and pop operations 
which is denoted as tCt. 
Interprocessor ( tS l )  and intraprocessor ( t s 2 )  signal skews. 

The inputs to the update unit (A1 and B 1 bus) change at the 
start of each CP1 and the output forms the new data which is 
to be written during the CP2 on-period in the grid memory. 
Similarly, for the expand unit the inputs (A2 and B2 bus) are 
available at the start of CP1 and the output is latched onto the 
output 2 register during CP2. These requirements give rise to 
the following set of constraints: 

t 2  + t 3  2 t d u  + t s u  

t 2  + t 3  2 tde  

t 4  L t a c  

tl  2 t h d .  

In case of the buffer store, a pop operation consists of 
decrementing the counter during CP1 and reading the cor- 
responding memory address during CP2. For the push the 
reverse is performed, i.e., a write is performed during CP1 

and the counter is incremented during CP2. Thus the counter 
always points to the next free location. Note that the terms 
incremenddecrement are interchanged for the bottom stack in 
the two-stack synchronous mode of wavefront expansion. This 
leads to the following constraints: 

t 2  + t 3  2 t c t  + t , ,  (POP) 

t 4  + t l  L t c t  + t s u  

t 2  2 t a c ;  t 3  2 thd  (push) 
t 4  tat; tl 2 t h d .  

The case of the control memory and grid memory which 
are only readwritten during CP2 is quite simple, viz., t 3  2 
t s u ; t 4  2 t , ,;tl  2 t h d .  The interprocessor communication 
delays are accounted for by tl since data are latched on to 
the output ports during CP2 and that data are received by the 
neighboring processor during the following CPl. Hence, it is 
sufficient that tl  2 t s l .  The value of t s 2  is determined by the 
manner of satisfying the above inequalities. 

The measured values for the above parameters were: t,, = 
12.5 ns,tsu = 10 n s , t h d  = 5 ns,tde = 23.8 ns, tdu = 15 ns, 
tCt = 10 ns. Our simulations was performed setting t; = 
15 ns, i = 1, .  . . ,4. These satisfy all the above criteria and 
can tolerate a signal skew of 8% of the total clock cycle in 
the datapath and 4% for the memory control. Fig. 13 shows 
a part of the actual Quicksim2 trace for the processor. The 
signals aldl to dld2 are control signals controlling the loading 
of the A/z) latches and signals busl, bus2 determine the A 
bus gets sourced by the A\ or D latch. The nets albus, blbus 
are the A and B inputs of the Update unit; while the signals 
mold, min, cumin, alulout, and mout correspond to mo, mn, so, 
CostOut and MaskOut of the Update algorithm respectively. 
Similarly the nets a2bus and b2bus are the A and B inputs 
of the Expand unit and its output is latched onto the output 
pins. For illustration purposes, at the start of the trace, all grid 
memory cells are initialized to zero except cell 2: ( cost = 20; 
dmask = 1 ) and cell 3:( cost = 16; dmask = 0 ). The buffer 
store has one cell address, viz. 3. The StartExpand cycle starts 
at time 1440. Thus in the expand cycles, subsequent to this, 
the processor outputs neighbor address of (3 + oflser) for that 
direction as per the padding scheme; and cost of 16 + 1 = 17. 
Concurrently the Update unit receives address and cost data 
from its neighbors and proceeds to modify the grid memory 
as per the Update algorithm. 

v. PERFORMANCE ANALYSIS 

In this section, we present simulation results pertaining to 
the performance of the overall HAM system using custom 
designed processors, working in both the synchronous (SYNC) 
and asynchronous (ASYNC) expansion modes. All figures 
are computed assuming that the shortest path to the target 
is desired and not just any path. This assumption could have a 
significant impact especially on the ASYNC mode results. We 
have used three main criteria for our evaluations: execution 
time (T), speed-up (s), and processor usage efficiency (7) and 
study how they change with N, the number of processors used. 

*Quicksim is a trademark of Mentor Graphics. - 
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Fig. 13. Simulation trace for the HAM processor. 

All plots reflect the average obtained by running the system 
simulation on 25 randomly generated nets on a grid of size 
100 x 100 x 4. We also consider the effects of framing, i.e., 
restricting the grid-space to be searched for a connection to 
a rectangular box formed by the source and target; and the 
effect of blockages caused by prior nets. 

A. Execution Time 

We have chosen to characterize the execution time in terms 
of the number of atomic cycles (expand or update cycle) 
required to complete expansion. This makes the results to be 
readily applicable to other possibly faster implementations. For 
our processor implementation, an atomic cycle corresponds to 
14 x 60 ns = 0.84~s .  These results are shown in Fig. 14. 
The asynchronous mode takes more time than the synchronous 
mode for empty grids. The reason for this is that in the current 
implementation, the processor merely picks out the first entry 
in its buffer store which could very well be a cell leading 
away from the target. This leads to the domino effect wherein a 
message pertaining to a higher cost message can propagate first 
to the target. Subsequently, when the correct update message 
with a lower cost is received by the processor, the expansion 
in a sense gets repeated. This process leads to many more 
messages being sent back and forth which increases the total 
time. The solution to get around this problem is to have the 
processors make an intelligent choice as to the next cell to 
expand but this would involve more complex hardware. Note 
that the two modes yield similar results when framing is 
used or in congested grids with lots of cell blocks. This is 
because the chances of first proceeding in the wrong direction 
are considerably reduced here. In fact, it is possible that the 
ASYNC mode may be the faster of the two in such cases. 
Also it is clear that if the length of a net is less than N 
then no advantage can be gained by increasing the number 

of processors. This is reflected in the graphs where it can be 
seen that the curves tend to flatten out as N becomes larger. 

B. Speedup 

The speedup is measured with respect to the corresponding 
time taken by a uniprocessor which is directly proportional to 
the total number of cells expanded. Thus 

total number of cells expanded 
on a uniprocessor 

number of atomic cycles taken by * 

the multiprocessor 

Note that this speedup value is a lower bound as it does not 
include consideration for the smaller expand cycle time of the 
HAM processor. So, in absolute terms, the expected speedup 
will be much more. The results are shown in Fig. 15. Again the 
lower speedup for the ASYNC mode for empty grids without 
framing is a direct consequence of the increased time taken in 
this mode to find connections. 

S =  

C. Usage E#ciency 

The efficiency is defined as the overall processor usage 
measured over the whole of the program's execution. It is 
calculated as follows: 

) . ( N  * T)- ' .  
total number of active processors 

v=C ( per expand cycle 

An active processor in this context is one which either receives 
at least one message from one of its neighbors or sends a 
message to its neighbors. The high efficiency figure for the 
asynchronous mode is a direct consequence of the routing 
policy of allowing the processor to expand any cell in its buffer 
store. The results are plotted in Fig. 16. 
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Fig. 14. Effect of number of processors on total time. (a) ASYNC mode. (b) SYNC mode. 
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Fig. 15. Effect of number of processors on speedup. (a) SYNC. (b) ASYNC. 

D. Size of the Buffer Stores 

It is clear that the maximum size needed for a buffer store 
is equal to the maximum number of cells that are mapped to 
the processor. However, by considering the manner in which 
wavefronts propagate, it was felt to be highly unlikely that all 
cells could be simultaneously part of the current wavefront. 
In fact simulations have led us to believe that the maximum 
number of elements present in the buffer at any given time 
is less than 10% (25%) of the total number of cells mapped 
to the processor for the SYNC (ASYNC) modes. This can be 
seen in Fig. 17 where the maximum buffer sizes used while 

routing on an empty 100 x 100 4-layer grid are shown. The 
theoretical maximum for a k-layer G, x G, grid is given by 
[ k  * G, * G , / N ]  . Generally, the asynchronous mode requires 
3 4  times larger buffer stores since there are more messages 
being transmitted. 

These results suggest that a significant area saving can be 
realized by simply using a smaller buffer store. Alternatively, 
the area can be used to build a larger grid memory that allows 
the mapping of even larger routing grids. Also, because there 
is some intrinsic redundancy in the expansion, such as each 
cell receiving information from more than one direction (pro- 
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ClidSLn 100.1oOr4 
Buffer Slrc 1024 

(a) 

Fig. 16. Effect of number 

N p b r  d m . C .  

(b) 
of processors on efficiency. (a) SYNC. (b) ASYNC. 

Fig. 17. Determination of maximum buffer store size needed. 

cessor), routing is not much affected even if a few messages 
are lost because the processor receiving it has no place to 
store it in its buffer. 

E. Choice of Mode 

From the above experiments it can be concluded that unless 
framing techniques are used or the grid is congested, the 
synchronous mode is better. The amount of buffer store needed 
for synchronous mode is also less since we only expand a 
wavefront at a time which leads to a more uniform distribution 
of grid cells to processors. Framing techniques are also used 
in software methods to restrict the amount of grid space that 
gets searched by the wave propagation, but seem to have a 
different implication in the multiprocessor mode. Though not 
currently implemented, framing could be realized in the HAM 
system by marking the cells lying on the frame boundary 

to Block before starting routing the net and restoring their 
original state upon completion of the route. However, this 
is more complicated to compute in the distributed memory 
map since a transformation will have to be made between 
frame coordinates and memory addresses. Consequently, our 
solution (without framing) is to employ synchronous mode 
initially and then resort to asynchronous mode as the grid 
gets more congested. Both models can be supported using the 
two-counter model discussed earlier. 

VI. CONCLUSION 
The HAM system derives its speedup over conventional 

solutions in two ways: (1) Since the processing elements are 
custom-designed, the per cell computation time is significantly 
reduced for both wave-expansion and backtrace operations. 
This time includes the time to fetch the status of the cell 
from memory, perform cost calculations and add it to the 
new wavefront list (in our case propagate to the six adjacent 
neighbors). This paper has identified the hardware require- 
ments that are most cost-effective in building such custom 
processors. (2) The other speedup results from the manner in 
which the processing elements cooperate with one other during 
routing. Expand and update operations are pipelined across the 
processors which are connected in a hexagonal wraparound 
fashion. Such a topology has been previously shown to be 
optimal for concurrent multilayer search operations in three 
dimensions. This meets our goal of using the HAM system 
for double-sided surface-mounted board routing. However, 
the processor design is independent of the interconnection 
topology used; rather the processors can be interconnected in 
any manner desired and run with suitable microprograms. 

A multiprocessor system solution for maze routing poses 
several problems not encountered with uniprocessors. One 
factor of significant import in a distributed memory model 
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is that each processor has only limited information of the 
overall grid, in particular, it only stores the status of cells 
which are assigned to it. This has consequences for the mode 
of interprocessor information exchange, control mechanism, 
and synchronization scheme employed. In this paper, we have 
identified these issues and proposed some practical solutions. 
In particular, we have suggested the use of memory-address 
rather than the traditional grid-coordinate based message trans- 
fer between processors during expansion as a means to reduce 
both message traffic as well as speed up the memory search 
times. The design of the buffer store as either a stack or a 
queue to support either a synchronous or asynchronous mode 
of expansion has also been shown to be critical in achieving 
good performance. 
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A Hexagonal Array Machine for Multilayer Wire 
Routing 

R. VENKATESWARAN AND PINAKI MAZUMDER, MEMBER,  IEEE 

Abstract-Maze routing is widely used in both printed circuit board 
(PCB) and VLSI design. However, for the ever increasing design re- 
quirements, this can no longer he done economically without the help 
of special purpose hardware accelerators. A new hardware accelerator 
comprised of several fast processors interconnected in the form of a 
hexagonal mesh with wraparound connections is proposed. 

The novelty of the proposed architecture stems from the fact that it 
is suitable not only for single-layer routing, but also for routing in par- 
allel on multiple layers. A hexagonal machine of dimension C G ,  with 
about 3kC processors, can handle a k-layer grid consisting of kC' grid 
points a t  about the same speed as a full-grid machine with kG' proces- 
sors. 

A technique for measuring the performance of a hardware acceler- 
ator, in terms of the average delay incurred over a full-grid machine, 
is suggested. This has been formalized in case of the hexagonal archi- 
tecture and is presented for various nets and mesh dimensions. The 
results have been accurately verified by extensive simulation done in 
C +  + language. It is also demonstrated that the hexagonal mesh, by 
virtue of its additional links for expansion, is resilient to about 10% of 
failure in the links and processing elements. A detailed design for a 
chip implementation of the hexagonal machine is also discussed. 

Keywords-Hexagonal array,  multilayer routing, interprocessor 
cycle period, average delay factor, reconfigurability. 

I. INTRODUCTION 
UTOMATIC LAYOUT of wiring patterns for printed A circuit boards (PCB's) and integrated circuits (IC's) 

have been in vogue for the past several years. For a PCB, 
the components are IC packages and the electrical con- 
nections are made by a metal etching process. Connec- 
tions between layers are made by drilling holes through 
the fiberglass and plating them with metal. In an IC, wire 
lines of polysilicon are fabricated to carry electrical sig- 
nals between circuits. In addition, one or two layers of 
metal separated by insulating layers of oxide are depos- 
ited and etched above the silicon to form wire lines. Holes 
are left in the oxide to form interlayer contacts or vias. 
Thus the routing problem, which is to connect all the 
points of each net and to ensure that the wiring paths of 
the different nets do not intersect each other on any layer, 
is quite similar in both the environments. Furthermore, 
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National Science Foundation Research Invitation Award under Grant MIP- 
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several constraints, such as the total wire length, number 
of vias used, critical nets, etc., are imposed on the solu- 
tion generated. In this paper, we propose a new hexagonal 
mesh architecture for a parallel multilayered routing al- 
gorithm that is applicable in both of these environments. 

Several algorithms, such as the channel [4], [23], maze 
[ l  I], river [15], a - /3 [9], etc., have been proposed in 
the literature for routing interconnects in IC's and PCB's. 
Among these, the maze router, originally proposed by Lee 
[ 1 I], uses breadth-first search, and thereby it is admissi- 
ble in the sense that it always finds a shortest-length path, 
if one exists. This attribute of the maze router is fre- 
quently exploited in practice to minimize the total inter- 
connect length and, presumably, the overall chip area. 
Section I11 deals with the Lee algorithm in greater depth. 
Many commercial routers use the Lee algorithm or its 
variant [7], [6] exclusively, or initially use some other 
algorithms to rapidly interconnect most of the nets and 
then utilize the Lee algorithm to interconnect the remain- 
ing nets. However, this is achieved by paying a high pre- 
mium of large storage space (in the worst case, an ex- 
ponential to the path length L )  and expensive runtime (in 
the worst case, 0 ( L 2 )  time to find a path of length L ) .  
Elegant coding schemes, such as the one suggested by 
Akers [I] ,  can be used to alleviate the storage space prob- 
lem. However, time continues to be a severe constraint in 
a uniprocessor implementation. Two schemes suggested 
were the pipeline-based approach of Sahni [IS] and the 
raster-based approach of Rutenbar [ 171. These ap- 
proaches, though economical in hardware, often reduce 
the 0 ( N 2  ) time complexity by only a small constant fac- 
tor, and hence, are inadequate for large problem sizes. 

For multiple layers, the problem becomes even more 
acute. The accepted strategy is to route as many nets as 
possible on each layer independently. A global routing is 
attempted only for the unfinished nets. However, it is well 
established that these few remaining nets account for the 
majority of the time required in routing. 

Specially designed multiprocessor-based routing en- 
gines or hardware accelerators thus become absolutely 
necessary [2] for doing the complex routing in the very- 
large-scale integrated (VLSI) circuits of today. The Lee 
maze algorithm, by its very nature, offers much potential 
for parallelization, and hence, is an excellent candidate. 

The ideal architecture would be an interconnected N X 
N k-layer processor array, where each processor Pyk has 

0278-0070/90/ 1000- 1096$01 .OO 0 1990 IEEE 
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a one-to-one correspondence with a grid cell al,k in the 
layout. Such a fill-grid machine, however, requires kN2 
processors and 2kN(N - 1 )  + N(k - 1 )  links for a 
k-layer N x N grid, which is clearly expensive. Breuer 
and Shamsa's L-Machine [3] is the first published design 
of this nature. However, it is inflexible in the sense that 
it is incapable of handling problem sizes larger than the 
physical size of the processing array. Thus the need for a 
better architecture, where the grid array can be efficiently 
mapped onto a much smaller subset of processors, has 
been widely recognized (the folding problem). One of the 
chief factors affecting the performance of any such archi- 
tecture implementing the Lee algorithm is the interpro- 
cessor cycle period (ICP). The ICP is defined as the 
smallest number of distinct processors that are encoun- 
tered before one gets repeated, while traveling along any 
straight line on the grid. 

The wire routing machine (WRM) built by Nair et al. 
[8] is probably the precursor of the present trend of virtual 
machines. It consisted of processing elements connected 
in the form of a square mesh. The chief difference of the 
WRM was that it used general-purpose microprocessors 
rather than custom-made hardware for the node elements; 
thus trading compactness for versatility. Martin [ 121 has 
suggested the suitability of the torus-like mesh for folding 
operations. Suzuki and others 1211 have built a machine 
with 64 processors interconnected in the form of a twisted 
torus. Other similar implementations are described in [ 191 
and 1221. 

The intention of this paper is to propose a new archi- 
tecture for the physical implementation of the Lee algo- 
rithm, wherein the processors are interconnected in the 
form of a C-wrapped hexagonal mesh. Table I reflects the 
superiority of the hexagonal interconnection topology to 
existing ones. The larger ICP value implies fewer con- 
flicts in processor assignments during wavefront expan- 
sion, thereby improving the overall performance. Since 
each processor is connected to six others, the hexagonal 
machine can do multilayer expansion in parallel, unlike 
existing accelerators. This again results in shorter routing 
time requirements. Performance results, as obtained from 
extensive simulation runs and supplemented by analytical 
derivations, have been very promising. 

The basic labeling scheme used in the hexagonal array 
machine is a very powerful one. It can be used for ma- 
chines where the number of nearest neighbors of each pro- 
cessor is other than 6. For example, reconfiguring the 
basic hexagonal machine by deleting all diagonals along 
any one of the three directions yields a cheaper machine 
that is still extremely efficient in handling two-dimen- 
sional maze routing on a single layer. This is because the 
ICP property is unaffected by the number of neighbors pres- 
ent. This property also makes the hexagonal array ma- 
chine resilient to link and processing element failure, so 
far as its routing capability goes. 

The rest of the paper is organized as follows. Section 
I1 introduces the architecture, labeling scheme, and other 
salient properties of the hexagonal array machine. Section 

~ 
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TABLE I 
EVALUATION OF INTERCONNECTION TOPOLOGIES FOR MALE ROUTING 

Interconnection Interprocessor Cycle Multilayer 
Topology' Period Routing Recontigurability 

Square mesh [8] A X X 

Twisted torus 1211 - N X X 

L 
Hexagonal mesh N J J 

'Wraparound topologies with N processing elements. X indicates No 
and J indicates Yes. 

I11 explains how concurrent multilayer wire routing is 
possible on the hexagonal array machine. In Section IV, 
an analytical model for estimating the delay is presented. 
Section V discusses both hardware and software issues for 
chip implementation of the hexagonal array machine. Per- 
formance is analyzed in Section VI. Reconfiguration and 
fault tolerance aspects are discussed in Section VII. 

11. HEXAGONAL-ARRAY MACHINE 
Dejnition I :  A C-wrapped hexagonal mesh of dimen- 

sion e is comprised of 3e ( e - 1 ) + 1 ( = N, say ) proces- 
sors, labeled from 0 to 3e ( e  - 1 ), such that each proces- 
sor s has six neighbors [ s  + 1IN,  [s + 3e - 1IN,  [s + 
3e - 2IN,  [s + 3 e ( e  - 1 ) I N .  [s + 3e2 - 6e + 2]N, 
and [s + 3e2 - 6e + 3 I N ,  where [a],, denotes a (mod 
b) .  

Property 1: An unwrapped hexagonal mesh of dimen- 
sion e can be partitioned into 2e - 1 rows in three pos- 
sible ways: along the horizontal direction, along the 60- 
deg counter-clockwise direction, or along the 120-deg 
counter-clockwise direction. 

Observation I :  Along any of the three directions, let 
Ro be the top row, R ,  the second row, and so on until 
R 2 r - 2 .  Then a C-type wrapping is obtained by wrapping 
the last processor in RI to the first processor in 

Fig. Ita) shows an H-mesh of dimension 3 with the 
wrappings indicated alongside the arrows. Note that in 
this case there are 19 nodes distributed over five rows, 
with the wraparounds in the three directions as noted in 
Observation 1. For example, in Fig. 1, the last processor 
in R, along the horizontal direction, viz., node 2 is 
wrapped to the first processor in R4,  node 3.  The chordal 
equivalent of the hexagonal mesh, showing all the wrap- 
arounds is shown in Fig. l(b). Such a topology and la- 
beling scheme have also been studied in relation to ex- 
perimental distributed real-time systems such as HARTS 
1-51 and FAIM [20]. 

Property 2: A C-type wrapping is a homogeneous in- 
terconnecton. Any node can be labeled as node 0, that is, 
as the center of the mesh. 

Lemma I :  For a C-wrapped hexagonal mesh of dimen- 
sion e, the ICP, i.e., the number of distinct processors 
that one encounters before returning to the same processor 

R,l + P  - I I ? ? -  I. 
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(a)  
Fig. 1 .  (a) A wraparound hexagonal mesh of dimension 3. (b) Its chordal 

equivalent. 

while traveling along any of the three directions, is p = 
N = 3e2 - 3e + 1. 

Proof: From Observation 1 ,  we know that the last 
node of row Ri is connected to the first node of row 
R,; + e  - - ,  . This can be interpreted as being a linear con- 
gruent sequence of the form mod (a, + b )  m. In our case, 
wehavea  = 1,  b = e - 1 , x  = i, andm = 2e - 1. From 
random number theory, this sequence has been shown to 
have the maximum possible period of m if and only if b 
is relatively prime to m [lo]. This implies, that in our 
case, the sequence will be of length 2e - 1 (the number 
of rows in the unwrapped hexagonal mesh of dimension 
e )  if ( e  - 1 )  is relatively prime to ( 2 e  - 1) .  

Hence, our assertion that p = 3e2  - 3e + 1 is true, 
provided that the node numbering is unique. This is true 
in the horizontal direction, as we number the nodes with 
consecutive numbers. However, from Property 1 and Ob- 
servation 1 ,  it follows that it must also be true in the other 
two directions. Q.E.D. 

111. ROUTING ON THE HEXAGONAL MESH 

The hexagonal array machine is unique in the sense that 
it is the first to attempt concurrent multiple-layer routing. 
By cleverly assigning processors to grid points on the ac- 
tive wavefront, the hexagonal array machine considerably 
reduces the otherwise enormous time requirements. Con- 
current multilayer wire routing has several advantages. 

Via Minimization: A via is a contact used to connect 
a wire that extends over two physical layers (metal and 
polysilicon). Vias not only take more area but also reduce 
the reliability of the circuit. Hence, minimizing the num- 
ber of vias is an important issue and is usually carried out 
by a post-processing step. This additional cost is often 
very high and sometimes unacceptable. 

Most routers constrain the polylines to run in one di- 
rection (say horizontal) and the metal lines to run in the 
other (vertical) direction. Thus the two can be superposed 
and a common wavefront propagated. However, every 
bend in a wire route causes a switch in the layers, and 

hence, must be realized using a via. Clearly, a high per- 
centage of these vias are unnecessary and could have been 
avoided by allowing poly and metal to run in both direc- 
tions. Relaxing the constraint is made possible in the hex- 
agonal array machine by allowing for multiple wavefronts 
at the same time. It also implicitly assigns an additional 
cost to each via during the wave-expansion step. In this 
way, paths with more vias become less attractive cost- 
wise. 

Increased connectivity: Usually maze routers pro- 
ceed by routing one net at a time. The question of net 
ordering is, therefore, an important one. The hexagonal 
array machine does not eliminate this problem. However, 
by treating the metal and poly (and possibly other layers) 
separately, an obstacle on one layer does not preclude 
routing on the other. Now, consider a router that does 
multiple-layer routing by considering one layer at a time 
in a serial fashion. An important question for such routers 
is where to introduce the vias? This question is rendered 
irrelevant by routing on all layers simultaneously. 

Technology: Current IC technology is capable of 
more than two layers: two-metal and two-silicon layer 
technology is already in production. In PCB’s, several 
layers have traditionally been used. So the need for mul- 
tiple-layer wire routing is an accepted one. 

The rest of this section will explain how the hexagonal 
array machine can perform concurrent multiple-layer 
routing. Before proceeding any further, we digress a little 
to outline the basic Lee maze routing algorithm. The Lee 
algorithm consists of three distinct phases, namely a) wave 
expansion, b) backtracing, and c) label clearance. The 
wave-expansion step starts from the source cell/cells by 
labeling all unoccupied adjacent cells. These newly la- 
beled cells constitute the new wavefront for the next ex- 
pansion. The process is repeated until the target cell is 
reached. If we assume that all cells and all nodes have 
similar behavior, and that the propagation speeds are sim- 
ilar in all directions, even in the case of an asynchronous 
implementation, then for uniform labeling these wave- 
fronts appear as diamond-shaped fronts. This observation 
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suggests that any good mapping strategy must ensure min- 
imum repetition of processors along any 45- or 135-deg 
lines. In the backtracing step, the labels are traced back 
from the target to the source, and the shortest path found. 
In the final label-clearance step all extra labels are cleared 
and the cells on the new net are marked as being occupied 
for future expansions. 

For multiple layers, each cell must now expand the 
wavefront not only to its four neighbors on the same layer, 
but also to its neighbors on the adjacent layers. Such an 
expansion is possible in a single step on the hexagonal 
array machine, since each node has six adjacent neighbors 
with which it communicates directly. In a square mesh or 
torus topology, the usual strategy is to assign the same 
processor to handle the cell au in all the layers. However, 
expansion can no longer take place in a single step, re- 
sulting in longer routing times. 

Definition 2: (Operator) Let CP be the mapping opera- 
tor, such that 

+:zr x r,. x rz -+ P 

where Zi is { k IO I k I i ,  where i is the dimension of 
grid} a n d P  is { m l O  I m < e 2  - 3e + l } .  Then 

where a is the processor assigned to the grid cell (0, 0, 
0) ,  wy = 3e - 1 and w, = 3e - 2 ,  and [ a I b  refers to a 
mod b .  
9 is derived based on the mapping scheme shown in 

Fig. 2.  For other assignments, the formula for 9 can be 
similarly derived. Fig. 3 shows the mapping for a two- 
layer 16 by 16 grid, using a four-dimensional C-wrapped 
hexagonal array. As can be seen, it consists of repeated 
folding of the tile, corresponding to the unwrapped four- 
dimensional hexagonal array. 

Mapping: Of the six neighbors of each node of the hex- 
agonal mesh, four of them are assigned to cells on the 
same layer and the remaining two to the up-and-down 
neighbors on the adjacent layers. Since cells on different 
layers are reached in subsequent expansions, vias are im- 
plicitly given the cost of traveling along an arc. If a greater 
cost must be attached to them, then we can assume the 
different arcs to have different weights. For instance, a 
weight of 3 can be assigned to the z-links to represent the 
additional cost of the vias. To discourage bends in the 
wiring path, a cost of 1 or 2 can be assigned to an x / y  
link emerging from a node, depending on whether the link 
lies in the same direction or in a different one from that 
by which that node has been labeled. For an N-node hex- 
agonal mesh, it has been shown in Lemma 1 that all hor- 
izontal, vertical, 45- and 135-deg paths are mapped on a 
cycle containing all cells of the machine, i.e., on a cycle 
of periodicity N. This clearly leads to a processor assign- 
ment with the fewest conflicts. The revised Lee algorithm 
for multiple layers is given in the following. 

(I-3eISOUTH (i-3elDOWN 

Fig. 2. Processor labeling scheme 
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Fig. 3 .  Mapping for the two-layer 16 by 16 grid using a four-dimensional 
H-mesh. 

A .  ModiJed Lee Algorithm for  Multilayer Concurrent 
Routing 

This algorithm is a variant of the Lee algorithm. It 
makes use of the six links of each processor in the hex- 
agonal array to propagate the wavefront simultaneously 
over all the layers and find the most optimal path, if one 
exists. 

1 )  Wave Propogation Phase: 
1) Initialization. Set obstruction flags, I source flags 

(SC’s), and target flags (TC’s) in the appropriate proces- 
sors. Mark SC as the active processor to be expanded. 

2) Expand from the active cells in all six directions 

‘These represent the terminals and the obstructions posed by the nets 
that have been previously routed. 
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(a) (b) 

Fig. 4. (a) Processor assignments for a three-layer 4 by 4 grid. (b) Initial 
netlist. 

along the links of the hexagonal mesh. Transmit to each 
processor the following four-tuple: 

(a) (b) 

Fig. 5 .  (a) Snapshots of wavefronts on three layers. (b) Final wiring 

TABLE I1 
PROCESSOR ASSIGNMENTS DURING W A V E  PROPAGATION CYCLES 

Clock Processor Assignments 

Cycle Layer 1 Layer 2 Layer 3 

where X is the layer, x and y are the x and y coordinates 
of the cell being reached in this expansion, and c repre- 
sents the cost for reaching the cell along this path and can 
be omitted if unequal weights are not assigned to the var- 
ious links. 

3) If TC has been marked, go to the backtrace phase. 
Else repeat step ( 2 )  .* 

2)  Backtrace Phase: 
1) Let l be the final label of the TC. Mark TC as the 

cur-node. 
2) Mark all the adjacent (at most six) nodes which have 

the label l - 1. If there is only one such node, go to step 
4.  

3) Choose the node that is on the same layer as 
cur-node if possible. If there is more than one possible 
candidate, then pick the one that lies in the same direction 
as cur-node was with its predecessor. 

4) Mark the new node chosen in steps 2 or 3 as the 
cur-node. If it corresponds to the source, then quit, as a 
path has been traced out. Else go to step 2 .  

Example: We now illustrate the process by means of 
an example. We consider a 4 by 4 three-layer grid.3 Fig. 
4(a) shows the processor assignment to the 64 grid points, 
obtained by applying the operator Cp. Fig. 4(b) shows two 
nets, A and B,  that have been previously routed. Our as- 
signment is to route the third net, C ,  whose endpoints are 
also shown. At this stage, one may note that it is not pos- 
sible to complete this interconnection without using the 
third layer. 

*It is assumed that all processors can simultaneously send and receive 
messages from their neighbors. This enables us to mark all the neighbors 
which need not be expanded in the next phase. To further speedup the 
process, we may mark the cells in all layers at the same ( x ,  y ) position 
as the TC as targets. This is true if we assume accessibility of terminals 
from all layers. 

'The three layers could represent a two-metal and one-silicon layer 
technology. 

1 9 
2 IO.  17 2 
3 1 1 ,  18 3 14 
4 0, 12 4 3 ,  15 
5 5 4, 1 1 ,  16 
6 0, 5 ,  12. 17 
7 0 1, 6, 13 
8 1 ,  8 2, 14 
9 15 2,  9 3 

I O  16 I O  
I I  17 

Fig. 5(a) is the snapshot at the culmination of the wave 
propagation phase of the modified Lee algorithm. The 
shaded areas indicate the previous obstacles. The number 
in each square is the label associated with that grid point, 
i.e., all cells with a label i would lie on the ith wavefront. 
For this example, the wave propagation phase requires 
eleven clock cycles. There are also no processor conflicts. 
Table I1 shows the active processors in each clock cycle. 
The distinction between layers is made solely to aid un- 
derstanding. Thus during clock cycles 3 , 4 ,  and 9, a com- 
mon wavefront exists over all three layers. Fig. 5(b) 
shows the final route for all three nets. 

IV. DELAY MODELING FOR THE HEXAGONAL ARRAY 
MACHINE 

The performance of the hardware accelerator, using 
multiple interconnected processors folded to yield a larger 
grid size, is usually measured by how much the mapping 
minimizes the additional delay incurred over the corre- 
sponding full-grid implementation. For our machine, the 
maximum additional delay for any given wavefront is de- 
termined by the maximum number of cells assigned to a 
single processor on that wavefront. Thus if ci is the num- 
ber of cells assigned to processor Pi on a certain wave- 
front, then the additional delay involved is given by [ max 
( c ; )  - 11, where 0 5 i I N - 1. Hence, ideally, we 
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0 14 9 4 18 13 8 

8 9 10 11 12 13 14 

would like the additional delay to be as close to zero as 
possible. 

The extra delay is usually quite complex to calculate as 
its depends on a number of factors, such as i) location of 
source and destination cells on the grid, ii) obstacles on 
the grid, iii) size of the grid, iv) dimension of the hex- 
agonal mesh used, and v) physical implementation issues 
such as SIMD/MIMD mode of control. To date, most 
work in this area has been characterized by an attempt to 
estimate the delay by simulation alone, which ordinarily 
requires 8 ( k G 2 )  computations for a k-layer grid of size 
G X G. However, based on the nature of wavefront prop- 
agation on the hexagonal mesh, we can propose a simpler 
model that can yield us the same result using only 8 (kN2) 
computations, where N is the number of processors avail- 
able and G >> N. We believe that similar models can be 
developed for other topologies as well. 

Notation 1: Let Dj be a permutation of the group 

z, = { [OI, [ I ] ,  [21, * * > [ N  - 13; @ } 
of congruence classes modulo N. 

Theorem I :  The four diagonals of the ith wavefront ex- 
pansion on the hexagonal mesh machine of dimension e, 
handling a single-layer obstacle-free grid of dimension G 
X G, are given by the first i + 1 columns of the diagonal 
matrix, 3, where 

3 17 12 7 2 16 11 6 1 15 10 5 

15 16 17 18 0 1 2 3 4 5 6 7 

and the Di are as per Notation 1. 
Proof: We know that on an obstacle-free grid, the 

wavefronts are diamond-shaped. Let us label the four di- 
agonals as D l ,  D2, D3,  and D,. As can be seen from Fig. 

Fig. 6 .  Wavefront expansion on 6 on a three-dimensional mesh. 

It is obvious that D3 will only be a shifted version of 
DI,  where the shift factorj is given by 

j = [N - (2e - 1 ) i l N  

where N = 3e2 - 3e + 1. 

by applying a mapping function P : D l  + D2,  where 
Furthermore, it can be verified that D2 can be obtained 

q : ( x )  = [ N  - (2e - l)x],. 

Corollary 1 shows that P is an automorphism, which is 
to be expected as DI and D2 are cyclic groups of order N. 
Like D3, 0, will also be a shifted version of D2, where 
this time the shift factor k is given by 

k = [ N  - (3e2 - 9e + 4) i IN .  Q.E.D. 

Numerical Example: The D matrix for a hexagonal 
mesh of dimension 3 and for i = 6 is shown in the fol- 
lowing. Note that D, is D l  shifted right, j = [ 19 - ( 2  * 
3 - 1 ) 6 ]  mod 19 = ( -11 )  mod 19 = 8,  and D4 is D2 
shifted right, k = [ 19 - ( 3  * 32 - 9 * 3 + 4 ) 6 ]  mod 19 
= ( - 5 )  mod 19 = 14: 

6, processors along D, and D3 differ by [ 3e], , while those 
along D2 and D, differ by [ 3e - 2IN. From Lemma 1 ,  we 
know that both these result in cycles of length N. Hence, 
indeed the Dj are of the form Z,. 

We claim that to estimate the delay, we need know only 
the ordinality of the set of cells assigned to each processor 
and not the identity of the cells or processors themselves. 
Hence, without loss of generality, we can map the pro- 
cessors appearing along D l  by the vector { 0, 1, 2 - * * N 
- 1 }., The entries on the other rows of 3 will be based 
on this mapping. 

‘Henceforth, it is assumed that the numbers 0. I ,  etc. refer to the cor- 
responding set of congruence classes modulo N .  

The first seven columns of D represent the processor 
assignment on the sixth wavefront expansion. For in- 
stance, the fifth entry of D, is the same as the fourth entry 
of D2 (viz. 4). Referring to Fig. 6, we find that processor 
17 is indeed assigned to both these cells. The elegance of 
this scheme is that, on the basis of the D matrix alone, we 
can now estimate the delay on any wavefront. 

Corollary I :  P = [ N - (2e - 1 ) i I N  is an automorph- 
ism. 

Proof: P is a bijection from D I  to D2. This is true as 
elements of group D, differ by (2e - 1 ), which is seen 
to have a cycle of N. 
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\k(x o y )  = \k(x) o \k( y )  for any x and y E D ,  and 
Q.E.D. where o is the modulo N addition operator. 

A .  Delay Estimates When e Is 1 
This is an interesting case as e = 1 corresponds to a 

uniprocessor environment. The number of cells on the ith 
wavefront ni for a grid of size G x G is given by the 
following. For G odd 

4i, 

4 ( G  - i ) ,  

4i,  

1 
ni = 

ni = 

For G even 

4i - 2 ,  

4 ( G  - i ) ,  

1, 

i < 

i = G .  

Hence, the maximum delay up t o j  expansions is given by 
j 

4 ,x [min (i,  G - i )  - 11, 
r = l  

G odd or j < G / 2  

i 
4 c [min (i,  G - i )  - 11 - 2,  otherwise. 

i =  1 

With j = G ,  we get MD = ( G  + 1 ), which is as expected. 

B. Delay Estimates When e > 1 
Notation 2:  

Let D (k), i : j  ) be the submatrix of 33 ( k ) ,  the diagonal 
matrix for the kth layer, comprising of columns i to j ,  
both inclusive. 

Let EDfk(i)  = [max t i ] ,  where ti is the number 
of times processor Pi appears on the active wavefronts 
of the ith expansion and k is the number of layers. 
More formally, EDfk(i)  is the number of times Pi ap- 
pears in D ( l ) ( O : [ i + k - l ] N )  ' e * D ( j ) ( O : [ i + ( k - j ) ] ~ ) *  e ' 

D(k)(o: [ i l , v ) .  
Let EDbk ( i ) = [ max ri 1, where rj is the number of 

times processor Pi appears on the active wavefronts of the 
ith expansion, when i > G / 2 .  Thus EDb differs from EDf 
in the sense that it characterizes wavefronts that are cut 
off by the grid boundaries. More formally, EDbk ( i  ) is the 
number of times Pi appears in D ( 1 )( 1; + k - I l N , . ~  - I ) , . . .  
D ( j ) ( [ i + ( k - j ) ] N : N - l )  D ( k ) ( [ i ] N : N - l ) '  

Let D{ represent row Dj of the diagonal matrix being 
repeated j times. 

Observarion 2: Based on the periodicity of the proces- 
sor mappings on a diagonal, as given in Lemma 1 and 

from Theorem 1 ,  it may be observed that the processor- 
to-cell mapping on the ith wavefront expansion is given 
by the extended diagonal matrix D ' ,  where 

a n d i  = 1N + m. 

Theorem 2:  For an N-processor hexagonal machine and 
a k-layer obstacle-free grid of dimension G X G ,  where 
G >> N ,  the upper bound on the delay facto? to route 
any net is k ( ( G / N )  + 1) .  

Proof: It is obvious that the net that will result in the 
maximum time is the one spanning from the center of the 
grid to a comer. This is because this leads to maximum 
possible conflict in the processor assignment over the four 
edges of the wavefront expansion.6 

In the following derivation, we assume that one unit of 
time corresponds to the time taken by a full-grid machine 
to perform a single wavefront expansion. Hence, for our 
machine, we estimate the time taken by counting the mul- 
tiple cell-to-processor assignments on a wavefront. From 
Observation 2 ,  the time for the jth wavefront expansion' 
for a single layer, MTI ( j ), is given by 

Hence, the total time up to the Gth expansion is given 
by 

'Delay factor (DF) = time taken by the hexagonal machine/time taken 

6From Lemma 1, we know that this conflict is minimized over a single 

'Note that after G / 2  expansions, the wavefronts are partly cut off by 

by a full-grid machine. 

edge. 

the grid boundaries. 
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If we let L ( G / 2 )  J = aN + 6 ,  then ( 1 )  can be reduced 
to 

+ ab + aM, 1 a ( a  - 1) 

j = b  

+ J =  .E I ( E D f d j )  + E D b d j ) )  ( 2 )  

where Mk = fk + bk and fk = Er=-,' ED&( i ) and bk = 
cyzl' EDbk( i ). 

Note that if b is not negligible with respect to ( a  . N ), 
then we have to add a correction factor 6 = aN EDh,( b )  
- 4ab to the total time required. 

The expressions in the case of more than one layer are 
also very similar. The total time required to route a net 
originating from the center of the top layer to a comer at 
the bottom layer is given by 

On simplification, we find that the total time needed is 
given by 

( 3 )  

At this point we note that ( 2 )  can be obtained from ( 3 )  
by replacing k with 1 .  From extensive simulation, Mk is 
found to be nearly equal to 6kN.  If we also assume that 
( G / 2 )  2: aN, then ( 3 )  reduces to 

a ( a  - 1)  
2 

Tk(G) = 8k N + aM, 

= 4k 

= 2akN(2a + 1 )  

[ a ( .  - 1 ) ] N  + a * 6kN 

= kG($ + I ) .  

Thus the DF is given by 

DF = kG(: + l > / G  

= k ( i  + 1 ) .  ( 4 )  

Q.E.D. 

Corollary 2: For an N-processor hexagonal machine 
and a grid of dimension G x G, where G >> N ,  the DF 
in routing a net which spans from the center to a comer 
of the grid is twice as much as that of a net connecting 
two diagonally opposite comers of the grid, even though 
the latter net is twice as long.* 

For a net proceeding from comer to corner, we find that 
each wavefront consists of only a single segment. For 
simplicity, we are assuming a single-layer grid. The ex- 
tensions to the multilayer case is straightforward and is 
left to the reader. Note that there will be 2G wavefront 
expansions: 

2: 2Na * (2a - 1 )  + (4b  - 1)2a 

where L(G/2) J = aN + b .  
Thus neglecting b ,  we get 

DF = G(: - 2 ) / 2 G  

Hence, from (4) and ( 5 ) ,  we have 

G 
DF(net1) = ($ + 1 )  2: 

G 
DF(net2) = I(G - 2)  2: G. 

2 N  
Q.E.D. 

Corollary 3: A hexagonal machine of dimension 
8 ( JkG ) can handle a k-layer grid consisting of 8 ( k G 2 )  
cells, at about the same speed as a full-grid machine com- 
prised of 8 ( kG2) processors. 

Proof: From Theorem 2, we know that the delay fac- 
tor in routing a net is e ( k G / N ) .  Also, for a hexagonal 
mesh, N = 8 ( e 2 ) ,  where e is the dimension of the 
mesh. Q.E.D. 

Also, a point worth observing is that the only major 
computations required are for the 2N element vectors EDf.  
and EDb,, which take 8 ( k N ' )  time at the most. 

'These two nets represent extreme cases. In practice. we contend that 
the maximum delay will be less by a factor of 4-5 for most other nets. 
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A .  Architectural Issues 

@ 

The hexagonal array machine, as we envision, will con- 
sist of a C-wrapped hexagonal mesh of processing ele- 
ments which are under the control of an array control unit 
(ACU). The machine operates under an SIMD computer 
organization wherein each processing element executes 
the same instruction globally broadcast by the ACU. 

The hexagonal array machine will act as a coprocessor, 
or “routing accelerator,” to a workstation or serial main- 
frame computer. Our design philosophy is oriented to- 
wards a compact design suitable to packing in a VLSI 
chip. Some researchers [13], (211 have advocated gen- 
eral-purpose processing elements made up of commercial 
chips and microprocessors. Their rationale is that they of- 
fer flexibility in  employing various variants of the maze 
algorithm. They further believe that such a machine can 
be used for design tasks other than routing. Agreeably, 
this can be quite attractive in an experimental setup. How- 
ever, the low speedup factors of around 3-4 achieved by 
the WRM can be attributed precisely to this lack of ded- 
icated hardware, interchip communication overhead, and 
lack of stress on performance, among others. Hence, we 
believe that a routing accelerator must be dedicated and 
hardwired to do its job as fast and efficiently as possible. 
It is also our feeling that any routing accelerator, at least 
any in the near future, must considerably outperform its 
serial version in order to be practically viable. In today’s 
ever-increasing design environment, the routing acceler- 
ator also must be capable of handlilig problem sizes much 
larger than the physical array size. More importantly, it 
must be able to address the issue of multilayer routing, 
not only for PCB’s, but also for future IC design. It has 
been amply demonstrated previously that the hexagonal 
mapping appropriately answers all of these problems. 
Hence, we employ this interconnection topology in our 
goal to come up with a design of a compact, fast machine 
that can handle problem sizes much larger than the phys- 
ical size of the processing array. 

Simulation studies have indicated that speeclup versus 
mesh-dimension curve tends to level out with the mesh 
dimension around 8. Therefore, we believe that an eight- 
dimensional processing array, consisting of 169 process- 
ing elements, is ideal for the problem size that can typi- 
cally be expected. 

Fig. 7 gives us an overview of the hexagonal machine 
while Fig. 8 shows the block diagram of a typical pro- 
cessing element. Thus the two important components of 
the hexagonal array machine are i) the ACU and ii) the 
array of interconnected processing elements. The ACU is 
responsible for the interface with the host computer. To 
begin with, the host computer would pass on to the ACU 
information regarding the size of the grid, position of ob- 
stacles on the routing surface, if any, and coordinates of 
the terminals of the various nets. The other functions of 
the ACU will become evident shortly. 

i / 2 :  

RECEZVE U N I T  

SEND CNIT 

~ a t a  + S t r o b e  _ i n e s  
6x  to eacn ne1ghbol.I 

Fig. 8. Block diagram of a single processing element 

The processing array is the actual workhorse of the hex- 
agonal array machine. Each processing element has spe- 
cial-purpose hardware for receiving and propagating la- 
beling information with its six neighbors. 
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From Fig. 8, it is obvious that the major bottleneck, 
both in terms of space and performance criteria, is the 
local memory. The local memory must store pertinent in- 
formation regarding the various cells that have been 
mapped onto this processing element. Each entry can be 
assumed to consist of two parts, namely, the ( x ,  y ,  h ) 
coordinates of the cell (fixed data) and a variable part for 
maintaining the labeling information for the backtrace 
phase; status of the cell, i.e., whether it has been ex- 
panded already or whether it is a terminal (source or des- 
tination) or whether it is blocked, etc. 

In a full-grid machine, such as the L-Machine, the in- 
formation that one processor must send to its neighbor 
during wavefront expansion can be as simple as a I-b to- 
ken. This is possible as each processor is mapped to only 
a single point on the grid. In any virtual machine, infor- 
mation must also be passed on to the neighbor identifying 
the cell instance that corresponds to that expansion. For 
our machine, each processor based on the knowledge of 
its position in the grid can calculate the ( x ,  y ,  h ) coor- 
dinates of its neighbors and send it. This scheme, though 
simple, is also very inefficient. Even for a four-layer grid 
of dimension 256 by 256, this would entail having to send 
18 b each time to each neighbor. More importantly, a pro- 
cessing element upon receiving the token must extract in- 
formation regarding that cell from its local memory. So, 
unless the memory is organized as an associative mem- 
ory, there will be a tremendous overhead in processing. 

The alternative would seem to be that each cell pass to 
its neighbor, during wavefront expansion, the memory 
address rather than the cell contents. We shall now dis- 
cuss one scheme which can do precisely that. After the 
initial mapping using the operator 9 (cf. Definition 1 )  has 
been calculated, the ACU generates a new array INDEX, 
defined as follows: 

INDEX [ x ,  y ,  A ]  = { i-this is the ith occurrence of n 
in layer h proceeding in a 
row-major fashion } 

where n is the processing element to which cell ( x ,  y, h ) 
is mapped. 

Each processing element then calculates the difference 
A between its INDEX value and the INDEX values of its 
neighbor in each direction. In case the grid boundaries are 
met along any direction, an illegal value, X, is entered, 
implying the expansion is not possible in that direction. 
From Lemma 1 ,  it is evident that the maximum absolute 
value of A is going to be r ( G / N )  1 . For a 256 by 256 
grid and N = 169, this works out to be 2. Note that this 
value is independent of the number of layers in  the grid. 
Hence, the A value for each direction can be stored in a 
3-b field. This in turns means that the fixed part of each 
entry would be 18 b wide. The entry for cell ( x ,  y,  X ) is 
stored in the local memory of the mapped processing ele- 
ment at address ( Ak . . * 

ho is the binary representation of X and b, . . . bo is the 
binary representation of INDEX[x, y A ] .  

Xo, b,q * * . b o ) ,  where ha * 

Now let m,, be the address of the cell currently being 
expanded. Then the information passed to the neighbor- 
ing processing element in direction d is the value (m,, + 
A,,), where A,, is the difference stored at mr, for direction 
d.  For a 256 by 256 four-layer grid, this entails sending 
only eleven bits of information, as opposed to 18 in the 
previous case. However, the vital gain is in the fact that 
the cell information received is in the form of an address. 
Hence, it results in much speedier retrieval of data from 
the local memory. 

The cost we pay for the new scheme is the additional 
time spent in generating INDEX, even though this will be 
more than compensated for by the faster processing. Also, 
as the information is static for a given mapping, it can be 
precomputed and loaded in the local memories once and 
for all. However, the indexes will no longer be consecu- 
tive for smaller grids. 

The memory contents for the first three processing ele- 
ments for the mapping shown in Fig. 2 are shown in Table 
111. The entries marked X indicate that no expansion is 
possible in those directions because of the grid dimen- 
sions. 

The send and receive units in Fig. 8 could be as simple 
as shift registers with appropriate status flags to indicate 
if any new data have arrived. The presence of a bank of 
registers, one per neighbor, ensures complete parallelism 
in the expansion process. The update unit, as the name 
suggests, would update the pertinent cell status and la- 
beling information. It could store these cells in a stack- 
like structure for faster retrieval by the next-cell unit. 
Also, the update unit informs the local control unit of new 
data by raising a BSY (busy) line, upon new data arrival, 
or the DST line, if the cell corresponds to the target. The 
next-cell unit provides the expansion unit with one of the 
possibly several active cells mapped on this processing 
element. This unit also lowers the BSY line if it finds no 
more cells remaining to be expanded by the processing 
element in the given cycle. The expansion unit for direc- 
tion d adds the value Ad to the address of the cell to form 
the message for the neighbor along direction d.  This is 
then sent by the send unit, provided the Boolean condition 
(A,, # X A cell-state = to be expanded) is satisfied. 

The preceding operations are all carried out under the 
supervision of the local control unit. The ACU broadcasts 
the commands globally to all the local control units. Also, 
the ACU can individually access each processing ele- 
ment, using the X and Y select lines, and initialize the 
processing elements at the start, as to the locations of the 
initial obstacles and start and end of the nets. During 
backtrace the processing elements on the net can raise the 
same lines to indicate the route to the ACU. A point to 
note is that in this scheme, some processors may be forced 
to idle if others have multiple assignments on the current 
wavefront (Procedure expand-$-busy) . Additional 
speedup could be achieved if the processors were permit- 
ted to continue to expand. This would correspond to an 
MIMD mode of operation. The cells being expanded dur- 
ing any cycle now would no longer correspond to any par- 
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TABLE 111 
CONTENTS OF THE LOCAL MEMORY FOR PROCESSORS 0 TO 3 

Local Memory -0  Local Memory -1 

-1 
X 

o o o x  
- 1 - 1  0 0 0 x 0 X 
- 1 - 1  0 0 0 x - l x  0 0 0 x 
0 - 1 0  x 0 x - 1 0  0 x 0 x 
o o x o x o  o o x o x o  

1 0  - 1 0  x 0 
1 0  - 1 0  x 0 
1 0  - 1 0  x 0 

-1 -1 -1 0 x 0 
-1 -1 -1 0 x 0 
-1 -1 -1 0 x 0 
0 - 1 - 1  0 x 3 

I I I 

Local Memory - 2  Local Memory - 3  

o o o o o x  
0 0 0 0 o ' x  
o o o o o x  
o o o o o x  
o o o o o x  
0 1 0 0 0 x  
O l O X O X  

0 
0 
0 
0 
0 
X 
-1 
-1 

o x o x o  
1 - 1  0 x 0 
1 - 1  0 x 0 
1 - 1  0 x 0 
1 - 1  0 x c 
1 - 1  0 x ( 

x - 1  0 x c 
0 - 1  0 x ( 

4" 1 0 0 0 0 : 
0 0 0  X 

0 0 - 1 0  x c 
0 0 -1 0 X 
0 0 - 1 0  x 
0 0 - 1 0  x 0 
0 1 - 1 0  x 0 
0 1 - 1 0  x ( 

ticular wavefront. Procedures 1-5 describe the various 
software routines in pseudocode. 

B. Procedures f o r  an SIMD Model of Computation on 
the Hexagonal Machine 

Procedure 1: PROC-ELEM main loop 
repeat 

Process CU command 
Execute the appropriate routine, viz., 

EXPAND, EXPAND-IF-BSY, or BACKTRA CE 
until OVER. 

Procedure 2: EXPAND 
for each Ri do 

if new data received 
Check with cell bank if this is a new cell 
if new 

Update the labels for the cell 
Set DST flag if target reached 

cnt+ + 

Expand one unexpanded cell by sending message to 
the applicable neighbors 
cnr- - 
if cnr > 0 

set BSY flag ON 

else 

end. 
reset BSY flag 

Procedure 3: EXPAND-IFBSY 
if BSY flag is ON 

else 

end. 

if new data received or if DST flag set 

Perform Algori thm EXPAND 

skip 

Procedure 4: BACKTRACE 

if neighbor on cur-dir has correct label 

else if neighbor in direction n on same layer has cor- 
rect label 

else if neighbor in direction n on adjacent layer has 

Next = cur-dir 

Next = n 

correct label 
Next = n 

cur-dir = Next 
Send message to neighbor in direction Next 

end. 

Procedure 5: CONTROL-UNIT main loop 
Compute the mapping of cells to processors 
Load mapping information onto the cell banks of the 
processors 
repeat 

Broadcast the source and target for this net 
EXPAND 
Read DST vector and go to next net if set or  if route 
not possible 
while BSY vector # 0 

EXPAND-IF-BSY 
until all nets over. 

VI. PERFORMANCE ANALYSIS 
A simulation has been made based on the preceding ar- 

chitecture and the multilayered routing algorithm pro- 
posed. The simulation program has been coded in C + +. 

We ran several simulations, varying different parame- 
ters, such as the hexagonal mesh dimension, the grid size, 
and the number of layers to be routed. Thus we were able 
to investigate their impact on the routing time. We varied 
the mesh dimension from 2 to 32 ( i .e . ,  from seven pro- 
cessing elements to 2977 for the 32-dimensional mesh). 
We performed sample routing on grids of sizes ranging 
from 16 by 16 to 1024 by 1024 and comprised of 1-8 
layers. All these routing problems were considered on an 
empty grid (i.e., with no previous blockages). A net orig- 
inating from the center of the grid and proceeding to a 
comer, along with another running between two diago- 
nally opposite comers, were always considered. Our mo- 
tivation here was simply to get a feel for the order of 
delays that we may expect from a hexagonally intercon- 
nected machine. The aforementioned two nets, as we have 
already shown, require the most time to route. 
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Fig. 9. Simulation and analytical results of routing time on the hexagonal 

array machine. (a) Simulation results (one layer). (b) Analytical results 
(one layer). (c) Simulation results (multilayers). (d) Analytical results 
(multilayers). 

TABLE IV 
ANALYTICAL RESULTS OF DF FOR A K-LAYER 128 BY 128 GRID 

128' x 1 128' x 2 128' X 4 128' x 8 
Mesh No. of 
Dim PES MI DF, M2 DF' M ,  DFj M4 DF, 

2 7 31 13.869 1 73 28.3 184 I63 57.5332 392 118.5470 
4 37 211 3.3750 400 6.5213 74 1 12.2754 I537 24.621 I 
8 169 1021 2.0039 I967 4.0137 3671 7.4297 6342 13.1484 

16 72 1 4447 I .7578 8836 3.4395 I6967 6.662 I 30838 12.8145 
24 1657 10273 1.6582 20697 3.2402 40452 6.3633 75167 12.4043 
32 2977 I8499 1.5820 37549 3.1816 74085 6.3457 140376 12.3281 

The graphs in Fig. 9 show the timing characteristics of 
the hexagonal array machine as obtained from simulation. 
Also shown are the upper bounds on the time as projected 
by the analytical model of Section IV. Both single-layer 
and multiple-layer routing results are plotted. Each plot 
is of the time needed to route versus the dimension of the 
mesh used. The unit for the y axis is taken as the time 
taken by a processor to perform one expansion. Table IV 
shows the analytical results for Mk and the DF, which are 
as expressed in Section IV. 

It is seen that the graphs are all exponential in nature 
and of the form y = b * IO-", where b and c are positive 
numbers. As is intuitively evident, the graphs show that 
for a very small dimension, such as 2 or 3, there are many 
multiple assigments of cells to the processing elements 
per wave expansion. This does not mean a lack of parallel 
processing. It only implies that since the same work is to 

be handled by fewer processors, the overall time required 
to complete the routing is more. As the number of pro- 
cessing elements available increases, we need lesser and 
lesser time to perform the same routine. Note that the 
quality of routing obtained is not dependent on the num- 
ber of processors used. It is determined by the routing 
algorithm, like the cost functions employed during wave 
expansion or the manner in which backtracing is per- 
formed. After a mesh dimension of around 8, all of these 
curves seem to flatten out, in the sense that increasing the 
number of processors available does not provide any sig- 
nificant reduction in routing time. Hence, we feel that a 
practical implementation which would be required to 
tackle problems of these specifications could ideally be 
built as an eight-dimensional mesh comprised of 169 pro- 
cessing elements. In this way, we will be able to do rout- 
ing nearly as fast as a full-grid implementation made up 
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- Layer 1 _ _ _ _ _ _ _  Layer 2 
Fig. I O .  Sample two-layer routing-example. 

of thousands of processing elements. Another conclusion 
that we were able to draw was that the time required to 
route for most nets is about 0.65-0.85 times the upper 
bound on the delay, as predicted by Theorem 2 .  Thus this 
measure of the delay can be very simply used for evalu- 
ating the suitability of a mesh of a certain dimension for 
solving a given class of problems. 

The rest of the section shows the routing produced for 
two, more complex problems considered. Fig. 10 shows 
the layout obtained for a sample problem involving 14 
nets on a two-layer grid of size 128 by 128. All the blocks 
and terminals of all nets lie on the top layer only. Fig. 11 
shows the initial blockages and the wiring obtained for a 
four-layer PCB problem. In this case, 25 nets were suc- 
cessfully routed. Table V summarizes the performance re- 
sults for the two problems for meshes of dimensions 4 and 
8, respectively. 

The results are very promising indeed. For a problem 
similar to the two-layer case, Suzuki et al. [21] had ob- 
tained an average of 3.4 cells assigned per processor (to- 
tal of 64 processors) over each wavefront. This is nearly 
twice the value that we get with a five-dimensional mesh 
(61 processing elements). We contend that this is a direct 
reflection of the superiority of our mapping, viz., the same 
processor appears at every N processors along any direc- 
tion, instead of the smaller periodicity of N / 2  or less ob- 
tained by others. Also, our solution is not unnecessarily 
constrained by horizontal-vertical restrictions on wire di- 
rections. This offers scope for a greater number of wires 
being routed. 

Table VI shows the netlist used for the two-layer sam- 
ple problem, whose solution is given in Fig. 10. Average 
MAF refers to the multiple assignment factor of cells to 
processing elements on a given wavefront average over 

1 n 

Layer 0 Layer 1 

L I I  I 

Layer 2 Layer 3 

Fig. 1 1 .  Sample four-layer PCB routing example 

all wavefront expansions. Total time gives an estimate of 
the amount by which our machine might be slowed down 
as compared to a full-grid implementation. It is based on 
an SIMD mode of computation wherein some processing 
elements may remain idle (similar to masking) during the 
period when others are handling multiple expansions for 
that particular wavefront. Avg PrUt refers to the average 
processor utilization percentage. 

Table VI1 shows the netlist for the four-layer PCB ex- 
ample of Fig. 11. All columns have the same implications 
as before. 

VII. RECONFIGURABILITY A N D  FAULT-TOLERANCE 
ISSUES 

A .  Reconjiguration 
The ability of the hexagonal array machine to perform 

multilayer routing stems from the fact that each process- 
ing element is directly connected to six other neighbors. 
Obviously, this implies an increase in  the total number of 
links required. In fact, for an n node machine, a square 
mesh topology requires 2n links as compared to the 3n 
links required by the hexagonal machine. However, it is 
now possible to perform multilayer routing very effi- 
ciently. Currently, most routers tackle a multilayer prob- 
lem one layer at a time. This necessitates the onerous task 
of finding out the optimal point for the vias, to optimize 
the routing criteria as well as to maximize the connectiv- 
ity ratio. These routers, therefore, adopt heuristic mea- 
sures to simplify the problem, as a result of which, we 
may frequently obtain unacceptable results. However, for 
two-layer horizontal-and-vertical routing, a four-neighbor 
interconnection topology may suffice. For this purpose, it 
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TABLE V 
PERFORMANCE RESULTS O N  T H E  HEXAGOYAL A R R A Y  MACHINE 

No .  of Mesh No .  of Total Wire Avg.  Total Avg.  Completion 
Grid Size Layers Dim. Nets Length MAF Time Pr. Util. Ratio 

128 x 128 2 4 14 877 2.9872 5.0735 50 100% 
128 X 128 2 8 14 877 I .3063 2.8302 20 100% 
64 x 64 4 4 25 1048 2.5573 4.7643 40 100% 
64 x 64 4 8 25 1048 I .2539 2.641 1 15 100% 

TABLE VI 
NETLIST A N D  PFRFORMANCE DATA FOR SAMPLE TWO-LAYER ROU r l N G  PROBLEM 

Avg. Pr. 
Source Target Avg.  MAF Total Time Ut. 

Wire No .  of No. of 
Net x Y X y Length Vias Bends 4D 8D 4D 8D 4D 8D 

1 14 90 26 70 34 0 3 2.1930 1.2789 4.1471 2.6471 42 14 
2 20 50 70 55 57 2 1 3.2904 1.3373 5.2456 2.8421 55 22 
3 20 40 50 30 42 2 1 2.6543 1.3175 4.6191 3.0238 48 16 
4 20 113 70 90 73 0 3 2.5556 1.1665 4.1644 2.2055 56 24 
5 55 113 30 60 80 2 I 3.6429 1.4512 5.8000 3.5750 57 20 
6 85 113 60 85 55 2 2 2.9429 1.3024 5.0546 2.6546 52 22 
7 113 55 90 40 38 0 3 2.4581 1.2258 4.2368 2.3947 49 19 
8 68 40 40 48 36 0 I 2.7963 1.2779 4.6667 2.6944 49 19 
9 40 29 113 25 79 2 I 3.7639 1.4903 6.3544 3.6962 53 20 

I O  70 85 70 14 I35 2 3 4.1843 1.4472 6.7704 3.5259 58 24 
I I  30 14 80 50 110 2 3 2.9041 1.2473 5.0000 2.6636 52 21 
12 20 25 50 25 46 2 4 2.1899 1.1811 4.3696 2.3261 42 17 
13 35 60 70 65 40 0 1 2.6402 1.2038 4.8500 2.4500 45 19 
14 85 85 80 40 52 2 1 3.6048 1.3611 5.7500 2.9231 54 23 

TABLE VI1 
NETLIST A N D  PERFORMANCE DATA FOR SAMPLE FOUR-LAYER PCB ROUTING PROBLEM 

Source Target Avg.  MAF Total Time Avg.  Pr. Ut 
Wire No .  of No.  of ~~ 

Net x y X y Length Vias Bends 4d 8d 4d 8d 4d 8d 

I I O  50 I O  30 20 
2 13 50 35 28 46 
3 25 52 13 30 40 
4 25 25 35 25 I O  
5 12 20 12 I O  I O  
6 15 20 27 I O  22 
7 18 19 40 I O  31 
8 15 55 45 55' 42 
9 15 52 38 30 47 

I O  30 I O  50 20 32 
I 1  35 57 41 30 47 
12 44 50 44 30 42 
13 46 50 46 30 48 
14 45 7 15 I O  41 
15 5 50 I O  8 49 
16 5 53 I O  5 57 
17 55 51 55 20 43 
18 55 54 24 5 96 
19 55 57 14 5 I l l  
20 12 60 27 60 17 
21 30 60 50 60 24 
22 23 30 37 30 16 
23 25 57 40 6 72 
24 15 57 30 8 70 
25 25 22 36 20 15 

0 
2 
6 
0 
0 
0 
0 
0 
2 
2 
6 
2 
2 
0 
0 
0 
0 
2 
4 
0 
0 
2 
6 
6 
0 

0 
2 
1 
0 
0 
2 
2 
4 
3 
2 
3 
5 
3 
4 
2 
2 
2 
5 
3 
2 
2 
0 
3 
1 
3 

2.3827 
3.2050 
3.5517 
I .4895 
I .0427 
1.3010 
2.5292 
2.8576 
3.1545 
3.4796 
2.5776 
3.0325 
3. I453 
3.0886 
2.7349 
2.7076 
2.1820 
2.9367 
2.6883 
1.8967 
1.9835 
1.8767 
3.3784 
3.0558 
I .6553 

1.2001 
1.3398 
1.4173 
1.0886 
1 .oooo 
1.0433 
1.2163 
1.2596 
1.3338 
1.4337 
I .2290 
1 ,3446 
1.3235 
1.3088 
1.2993 
1.3271 
I .  1427 
1.2719 
1.4638 
1.2126 
I .  I372 
I .  I365 
1.391 I 
1.2962 
I .  I296 

4.5500 
6.2609 
6.7750 
2.7000 
I .  3000 
2.0909 
4.0968 
5.4524 
5.9149 
6.2813 
4.5745 
5.2381 
5.1875 
6.0732 
5.6122 
5.3684 
4.2326 
5.5417 
5.0360 
3.9412 
3.7917 
3.3750 
6.5139 
6.0000 
3.2000 

2.3000 
3.0435 
3.4250 
1 ,7000 
1 . 0000 
1.3636 
2.4516 
2.7857 
2.9787 
3.4688 
2.6170 
2.9286 
2.7083 
3. I219 
3.2449 
3.0351 
2.3256 
2.8438 
3.1441 
2.647 I 
2.2083 
2.1875 
3.4306 
3.0000 
2.0667 

40 18 
45 20 
47 20 
31 I I  
19 5 
26 8 
37 13 
47 20 
47 20 
49 19 
45 17 
38 14 
36 15 
43 18 
44 16 
46 17 
36 14 
45 19 
46 15 
34 I I 
43 16 
41 13 
48 19 
47 20 
33 I I  
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0 Fig. 13. Additional blockages caused by faulty processing elements. 

2 TABLE VI11 
EFFECTS OF FAULTY LINKS ON ROUTING 

15 16 11 

Fig 12 Four-dimensional hexagonal array with diagonals links removed. Average Average 
# of Faulty Average Total Via per Bends per Average 

Time Wirelength Net Net Pr. Util. Links 

is possible to simplify the basic hexagonal mesh topology 
by deleting the two additional links of each processing 
element. One way to achieve this is by removing all the 
links along one of the three main directions. Fig. 12 shows 
the modified architecture for a four-dimensional mesh, 
where all the links along the 60-deg direction have been 
removed. Since the interprocessor cycle period is still n 
for an n-node mesh, this mapping would result in fewer 
conflicts in processor assignment than a comparable 
square-mesh or toroidal interconnection. 

B. Fault Tolerance 
Can routing machines tolerate some amount of failure 

in the links or processing elements? This is a very impor- 
tant question, especially for WSI or VLSI technology, 
where such faults could arise due to imperfections in the 
manufacturing process. Unfortunately, this issue is often 
unaddressed. What then are the ramifications of faulty 
links and processors on routing on the hexagonal array 
machine? Clearly these faulty elements will hinder wave- 
front expansion and backtracing. In fact, a faulty pro- 
cessing element can be modeled as a case where all the 
six incoming links are treated as being faulty. 

From the point of view of grid layout, these faults, 
however, can be conceptualized as creating additional ob- 
stacles on the grid surface. The darker squares in Fig. 13 
show these additional blockages caused by ten out of the 
37 processing elements (27 % ) becoming faulty. Conse- 
quently, 138 additional cells (26.75%) get blocked. In 
spite of this high failure rate, it is heartening to note that 
all wires could still be routed for a sample problem as 
described in Section VII-B-2). 

I) Faulty Links: We took the routing problem of Table 
VI and randomly assigned faulty links. This information 
is easily handled by setting the appropriate A entries in 
the local memory of the two processing elements con- 
nected by the faulty link to the illegal X value. Table VI11 
summarizes the results obtained. 

We observe that the time needed to route, as well as 
that for the processor utilization, remains practically the 

0 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5.0735 
5.1231 
5.2181 
5.1558 
5.2059 
5.1369 
5.2001 
5.3131 
5.2753 
5.4035 

877 
879 
823 
877 
86 1 
877 
879 
829 
837 
797' 

1.2857 
1.4286 
1.4286 
1.2857 
1.7143 
1.2857 
1.2857 
1.5714 
1.5714 
1.3846 

2.0000 
2.3571 
2.2143 
2.4286 
3.4286 
2.4286 
2.5000 
2.4286 
2.9286 
3.8462 

50 
49 
49 
50 
49 
49 
49 
48 
49 
49 

' 1 net could not be routed in this case 

same. The quality of routing in terms of the number of 
bends and number of vias used per net deteriorates 
slightly. An interesting observation is that in some in- 
stances with faulty links, there is a reduction in the total 
wire length needed (chiefly for nets 10 and 11). There 
are a couple of reasons for this. Firstly, we employ a very 
simple backtracer which favors a reduction in the number 
of bends and vias to an increase in the wire length. Sec- 
ondly, it is another indicator to the effect of net ordering 
on performance. Our conclusion, therefore, is that a small 
amount of link failure, say about 5% (in this instance, 
9% ), will not be catastrophic to the hexagonal machine. 
Part of this assurance is based on the additional 2 deg of 
freedom available to each processing element for expan- 
sion. 

2) Faulty Processors: To study the effect of processor 
failure on routing, we considered a grid corresponding to 
the mapping shown in Fig. 2. Our objective was to route 
four nets in the presence of 0-10 faulty processing ele- 
ments, out of a total of 37. Although the processing ele- 
ments were randomly set faulty, we ensured that none of 
the source or target cells were mapped onto them. A faulty 
processing element can be represented either by setting 
the appropriate six A entries in the local memories of the 
six neighbors to an illegal value or by considering all cells 
mapped to it as being blocked. The results are summa- 
rized in Table IX. 

Our conclusion here, also is that the hexagonal machine 
can survive a large amount of processor failure, but at the 
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Fig. 14. Wiring results in the presence of faulty processors. __ Layer 
1; ---- Layer 2. 

TABLE IX 
EFFECTS OF FAULTY PROCESSING ELEMENTS ON ROUTING 

Avg. of Avg. of 
# of Faulty Total Average Avg. Vias per Bends per 
Processors Wirelength Time Pr. Util. Net Net 

0 
1 
2 
3 
4 
5 
6 
7 
8 

10 

62 
64 
64 
62 
66 
66 
90 
74 
66 
94 

2.131 
2.0873 
2.0976 
2. I245 
2.0461 
1 ,9603 
I .  8454 
2.0227 
2. I460 
1.6962 

26 
21 
24 
23 
22 
24 
19 
20 
18 
16 

~ 

0.50 
0.50 
0.50 
0.50 
1 .oo 
0.50 
1.50 
I .oo 
1 .oo 
2.00 

~ 

I .25 
1.50 
2.00 
2.75 
1.75 
4.00 
5.00 
3.75 
3.25 
6.50 

cost of additional vias and bends. Fig. 14(a) shows the 
wiring when no processor is faulty and Fig. 14(b) shows 
the wiring when ten of the 37 processing elements are 
faulty. All the blocks shown are on the top layer, as are 
the terminals of all nets. Also note that net 1 running on 
layer 2 is partly covered by net 4 running on layer 1. So 
is net 4 partially covered by net 2 .  Although the routing 
in this case is of poor quality, it is worth noting that this 
is an instance where nearly 27% of the processing ele- 
ments are faulty. 

VIII. CONCLUSION 
The popularity of hardware routers can be attributed to 

their utmost importance in any automated design environ- 
ment. Powerful processors are required to achieve faster 
turnaround times even though design requirements are 
steadily increasing. Full-grid designs like the L-machine 
are no longer possible. The question of net ordering in 
achieving 100% connectivity with a minimum (or ab- 
sence) of overflow nets continues to be a vexing issue for 
automatic routers. Some amount of rip-up and rerouting 
will inevitably be required in the absence of a scheme for 
determining the optimal net order a priori. This rerouting 
phase often accounts for the bulk of the total time re- 
quired. Allowing for multiple layers is one approach to 
reduce the number of overflow nets and thereby the re- 
routing overheads. Concurrent multiple-layer routing also 

minimizes the number of vias introduced, thereby im- 
proving reliability of the circuit. More nets can be con- 
nected because of the additional routing space available. 
However, existing accelerators based on square-mesh or 
torus topologies are not successful when it comes to mul- 
tiple layers. We believe that this is a restriction of any 
topology wherein each processing element has only four 
nearest neighbors. 

In this paper, we have investigated the hexagonal mesh 
architecture for the physical implementation of the Lee 
algorithm. We have shown the high promise of such a 
machine in handling routing on single as well as on mul- 
tiple layers. The mapping, corresponding to a C-wrapped 
hexagonal interconnection of N processing elements, re- 
sults in an interprocessor cycle length of N .  This is much 
superior to the N / 2  results obtained by other researchers 
[ 131, [ 2  11. Consequently, fewer conflicts arise during 
wavefront expansion and a good quality routing can be 
achieved in a much shorter period. 

We have shown that a mesh of dimension JGk can do 
routing on k-layer grids with kG2 grid points at speeds 
comparable to the full grid machine. For example, we es- 
timate that a four-dimensional hex mesh, with 37 proces- 
sors, will take about ( (256/37)  + 1 )  0.6 - 5 times 
more than the full-grid implementation having 65 536 
processors. We have discussed some of the major issues 
involved in physically implementing such a machine. An 
SIMD-type model, along with a unique labeling scheme 
to lower the local memory requirements, has been pro- 
posed. We have also shown the ability of the hexagonal 
mesh to withstand considerable link and processing ele- 
ment failure and still produce acceptable wiring. 
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