
A Hexagonal Array Machine for Concurrent Multilayer Maze Routing

by R. Venkateswaran and P. Mazumder

In the late 80’s, the network of workstations (having a clock rate of about 30 MHz) became the de
facto CAD design environment and replaced the mid-frame Vax machines. Our research vision was
to develop distributed layout synthesis tools where coarse-grained tasks such as cell placement,
floorplanning, compaction and chip testing problems were solved by using Genetic Algorithms by
running concurrently over multiple desktop computers. See our book on Genetic Algorithms for
details. However, chip routing algorithms require fine-grained parallelism. That is why, we designed
two co-processor chips: HAM and CHiRPS. They were designed and fabricated by us at that time to
solve the emerging crisis of layout turnaround time due to aggressive scaling of VLSI chips..
However, in 1992 DEC alpha chips leapfrogged the clocking rate in the regime of 300 MHz by taking
adavntages of several breakthroughs in CMOS process technology and subsequently Intel, which
acquired DEC foundry in mid 90’s, made further advancements in process technology and ramped
the clock speed to 3 GHz. This technological breakthrough had mitigated the needs for parallel
CAD and the routing coprocessors we built at that time. Hexagonal Array Machine was designed and
tested by R. Venketswaran and P. Mazumder in 1990. HAM coprocessor was later replaced by them
by designing a general purpose multilayer routing chip that was named: Configurable Highly Routable
Parallel System (CHiRPS). Please find the description of CHiRPS coprocessor in an accompanying
paper that demonstrates how fast parallel routing can be achieved by polymorphic switch setting in
the massively parallel ensemble of rudimentary processing elements in CHiRPS. The programmable
coprocessor provided fast and efficient results for different styles of routing such as maze, line
probe, channel, switchbox, general area, and so on

.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. I , MARCH 1993 31

Coprocessor Design for Multilayer
Surface-Mounted PCB Routing

Ramachandran Venkateswaran, Student Member, IEEE, and Pinaki Mazumder, Member, IEEE

Absfract-The printed circuit boards (PCB’s) for the 1990’s
can be characterized by higher circuit densities, multiple routing
layers, newer packaging technologies, and demand for lower
manufacturing costs. The task of connecting all the traces on
such a complex board will become more and more time con-
suming. This paper presents the issues involved in the design of
a special-purpose processing array system, called HAM, which
will accelerate such compute-intensive wire routing tasks. It
is especially suited for double-sided surface-mounted boards
which require complex three-dimensional search operations over
multiple wiring planes. The novel features of the design include
a hexagonal interconnection scheme to improve workload dis-
tributions during multilayer concurrent search operations and
the VLSI custom design of the processors. Particular emphasis
has been placed on the demands of maze routing such as in the
allocation of the routing database on the multiple processors,
design of buffer stores for maintaining the frontier-lists, etc. A
novel scheme of cell-address propagation, which is quite differ-
ent from the traditional grid-coordinate approach is discussed.
This provides for rapid lookup of pertinent routing information
and can be extended to any distributed memory multiprocessor
system. A global pipelining scheme of cell updates and expands
is discussed. Experimental results are presented relating the
speedup to Merent criteria such as number of processors and
size of the local memory for two different modes of parallel wave
propagation.

I. INTRODUCTION
HE NEW generation printed circuit boards (PCB’s) can T be characterized by higher circuit densities, finer trace

widths, multiple routing layers, stringent performance con-
straints, complex packaging and manufacturing technology,
and demand for lower manufacturing costs. Designers must get
their products to the market fast or risk losing their competitive
edge. This requires an integrated design solution uniting the
power and convenience of automated tools with the interactive
expertise of the designer. Several cost measures are often
used in the routing process. For instance, nets pertaining to
analog components such as op-amps need to be routed within a
certain pre-specified length. Board manufacturability and ease
of update are important routing requirements. Vias have to be
intelligently used to provide compact multilayer routes for all
the nets. Wirelength minimization is also important for min-

Manuscript received May 4, 1992; revised August 25, 1992 and October
27, 1992. This work was supported in part by an IBM graduate fellowship,
by the U. S. Army Research Office under the URI program Grant DAAL 03-
87-K-0007, by the Office of Naval Research under Grant 00 014-85-K-0122,
and by the National Science Foundation under Grant 9013092.

The authors are with the Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9206233.

Blind Signal
layer 1

layer 2

layer 3

layer4

layer 5

I
Y layer 6

Spin1

”vgb
bo*

Fig. I . Different via structures.

imizing parasitic effects and is critical for high-performance
designs.

Also in terms of board manufacturability, the primary
concem is the number of layers. Given an unlimited number
of layers to play with, any router can attain 100% success rate;
however, the additional layers greatly increase the manufac-
turing cost and so typically the number of routing layers that
are actually available is limited. Most automatic routers are
frequently restricted to routing between pairs of layers using
vias for feedthroughs, and can only be extended to multi-layer
configurations by concatenating layer pairs. Since, this does
not make use of the variety of via-structures that are becoming
possible in addition to the traditional through-hole vias (Fig.
l), it becomes all the more imperative that all layers be
concurrently considered to achieve efficient multilayer routes.
Though concurrent search can result in more compact boards,
it is also more complex. Previously, routing algorithms could
proceed by reaching the leads X , Y coordinates on any layer.
Now it must be assumed that the terminal is available on only
one surface at its X , Y location.

In addition, advances in packaging technology, such as the
increasing use of sur$ace mounted devices have led to double-
sided mount configurations. This opens up new problems such
as whether to keep closely connected components on the same
side, or to divide them between the two sides so as to increase
compactness. In the absence of better solutions, the approach
typically taken is to generate several initial placements and
route each of them separately and choose the best one. This
increases the time for routing by several time folds.

One of the principal routing strategies that has been found
to be capable of handling all these varied requirements in a
flexible manner is the maze or flood router. First proposed
in 1961 by Lee [l] , this alogrithm is still the mainstay of
autorouting technology for PCB’s. It represents a general
approach to routing (rather than a specific algorithm) and

1063-8210/93$03.00 0 1993 IEEE

1

32 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1 , NO. I , MARCH 1993

further guarantees to find a path if one exists. The maze router
can be extended for multilayer cases as well. However, it
is computationally extremely expensive. One simplification
is to first use faster approaches such as pattern routing to
complete most of the easy connections which account for about
85% of all the nets. Unfortunately, though, the last 10-15%
of all traces require the most time and computing resources
since they are often the most complex to route. It may also
become necessary to rip-up and reroute existing connections
to make way for these traces. This process typically requires
three or four invocations of the Lee algorithm. Since the Lee
algorithm is at its slowest when connections are not found,
the speed problem becomes significant. Furthermore, it gets
only more worse as this phase is often done interactively with
expert designer interface and hence rapid response times are
desirable.

A custom-hardware implementation for maze routing can
run as much as a thousand times faster than a general purpose
computer if the routing processor architecture is ingeniously
designed to exploit all the intrinsic data parallelism in the
search operations. Hardware costs are rapidly decreasing and
with the aid of VLSI it is now possible to construct a single-
board hardware accelerator that can interface to a personal
computer or workstation running routing software. Further-
more, it is unlikely that the maze routing paradigm can be
supplemented in the near future by any other because of its
extreme flexibility, and because of the nonplanar nature of
grids in complex multilayer PCB’s. Thus a routing processor
supporting the general maze router with flexible cost capability
does not suffer the risk of obsolescence as could be the case
with other algorithm-specific solutions. This paper focuses on
the practical issues in the actual construction of one such
system, called Hexagonal Array Machine and acronymed as
(HAM). Since multidimensional arrays are very difficult to
implement, and since the sizes of the grids are not known a
priori. HAM maps the grid onto a smaller number of pro-
cessors connected in a hexagonal wraparound topology. The
hexagonal interconnection scheme has been previously shown
[2], to possess the best characteristics amongst other two-
dimensional topologies for multilayer concurrent searching
operations.

The rest of the paper is organized as follows. In Section 11,
we present a motivation for our work and summarize some
of the previous work done. Section 111 describes the overall
architecture and some issues pertaining to maze routing. A
new and more practical scheme for address computation during
wavefront propagation is presented. Section IV describes the
VLSI design issues for the construction of the individual
HAM processors. Issues such as memory and buffer storage
organization, datapath and microprogrammed control are dis-
cussed. The timing and instruction flow is described along
with a critical path analysis. In Section V, we summarize the
results of system level simulations which evaluate the effect
of internal storage size, number of processors and mode of
wavefront expansion (one wavefront or multiple wavefronts
at a time) on overall performance. It may be noted that
the distributed nature of computation proposed here is also
applicable to other implementations as well.

(a) (b)

routing solution.
Fig. 2. (a) A small double-sided SMT routing problem (b) The three-layer

11. MULTILAYER CONCURRENT MAZE-ROUTING

A. Maze Routing

Maze routing is usually the only practical solution to do
multilayer routing with double-sided surface mounted module
placement. Maze routing consists of three main operations:
the first prepares the board for routing by partitioning it into
hundreds or thousands of cells. The size of the grid cells is
determined by the pad spacing and other design rules being
employed. All the structures on the board such as pads, copper
areas, traces, tooling holes, etc. are marked in the cells to
which they belong. After creating the grid, the maze router
begins an “expansion” stage. The router examines all the grid
points in larger and larger concentric rings around the source
pad till the destination is reached. Simultaneously, the router
assigns cost values to each cell in accordance to some metric.
These metrics are based on a variety of routing variables such
as heading toward the target, adding a via, making a comer,
or using preferred routing layers. In fact, the popularity of
the maze router stems from the capability to tailer the cost
functions to meet almost any routing requirements. Once the
target pad is reached a “backtrace” is performed to the origin
pad from the target point along one of the lowest cost paths.

B. Need for Concurrent Multilayer Search
One reason for multilayer search as was mentioned earlier

is to minimize the total number of layers, thereby reducing the
manufacturing costs of the board. The problem is more severe
in double-sided surface-mounted PCB’s with multiple signal
layers. For example, consider a three-layer SMT board with
three modules Cl,C2, and C3 as shown in Fig. 2(a). Nets
A and B represent interconnections between terminals on one
side of the board while net C interconnects two terminals on
the other side of the board. Net D, on the other hand, connects
two pins on opposite sides. An optimal shortest path routing
solution is shown in Fig. 2(b). Note the buried vias for net
B, which allows net C to be routed beneath its terminals,
could be readily found only by using concurrent search on all
layers.

VENKATESWARAN AND MAZUMDER: DESIGN FOR SURFACE-MOUNTED PCB ROUTING 33

TABLE I
SOME EXISTING ROUTING ACCELERATORS

Accelerator Architecture Routing Model Comments

Wire Routing Machine [7] 32 x 32 array with General purpose 280 pproc Maze routing for 1-2 layer grids with

Interconnection Network PE design

endaround rowlcolumn + 15Kh mednode detailedglobal wiring variable grid weighting
wraparounds

Distributed Array 64 x 64 array with global Bit-serial proc with Maze routing for 2-layers unit cost grids;
Processor [8] rowkol buses for global memory detailedglobal wiring DAP is a commercial

Toroidal Machine [9]
movement machine
Prototype 8 x 8 array with
twisted torus wraparounds ROM and RAM detailedglobal wiring support for interactive

MANURE2 [4] SISD microcode machine Custom designed bitmap + Maze routing for detailed Multilayer support by

NEC ~ P D 7 8 0 0 PE + 8Kb Maze routing for 1-2 layers weighted grids;

rip-up and reroute

address + markkost wiring reconfiguring via-bits in
processors bitmap; support for diagonal

routing; staged expansions

C. Previous Accelerators

Routing accelerators can be broadly categorized as either
SISD (single instruction single data) or SIMD (single in-
struction multiple data) machines. The first category [4]-[6]
consists of a conventional processor aided by special-purpose
support hardware to speed up some of the computations in-
volved such as address computations, frontier-list managment,
etc. However, they do not capture the parallelism inherent
within the algorithm. Instead, speedup is obtained by the
elimination of operating system overheads and by efficiently
performing some of the common operations in hardware.

The SIMD systems account for the intrinsic data parallelism
in maze routing. The primary idea is to use an N x N
array of identical processing elements that have a one-to-one
correspondence with the N x N grid plane and so achieve
a linear runtime for finding a path. A major disadvantage
with such “full-grid” machines is that they need O (N 2) PE’s
despite the fact that almost all of them are not utilized at the
same time. Moreover, they cannot handle problem sizes which
are bigger than the physical size of the processing array. This
is solved by allowing for wraparound connections and making
each PE in the array to be responsible for maintaining the
status of several grid cells. Some of the designs which fall in
this category are the Wire Routing Machine [7], the Distributed
Array Processor [8], and the Toroidal Machine [9]. A brief
comparison of these routers is provided in Table I.

The HAM approach is also SIMD based. It improves on
existing approaches in three main aspects. a) The individual
compute elements have been custom designed keeping in mind
the nature of data retrieval and manipulation operations re-
quired for maze routing. Careful consideration has been given
to the interprocessor communication demands which is often
the bottleneck for previous routers. b) The second reason has
to do with the mapping used to assign grid cells to processors
so that the workload gets uniformly distributed. The mapping
provides the maximum interprocessor cycle period, i.e., the
minimum distance between two occurrences of the same
processing element along any straight line (including diagonal
lines) [2] . c) The hexagonal interconnection which supports
concurrent search in multiple layers needed in complex board
routing.

(plug-in accelerator board)

pTf
0 0

Fig. 3. Overview of the HAM routing system.

111. HAM SYSTEM ARCHITECTURE

A. General Organization

In this section, we present the overall system organization.
There are three levels of interfaces involved. The first deals
with the external interface between the workstation and the
accelerator. The second deals with the interface between the
accelerator controller and the processors in the array and the
third level is the one between the processors themselves.

External Interface: Fig. 3 shows the HAM system organi-
zation in a distributed CAD system running on a network of
workstations. It is conceived of as a single board system that
can be plugged into an expansion slot of any conventional
workstation running CAD software. The layout software can
therefore address the accelerator as a device whenever it needs
to perform a maze routing operaton. Processors are organized
in a two-dimensional lattice. The processor array operates
under the supervision of a global control unit (GCU) which
is responsible for interfacing with the host workstation, for
performing the sequential parts of the algorithm and for issuing
the commands which are performed by all processors in a
lock-step fashion.

34

STATUS OMASK

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1. NO. 1, MARCH 1993

COST
E W N S U D

to wkhborlng PES

Fig. 4. Interprocessor communication interface.

GCU/Array Interface: The HAM system is based on an
SIMD model, wherein each processor basically executes the
same instruction in the same clock cycle on its local data
set. In each cycle, the GCU broadcasts an address to all
processors which corresponds to a particular instruction stored
in the processor’s control memory. The processors themselves
lack any decision making capability. Sample instructions in-
clude expand i n direction d , backtrace, start a new wave-
f ront and so on. In addition, the GCU has access to the input
and output ports of the processors so as to be able to perform
initialization and obtain results in the end.

Interprocessor Interface: Maze routing is highly commu-
nication intensive, but the communications follow a near-
neighbor pattern. Consequently, each processor is directly
connected to six other nodes in the array. Communication is
allowed only on these links. In particular, there is no message-
passing mechanism between any two arbitrary processors
in the array. This model therefore eliminates the need for
any hardware message router. Also, the proposed system
is based on a distributed memory model. Any changes to
the memory contents is to be accomplished by message
passing alone. This eliminates the need for complex data
consistency and data coherency control present in a shared-
memory system. In an ideal system, each processor will have
six parallel ports to communicate with the six neighbors;
but in our implementation we have opted for a single-port
time-multiplexed scheme, wherein, in any one clock cycle, all
processors in the array talk to their neighbor in one of the six
directions. A multiplexer is placed at the input pins to select
one of the 6 neighbor data, as shown in Fig. 4. This selection
is based on the dir control bits generated by the processor.

B. Maze Routing Requirements

In the HAM system, as presented above, each processor
has access only to its local memory, called grid memory,
which stores the information pertaining to all the cells that
are mapped onto that processor. In this paper, the per-cell
storage format used is shown in Fig. 5. The cost field stores
the least cost path discovered to that cell from the source
cell. The directional mask field is used for backtracing the net
from the target cell to the source. The content of the status
field is as shown in the figure and is used to control the wave
propagation and backtrace phases.

18 15 9 0

Fig. 5. Information stored in grid-memory for each grid cell.

During the maze algorithm, the processors constantly have
to access their local stores and exchange information be-
tween themselves through message-passing. This raises several
interesting questions that become critical in determining per-
formance.

1) How does one processor inform the other as to the

2) What is the message overhead during wave-propagation?
3) How do wavefronts proceed?
4) How do the processors keep track of the frontier list (i.e.,

cells that have been reached during wave propagation but
which have not yet been expanded out)?

1) Next-Cell Address Computation: Suppose two neighbor-
ing grid cells c1 and cz are mapped to processors pl and p:!
and their information is stored at addresses ml and mz in
the respective local memories. Then, in the traditional grid-
coordinate transfer scheme, pl communicates the (x , y, z) grid
coordinates of cz to pz; which lacking other information has
to search, possibly its entire memory, trying to determine the
location (mz) where data for cz is to be stored. In [2] we had
alluded to this problem and had suggested that it would be
much faster to have pl communicate m2 directly to pz. This
is the basis of our address-transfer scheme. The message size
for the address-transfer scheme is only [log[(kG,G,)/N]1
bits for a k-layer G, x G, grid mapped onto an N-processor
system. As opposed to this, transferring coordinates needs
[(log k + log G, + log G,)]. Thus there is also a saving in
the message traffic.

The problem, therefore, is reduced to one of each processor
determining the address to transmit to their neighbors in all
six directions. An index-based mapping scheme was given
an earlier paper [2] and is briefly summarized below. “Let
c 1 . CZ, . . . , ck be the ordered list of cells to which processor p
is assigned. The ordering is by a row-major traversal of cells
one layer at a time. Then, we define INDEX[c;] = i . Once,
all the INDEX values are known, each processing element can
calculate the difference Ad, between its INDEX value and the
INDEX values of its neighbor in direction d . Grid boundaries
can be handled using a dummy value X.” Furthermore, it
was shown that for the hexagonal mapping on N processors,
the maximum absolute value of Ad is [max(G,G,)/Nl,
independent of the number of layers k.

Thus in this scheme, the entry for cell (2, y, z) is stored in
the local memory of the mapped processing element at address
(zk . . . zo, b, . . . bo) where Zk . . . zo is the binary representation
of z and b, . . . bo is the binary representation of INDEX

identity of the cell being expanded?

VENKATESWARAN AND MAZUMDER DESIGN FOR SURFACE-MOUNTED PCB ROUTING 35

Boundary Frame Pad

LAYER 0 LAYER 1

Fig. 6. Padding scheme for a 2-layer 4 x 4 grid.

[z , g , z] . Then if ma is the address of the cell currently
being expanded, the information passed to the neighboring
processing element in direction d is the value (ma + Ad),
where Ad is the difference stored at ma for direction d and
so can be trivially computed.

Padding Approach: The main problem with the above ap-
proach is the additional amount of memory needed to store
the A values. In fact for a grid of size 100 x 100 x 4 and
N = 61, JAdJ 5 2 and thus 3 * 6 = 18 bits are needed for
every cell. This is almost equal to the size of the information
stored for the cell and is therefore not acceptable.

Instead, we use a simpler modification which we call the
padding approach. First a 1-cell rectangular frame is padded
to the original grid and all these cells are marked blocked.
These serve to delineate the boundaries of the grid and play
the role of the dummy X INDEX values. Subsequently, the
grid is padded in the X-dimension with as few dummy cells
as are needed to make G, a multiple, say r of N . Note that
addition of dummy cells do not affect the routing as they
are simply treated as blocked cells. This is shown in Fig. 6
for a small 4 x 4 2-layer grid using a 7-node system. After
the addition of the boundary frame, an additional column is
needed to make G, = r * 7, r = 1.

For the hexagonal mapping, each row has exactly T occur-
rences of each PE. Visit the processors proceeding from layer
0 to the last layer and going row-by-row within each layer.
Then, if a cell c corresponds to the ith occurrence of the PE,
information pertaining to it will be stored at address i in the
grid-memory. From this, it can be concluded that the north,
south, up and down neighbors of c will & stored at address
i - T , i + T , i - rG,, and i + rG,, respectively, in the grid-
memory of the respective PE’s. Moreover, the east and west
cells will be stored at the same address z of the east/west
neighbor. The exception is for the processor assigned to the
leftmost boundary of each row when T > 1. This processor
needs to send address i - 1 to and add1 to address received
from its west neighbor. However, this requires only 1 bit
of additional information to be stored with each cell. Also,
since the grid size is known at the outset, the offsets can
be precomputed reducing the address calculation and memory
retrieval to very simple operations.

2) BufSer Store Design: Each processor needs to maintain
a list of frontier cells which have to be expanded in subsequent
cycles. We refer to the unit maintaining the address of frontier
cells as the buffer store. The simplest implementation of the

buffer store is as a hardware stack. Other implementations in-
clude a queue structure. Stacks are preferable for synchronous
expansion while queues are better for asynchronous expansion
as explained below.

3) Expansion Style: A multiprocessor system running Lee’s
algorithm can be built on two possible approaches for wave-
front propagation.

Synchronous: Here, the entire current wavefront is ex-
panded before the next one is considered for
expansion. It is possible here, due to multi-
ple cell assignments, that certain processors
which have cells on the new wavefront are
forcibly kept idle till the expansion of the
previous wavefront is completed.

Asynchronous: In this mode of operation, at any cycle, any
processor that has a cell that is yet to be
expanded is allowed to do so. The concept
of a wavefront has now to be interpreted as
a collection of cells that have been reached
from the source but have not yet been ex-
panded.

From the implementation point of view, the asynchronous
mode is simpler; for the processors can simply inspect their
buffer stores and if they find a cell start expanding it. The GCU
only has to be informed when the target cell is reached. On the
other hand, in the synchronous mode, each processor has to
inform the GCU if it has any cells left on the current wavefront
that are still to be expanded. This effect can be realized by
maintaining two stacks, one for the current wavefront cells
and one for the new wavefront cells. A special instruction has
also to be added to the instruction set of the GCU to initiate
a new wavefront.

From the algorithmic point, when the wavefronts are al-
lowed to proceed asynchronously, it is possible that one
message may go racing out ahead of the others and cause
one or more grid cells to be expanded incorrectly. This has
the implication that when the target is first reached, the cost
c (s , t) , may not represent the shortest path from the source.
This race effect can be minimized by adopting the policy
of always expanding a frontier cell with the lowest cost or
altemately adopting a queue data structure instead of a stack
for the buffer store.

Note, both the queue and two-stack structures can be
realized using a single RAM module and two sets of counters.
In case of the latter, one stack proceeds from the top down
while the other proceeds from the bottom up. The counters
denote the top of the two stacks and their roles can be
interchanged at the start of a new wavefront. For the queue,
the two counters mark the head and tail, respectively.

IV. PROCESSOR ELEMENT DESIGN

There are several engineering issues such as chip and
board area, power consumption, timing, control mechanism,
wireability, memory organization and so on that are crucial
in determinig the viability of the accelerator. Furthermore, the
desire to meet all these criteria at reasonable expense mandates
that the individual processors of the accelerator array and the

36 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. I, NO. 1, MARCH 1993

M T R

C 0 " U
STATUS

MRECTKM

CLOCK

POWER

t lo
OUTPUT PlNs

Fig. 7. Block-level diagram of a processor.

array controller be custom designed and not just built with
general-purpose or off-the-shelf components. Since, our goal
is ultimately to accelerate maze routing, this customization will
be largely influenced by the typical operations to be performed
therein. Within this framework, we wish to incorporate as
much flexibility as possible so as to allow for different cost
functions and expansion criteria to match the fabrication
technology requirements.

A. General Design Overview

We consider the following four issues here:
designing the datapath to include hardware support for
commonly used operations and data-structure handling
such as conversion between cell coordinates and memory
address, computation of next cell address, maintaining
frontier-list, and so on;
designing the grid memory configuration so as to optimize
access to the grid-related information;
designing an appropriate instruction set;
the global strategy for control of the processors.

Fig. 7 shows a block-level diagram of the processor showing
the major components.

Control: We use a microprogrammable control-based de-
sign. Each PE has a 32-word deep microstore that generates
36 bits to control the datapath. A 5-bit address select one
microinstruction each cycle. The control unit is pipelined so
that while one instruction is being fetched, the previous one is
being executed. It also allows for separate testing of the control
and data sections of the PE by allowing the user to either read
the contents of the microinstruction memory or to test the
operation of the datapath under direct microcontrol. Since, the
microstore can be downloaded at runtime, special instructions
that make the full use of the parallelism afforded by the
datapath can be designed and used for different algorithms.
This approach makes it possible to run various versions of
maze algorithms (and possibly other similar approaches) on the
same hardware simply by reprogramming the control memory.
This was considered important at least in the prototype version.

Datapath: The main datapath is 10-bit wide and includes
the input and the output units, a register file, and two PLA
blocks called the Update unit and the Expand unit. As the
names suggest, the update unit helps to update the status of
the grid cell which is being expanded into; while the expand
unit does the appropriate cost and status processing needed to
expand a cell on the wavefront to the neighbors. With a small
modification, the same logic can handle backtracing as well.
There is a separate &bit datapath for handling the directional
mask information and a 3-bit datapath for cell status. The
operation of the datapath is controlled by the microcode bits
generated in the control section.

Memory: The grid-memory stores the data regarding each
grid cell that has been assigned by the hexagonal map to
the processor. It is organized into 4 equal banks to increase
simultaneous access. This is useful for the grid-clearance phase
for instance. During expansion the higher order two bits of the
address are used to select the appropriate bank. A separate
buffer-store, implemented using a 1K RAM and up-down
counters is used to maintain the current frontier list at that
processor, i.e., all grid-cells that have been mapped to that
processor and which are in the current wavefront.

B. Communication with Other PE's

Each processor needs to communicate information to its 6
physical neighbors. This data (address and cost information)
is assumed to be 10-bit wide. In the prototype version, each
processor is implemented in a separate chip with only one
10-bit wide parallel input port and a separate 10-bit parallel
output port. External switches are, therefore, needed to select
the data from and to an appropriate neighbor during any clock
cycle. The selection is based on the direction dir bits from the
processor. In the current SIMD version, the dir bits are the
same for all processors; consequently in one clock cycle all
processors communicate to say their east neighbor (dir = 0)
or north neighbor (dir = 2) and so on.

This design, though slightly more complex, is adopted for
the following reasons: (1) It reduces the pin count problem
from 120 pins to 20. (2) Even if a cell is expanded and the
information propagated to all six neighbors in parallel, the
receiving processor has to sequentially process the data and
update its grid store. (3) Parallel expansion in all six directions
require that the next address and cost computation circuitry be
replicated.

The latter two problems are due to the fact that the expan-
sion phase needs to access memory only once; whereas the
receiving processor can receive messages from six neighbors
in one cycle for six different cells; thus requiring six memory
reads and writes. Serial communciation between processors
could also solve the pin-count problem but not the algorithmic
asymmetry in the update and expand operations. The typical
scenario of computation and communication is shown in Fig.
9.

C. Timing

Timing is a critical issue especially in the design of a mul-
tiprocessor SIMD system operating under a global clock(s). A

37 VENKATESWARAN AND MAZUMDER DESIGN FOR SURFACE-MOUNTED PCB ROUTING

CP1 ;

\
cP2

i

i STACK CV*

r

Fig. 8. Typical instruction modes.

m n n n
J I I ,

UPDATE
SECTLN for uld-

update cycle

Fig. 9. Flow of parallel expands and updates across processors.

highly complex multiphase scheme can be counterproductive
because of possible skews and other overhead. For maze
routing, we found that a simple two-phase nonoverlapping
clock strategy, as shown in Fig. 8, is adequate. The instruction
issue is as follows. The memory address (external instruction)
is maintained stable from the end of CPI to the end of CP2.
At this time, the data is read into the master. During CPl, this
data gets transferred from the master to the slave register in the
control memory. Simultaneously, the memory address circuitry
is precharged during CPl . The control signals controlling the
operation of the processor are decoded from the output of the
slave and thus remain stable from the start of one CP1 cycle
to the next.

The rest of the processor performs three main operations.
SfarrExpand: This cycle is initiated at the start and it serves

to select a cell on the current wavefront for
expansion. The information pertaining to the
cell chosen is obtained from the grid memory.
Each processor maintains a list of addresses
pertaining to its set of current frontier cells in
a buffer store. The StartExpand cycle takes
two CPl-CP;! cycles. During the first CP1
cycle, the address at the top of the store is
popped and is used to load the A2 latch.
In the following CP2 cycle, the cost and
expansion status is read from the grid memory
and latched in the D2 register. The status of
the grid memory is then updated (changed
from wavefront to expanded) during the next
CPl-CP2 cycle.

During expansion operations, sometimes a
given processor has no current cells on the
wavefront. In such a case, the processor sends
an address of 0. By making memory address
0 a reserved word, the receiving processor es-
sentially performs noops on this data. Address
0 is not to be pushed into the buffer store;
hence preventing it from being used in future
expansions.
Expanding a cell c on the current wavefront
consists of computing the cost and address
information to propagate to the neighboring
processors. As mentioned previously, the ad-
dress information identifies the expanded cell
to the receiving processor. In the HAM system
address computation is done using the padding
scheme described before. The expand cycle
takes two CPl-CP2 cycles. The Expand PLA
computes the next-cell address during CPl
and latches it onto the output ports during
CP2; in the next CPl-CP2 cycle, it does the
same using the cost information instead. This
address and cost information is received and
processed by the update unit of the neighbor-
ing processor as described below.
This consists of receiving information (address
and cost) of a cell, say c being expanded
from the input ports, accessing the grid mem-
ory for the current status of c and updating
the information as dictated by the maze al-
gorithm. The A/D latches serve the role of
address and data registers for this purpose. The
whole operation is designed to complete in
two CPl-CP2 cycles and is referred to as one
update cycle. During the first CP1 on-period,
the A latch gets loaded with the address for
cell c. This value is held constant for the
rest of the update cycle. The contents of the
grid memory for that address is read and is
available during the following CP2 cycle at
which time it is latched into the D latch.
During the second CP1 cycle, the latched cost
information for c is compared with the new

Expand:

Update:

38

cost information received from the input port
by the Update PLA and a new value (cost
and status) is determined and is latched in
the Z1 register. Next, during CP2, the new
updated information gets written into the grid
memory. This completes the update cycle and
the processor then proceeds to receiving a new
set of (address, cost) information pertaining to
other cells being added to the wavefront.

Fig. 9 summarizes the above activities for one expand
and one update cycle. One way to view this is as a global
pipelining of expand and update operations taking place across
the processor array. In the steady state, each cell expand takes
14 clock cycles: 2 to get the next cell on the wavefront; 2
for expanding to one neighbor (for six neighbors). A read
or write is performed on the memory whenever CP2 is on.
The backtrace phase operates along the same lines as the
propagation phase with the exception that there is no longer
any need for the cost information. Backtrace proceeds by
passing the address of the next cell, if it is to be included
in the final net-route; 0, otherwise to the neighboring PE. The
backtrace logic is considered as part of the Expand unit and
is discussed later. Backtrace needs 8 clock cycles.

D. Input and Next-Cell Units

The input and next-cell units store cost information from
the neighboring PE’s and from the memory. The Input unit
is made up of two 10-bit latches A1 and D1. The two also
serve as the address and data-registers for the grid memory.
Their function is controlled by 3 microcode bits: aldl, dldl ,
sand albus. The last is used to determine which of the latches
actually place data on the A1 bus. The Next-cell unit comprises
of latches A2 and D2 which serve a similar role.

E. Update Unit

The main function of the Update unit is to determine the
new contents of the grid-memory during the expansion phase.
It has 4 modes of operation controlled by the microcode bits
fur and fu2.

f u l fu2 function

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 1, MARCH 1993

-

0 0 SEL A
0 1 SEL B
1 0 INC A
1 1 MAZE

Maze Operation: This serves to perform the Update algo-
rithm and is implemented as a PLA. The Update unit uses two
sets of inputs. One set pertains to the grid-memory contents
of the cell ao being updated. This has three components (CO,

mo, so) which denote the current lowest cost to reach the cell,
the directions from which the cell has been reached so far
and the status of the cell. The second set of inputs has two
components (cn, mn) where cn is the current cost to reach the
cell; mn represents the direction of the sending processor w.r.t.
this PE (i.e., east, or west neighbor, etc).

The Update algorithm first checks if this cell is the target. If
so a special end signal is activated which is caught by the GCU
and used to terminate the wavefront expansion. Otherwise, if
it is a new cell, then the new cost is used and the cell status
is changed to wavefront. It is also possible for the same cell
to be reached from more than one neighboring directions. If
the new cost is less than the current lowest cost path, then it
becomes the new lowest cost and the direction information is
updated accordingly; if it is the same then only the direction
part gets affected; otherwise the old memory contents remain
unaffected.

Update Algorithm

Begin Update
If old status (so)is FREE or TARGET)

/*this is the first time this cell

or (status is WAVEFRONT OR EXPANDED

/*the new path is the least cost path,

has been hit*/

and CO > cn)

so accept it*/
Then CostOut = cn

MaskOut = mn
StatOut = WAVEFRONT

CostOut = CO

StatOut = so
If (status is WAVEFRONT or EX-

Else

PANDED and CO = cn)
/*alternate path of same cost*/
MaskOut = molmn /*bitwise or*/

MaskOut = mo
Else

Endl f
Endi f

End Update

The directional mask information serves two main purposes:
(1) it can be used in a flexible manner during the backtrace
phase to retrace a path to the source, (2) it can be used
during expansion to prevent spurious messages being sent.
For instance, say processor 1 expands cell c1 and propagates
the information to processor 2. Then processor 2 marks in its
memory that it has received this information from processor
1. Consequently, when processor 2 is expanding c2 (the cell
adjacent to CI), it need not propagate the message back to c1.

The output of the Update logic is latched into Z1 based on
microcode bit zldl. There is another bit exp which if set to
1 will force StatOut to EXPANDED during wave-propagate
phase and to NET during Backtrace phase. The INC A mode
of the Update logic is mainly used during the initialization
process to step through the memory addresses in a sequential
fashion; the SEL A and SEL B modes are used in the backtrace
phase when the update algorithm is to be bypassed. Also, they
allow flexibility in performing other computations if so needed.

VENKATESWARAN AND MAZUMDER: DESIGN FOR SURFACE-MOUNTED F‘CB ROUTING 39

I

A- (1 4 -
c
WdWh
fa .O b a t h

I

(10
MEMORY FUNCTION CODE

00 Read
1owrne 1-
OlWrne all-
11 cku *.brCanditiolvllJ

Fig. 10. Local-memory organization.

F. Expand Unit

The Expand unit does the appropriate cost and mask pro-
cessing needed to expand a cell on the wavefront to the
neighbors. It also has logic to account for backtracing and
has 4 modes of operation controlled by the microcode bits fe l
and fe2.

~ ~~

f e l fe2 function
0 0 SEL A
0 1 SEL B
1 0 A + B
1 1 A - B

Usually the B input consists of data from the register file.
This could be the additive factors for the address calculation or
the incremental cost to propagate in a certain direction. Note,
the output is zerod out if the PeActive control signal is not
True.

In addition there is a backtrace logic which is operative
during the backtrace phase. If it is determined that the cell
under consideration has been labeled from multiple directions,
then the direction chosen for the backtrace to proceed is the
one that causes the fewest number of bends and layers changes.
This is done using a priority encoder circuit which compares
the direction from which the cell had been expanded and the
direction from which the backtrace operation has reached the
cell.

G. Local-Memory Organization

This serves to maintain information pertaining to each grid-
point that is mapped onto that PE. The memory is implemented
using a static RAM of size 1024 x 19. The memory needs to be
accessed in every instruction cycle of the propagation phase.

Also, during the initial set-up phase and during the cleargrid
phase of the algorithm, the status fields have to be updated. To
improve performance, it was decided to interleave the memory
into 4 banks of 256 x 19 RAM’S. The two higher order bits
of the address is used to select the appropriate bank. This
permits the same location of all banks to be simultaneously
written into in one memory cycle.

Fig, 10 shows the grid-memory organization in more de-
tail. The 2-bit fncode determines the memory operation. All
readwrites take place during CP2. Address and input data
are available at the end of CP1 and are held constant during
CP2. The StatusLogic block is used to selectively change
all Expanded or Wavefront status fields to Free when the
ClearStatus command is issued. This essentially clears the grid
and is to be performed upon completion of routing the given
net and prior to starting the maze search for the next net. Thus
the “clearphase” can be performed by all PE’s simultaneously
in 256 cycles. The Memory Control Logic is responsible for
activating the appropriate read or write signals. If the processor
is inactive, no write is performed and thejhcode is in essence
disregarded.

H. Buffer Store Organization
During the wavepropagation, while the PE is expanding one

cell of the old wavefront, it may receive up to 6 new addresses
for other cells that map onto it and have been newly inducted
into the wavefront. The PE has to keep track of these since all
of them will have to be eventually expanded. The buffer store
is needed as just updating the Status fields in the grid-memory
is insufficient to identify wavefront-cells without undertaking
a sequential search.

The buffer store can be organized as either a pair of LIFO
stacks or as a FIFO queue. This has been implemented using
a 1024 x 10 RAM and a pair of up-down counters. During

I

40 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. I, NO. 1, MARCH 1993

the wave propagation phase, as each address is received it gets
pushed onto the top of the store. An unexpanded wavefront-
cell can then simply be recovered by popping the top of the
appropriate stack or queue. The counter is assumed to point
to the next free location. Thus for PUSH, the RAM is written
into during CPl; the counter is incremented in CP2. On the
other hand, for POP operation, we decrement the counter in
CP1 and access the memory in CP2.

There is one additional complication, however. A particular
grid cell can be reached from more than one direction. Con-
sequently, if the address of such a cell is already in the store,
then it should not be pushed in. The solution to this problem
is to validate each PUSH. The control unit raises a pushvalid
signal during CP2 if the address corresponds to a new cell.
This information is determined by reading in a previous clock
phase the corresponding Status field in the grid-memory. The
counter is incremented only if pushvalid is true.

I. Control Unit
The control unit generates 36 microcode bits that are used

to control the datapath and the memory units. Currently, the
microinstruction memory is implemented as a 32 x 36 static
RAM. This means that at any point in time 32 different
instructions can be stored. This was felt to be sufficient
for the maze-routing algorithms. An initial set consists of 6
wave-expand, 1 wave-receive instruction (needs 3 4 microin-
structions), 4 microinstructions for backtrace, 1 for clearing
the grid, 3 for resetting various elements, 4 for initializing
the status fields of the memory, and 10 for miscellaneous
operations. The use of a static memory provides the ability to
interrupt clocks between instruction definition and execution.

A 5-bit address (instruction) selects one 36-bit microinstruc-
tion every cycle. This gets loaded onto the master register
in CP2 and then into the slave during CP1 from where it is
decoded appropriately and connected to the different control
points. Data can be shifted in and out of the mastedslave
registers by setting SH. To load a new instruction into the
memory, the data is serially shifted in (SI port) for 36 cycles
and then WRT is activated to store the contents into the mem-
ory. The Csel or chipsel input is used to disable a particular
PE. This is useful for the initial setup of the grid-memory and
final result gathering operations. When Csel is enabled the
slave register is loaded with a microinstruction implementing
the no-op operation. The control-block is combinational in
nature and is used to activate the various control signals in
the appropriate clock phase and also decode some fields of
the microinstruction. (See Fig. 1 1 .)

J. Testing
The chip has been designed keeping in mind the testing

requirements. Testing can be done in two parts. In the first part
the control section can be tested out by shifting in data into
the pipeline register and observing the output at the PSO port.
Once the pipeline register is verified, it can be used to test the
microinstruction memory by storing data at specific locations
and then loading them back into the pipeline register and then
shifting the data out. Subsequently simple instructions can be

1”
FROM THE
DATAPATB

COMBINATIONAL

-1 L
S

PSI -
Fig. 1 I . Control unit organization.

TABLE I1
AREA FOR THE MAJOR PE BLOCKS

Unit Name Area (100 sq. Unit Name Area (100 sq.
mils) mils)

Input unit 1.79 (0.6%) Control unit 27.47 (9.1%)
Next-cell unit 1.79 (0.6%) Datapath 53.30 (17.6%)
Update unit 4.52 (1.5%) Buffer store 65.36 (21.6%)
Exoand Unit 3.78 (1.25%) Grid Memorv 144.32 (47.7%)

loaded into the RAM to test the functionality of the data path.
The contents of all the datapath elements are observable at the
output port by activation of the appropriate control signals. For
instance, the operation of the A1 latch can be tested by loading
test data from the input pins and then enabling the connection
between the two R buses, the same data can be observed and
verified at the output. Once this operation is verified, the A1
latch can be made to store a grid memory address and test
data can be written into and subsequently read out from the
memory.

K. Statistics

A single processing element has been laid out in a 40-
pin package with a die size of 200 by 220 mil (see Fig.
12) using the Chipcrafter’ package. This includes 10 kbit
of buffer-store memory and 19 kbit of grid memory which
is sufficient for routing grids with as many as 64K grid
cells on a five-dimensional processor array comprising of 61
processors. A 1 -pm 2-metal 1-poly technology from National
Semiconductors was employed. Table I1 shows the area in units
of 100 sq. mils for the major components with-the percentage
of total chip area shown in parentheses.

The processor runs at a clock frequency of 16 MHz. An
expand cycle takes 0.84 ps while a backtrace cycle takes 0.48
ps. Thus the HAM system is capable of sustaining a little
over 1 million expansions every second. These figures do not
include the time for the initialization and communication costs
with the host. However, such costs can be amortized over

’ Chipcrafter is a trademark of Seattle Silicon Corp

VENKATESWARAN AND MAZUMDER: DESIGN FOR SURFACE-MOUNTED FCB ROUTING

~

41

Fig. 12. Layout of a single HAM processor.

several nets and so HAM will continue to offer significant
speedup over any uniprocessor solution.

Clock Frequency: This is determined by the following con-
siderations.

The propagation delays of the Update and Expand units
(denoted by t d u and t d e , respectively).
The setup and hold times of the various RAM compo-
nents (grid memory, buffer memory , control memory)
which are denoted by t , , and t h d , respectively.
The access time (time before valid data is available at
the output for a read operation or the minimum time for
which the write pulse has to be activated to write in new
data) which is denoted by tac.
The time for the incrementing and decrementing of
the counters which are part of the buffer store address
circuitry for implementing the push and pop operations
which is denoted as tCt.
Interprocessor (tS l) and intraprocessor (t s 2) signal skews.

The inputs to the update unit (A1 and B 1 bus) change at the
start of each CP1 and the output forms the new data which is
to be written during the CP2 on-period in the grid memory.
Similarly, for the expand unit the inputs (A2 and B2 bus) are
available at the start of CP1 and the output is latched onto the
output 2 register during CP2. These requirements give rise to
the following set of constraints:

t 2 + t 3 2 t d u + t s u

t 2 + t 3 2 tde

t 4 L t a c

tl 2 t h d .

In case of the buffer store, a pop operation consists of
decrementing the counter during CP1 and reading the cor-
responding memory address during CP2. For the push the
reverse is performed, i.e., a write is performed during CP1

and the counter is incremented during CP2. Thus the counter
always points to the next free location. Note that the terms
incremenddecrement are interchanged for the bottom stack in
the two-stack synchronous mode of wavefront expansion. This
leads to the following constraints:

t 2 + t 3 2 t c t + t , , (POP)

t 4 + t l L t c t + t s u

t 2 2 t a c ; t 3 2 thd (push)
t 4 tat; tl 2 t h d .

The case of the control memory and grid memory which
are only readwritten during CP2 is quite simple, viz., t 3 2
t s u ; t 4 2 t , ,;tl 2 t h d . The interprocessor communication
delays are accounted for by tl since data are latched on to
the output ports during CP2 and that data are received by the
neighboring processor during the following CPl. Hence, it is
sufficient that tl 2 t s l . The value of t s 2 is determined by the
manner of satisfying the above inequalities.

The measured values for the above parameters were: t,, =
12.5 ns,tsu = 10 n s , t h d = 5 ns,tde = 23.8 ns, tdu = 15 ns,
tCt = 10 ns. Our simulations was performed setting t; =
15 ns, i = 1, . . . ,4. These satisfy all the above criteria and
can tolerate a signal skew of 8% of the total clock cycle in
the datapath and 4% for the memory control. Fig. 13 shows
a part of the actual Quicksim2 trace for the processor. The
signals aldl to dld2 are control signals controlling the loading
of the A/z) latches and signals busl, bus2 determine the A
bus gets sourced by the A\ or D latch. The nets albus, blbus
are the A and B inputs of the Update unit; while the signals
mold, min, cumin, alulout, and mout correspond to mo, mn, so,
CostOut and MaskOut of the Update algorithm respectively.
Similarly the nets a2bus and b2bus are the A and B inputs
of the Expand unit and its output is latched onto the output
pins. For illustration purposes, at the start of the trace, all grid
memory cells are initialized to zero except cell 2: (cost = 20;
dmask = 1) and cell 3:(cost = 16; dmask = 0). The buffer
store has one cell address, viz. 3. The StartExpand cycle starts
at time 1440. Thus in the expand cycles, subsequent to this,
the processor outputs neighbor address of (3 + oflser) for that
direction as per the padding scheme; and cost of 16 + 1 = 17.
Concurrently the Update unit receives address and cost data
from its neighbors and proceeds to modify the grid memory
as per the Update algorithm.

v. PERFORMANCE ANALYSIS

In this section, we present simulation results pertaining to
the performance of the overall HAM system using custom
designed processors, working in both the synchronous (SYNC)
and asynchronous (ASYNC) expansion modes. All figures
are computed assuming that the shortest path to the target
is desired and not just any path. This assumption could have a
significant impact especially on the ASYNC mode results. We
have used three main criteria for our evaluations: execution
time (T), speed-up (s), and processor usage efficiency (7) and
study how they change with N, the number of processors used.

*Quicksim is a trademark of Mentor Graphics. -

42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. 1. NO. 1. MARCH 1993

n + + + n + s l d l
n + . Id2

+ n + n d l d l
n + d l d 2

+ ~ b u s l
4 bu.2

1

Fig. 13. Simulation trace for the HAM processor.

All plots reflect the average obtained by running the system
simulation on 25 randomly generated nets on a grid of size
100 x 100 x 4. We also consider the effects of framing, i.e.,
restricting the grid-space to be searched for a connection to
a rectangular box formed by the source and target; and the
effect of blockages caused by prior nets.

A. Execution Time

We have chosen to characterize the execution time in terms
of the number of atomic cycles (expand or update cycle)
required to complete expansion. This makes the results to be
readily applicable to other possibly faster implementations. For
our processor implementation, an atomic cycle corresponds to
14 x 60 ns = 0.84~s . These results are shown in Fig. 14.
The asynchronous mode takes more time than the synchronous
mode for empty grids. The reason for this is that in the current
implementation, the processor merely picks out the first entry
in its buffer store which could very well be a cell leading
away from the target. This leads to the domino effect wherein a
message pertaining to a higher cost message can propagate first
to the target. Subsequently, when the correct update message
with a lower cost is received by the processor, the expansion
in a sense gets repeated. This process leads to many more
messages being sent back and forth which increases the total
time. The solution to get around this problem is to have the
processors make an intelligent choice as to the next cell to
expand but this would involve more complex hardware. Note
that the two modes yield similar results when framing is
used or in congested grids with lots of cell blocks. This is
because the chances of first proceeding in the wrong direction
are considerably reduced here. In fact, it is possible that the
ASYNC mode may be the faster of the two in such cases.
Also it is clear that if the length of a net is less than N
then no advantage can be gained by increasing the number

of processors. This is reflected in the graphs where it can be
seen that the curves tend to flatten out as N becomes larger.

B. Speedup

The speedup is measured with respect to the corresponding
time taken by a uniprocessor which is directly proportional to
the total number of cells expanded. Thus

total number of cells expanded
on a uniprocessor

number of atomic cycles taken by *

the multiprocessor

Note that this speedup value is a lower bound as it does not
include consideration for the smaller expand cycle time of the
HAM processor. So, in absolute terms, the expected speedup
will be much more. The results are shown in Fig. 15. Again the
lower speedup for the ASYNC mode for empty grids without
framing is a direct consequence of the increased time taken in
this mode to find connections.

S =

C. Usage E#ciency

The efficiency is defined as the overall processor usage
measured over the whole of the program's execution. It is
calculated as follows:

) . (N * T)- ' .
total number of active processors

v=C (per expand cycle

An active processor in this context is one which either receives
at least one message from one of its neighbors or sends a
message to its neighbors. The high efficiency figure for the
asynchronous mode is a direct consequence of the routing
policy of allowing the processor to expand any cell in its buffer
store. The results are plotted in Fig. 16.

VENKATESWARAN AND MAZUMDER DESIGN FOR SUREACE-MOUNTED PCB ROUTING

CridSbc lodrlbdrl
BmIRr S b 1024

43

- Enply grid, no kame
------- BIL Prob. = 0.2, no h . . m ~ ----. F" ON

Fig. 14. Effect of number of processors on total time. (a) ASYNC mode. (b) SYNC mode.

Gridsize 1OOxlOOx4
Buffersize 1024

__ Emply grid, no kame Bk Rob = a2, no frame - - - FhreON

90

110

70

60

SO

40

30

20

10

Fig. 15. Effect of number of processors on speedup. (a) SYNC. (b) ASYNC.

D. Size of the Buffer Stores

It is clear that the maximum size needed for a buffer store
is equal to the maximum number of cells that are mapped to
the processor. However, by considering the manner in which
wavefronts propagate, it was felt to be highly unlikely that all
cells could be simultaneously part of the current wavefront.
In fact simulations have led us to believe that the maximum
number of elements present in the buffer at any given time
is less than 10% (25%) of the total number of cells mapped
to the processor for the SYNC (ASYNC) modes. This can be
seen in Fig. 17 where the maximum buffer sizes used while

routing on an empty 100 x 100 4-layer grid are shown. The
theoretical maximum for a k-layer G, x G, grid is given by
[k * G, * G , / N] . Generally, the asynchronous mode requires
3 4 times larger buffer stores since there are more messages
being transmitted.

These results suggest that a significant area saving can be
realized by simply using a smaller buffer store. Alternatively,
the area can be used to build a larger grid memory that allows
the mapping of even larger routing grids. Also, because there
is some intrinsic redundancy in the expansion, such as each
cell receiving information from more than one direction (pro-

44 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. VOL. 1, NO. 1, MARCH 1993

ClidSLn 100.1oOr4
Buffer Slrc 1024

(a)

Fig. 16. Effect of number

N p b r d m . C .

(b)
of processors on efficiency. (a) SYNC. (b) ASYNC.

Fig. 17. Determination of maximum buffer store size needed.

cessor), routing is not much affected even if a few messages
are lost because the processor receiving it has no place to
store it in its buffer.

E. Choice of Mode

From the above experiments it can be concluded that unless
framing techniques are used or the grid is congested, the
synchronous mode is better. The amount of buffer store needed
for synchronous mode is also less since we only expand a
wavefront at a time which leads to a more uniform distribution
of grid cells to processors. Framing techniques are also used
in software methods to restrict the amount of grid space that
gets searched by the wave propagation, but seem to have a
different implication in the multiprocessor mode. Though not
currently implemented, framing could be realized in the HAM
system by marking the cells lying on the frame boundary

to Block before starting routing the net and restoring their
original state upon completion of the route. However, this
is more complicated to compute in the distributed memory
map since a transformation will have to be made between
frame coordinates and memory addresses. Consequently, our
solution (without framing) is to employ synchronous mode
initially and then resort to asynchronous mode as the grid
gets more congested. Both models can be supported using the
two-counter model discussed earlier.

VI. CONCLUSION
The HAM system derives its speedup over conventional

solutions in two ways: (1) Since the processing elements are
custom-designed, the per cell computation time is significantly
reduced for both wave-expansion and backtrace operations.
This time includes the time to fetch the status of the cell
from memory, perform cost calculations and add it to the
new wavefront list (in our case propagate to the six adjacent
neighbors). This paper has identified the hardware require-
ments that are most cost-effective in building such custom
processors. (2) The other speedup results from the manner in
which the processing elements cooperate with one other during
routing. Expand and update operations are pipelined across the
processors which are connected in a hexagonal wraparound
fashion. Such a topology has been previously shown to be
optimal for concurrent multilayer search operations in three
dimensions. This meets our goal of using the HAM system
for double-sided surface-mounted board routing. However,
the processor design is independent of the interconnection
topology used; rather the processors can be interconnected in
any manner desired and run with suitable microprograms.

A multiprocessor system solution for maze routing poses
several problems not encountered with uniprocessors. One
factor of significant import in a distributed memory model

45 VENKATESWARAN AND MAZUMDER DESIGN FOR SURFACE-MOUNTED FCB ROUTING

is that each processor has only limited information of the
overall grid, in particular, it only stores the status of cells
which are assigned to it. This has consequences for the mode
of interprocessor information exchange, control mechanism,
and synchronization scheme employed. In this paper, we have
identified these issues and proposed some practical solutions.
In particular, we have suggested the use of memory-address
rather than the traditional grid-coordinate based message trans-
fer between processors during expansion as a means to reduce
both message traffic as well as speed up the memory search
times. The design of the buffer store as either a stack or a
queue to support either a synchronous or asynchronous mode
of expansion has also been shown to be critical in achieving
good performance.

REFERENCES

[l] C. Y. Lee, “An algorithm for path connections and its applications,”
IRE Trans. Electron. Comput., vol. pp, 346-365, 1961.

[2] R. Venkateswaran and P. Mazumder, “A hexagonal array machine for
multi-layer wire routing,” IEEE Trans. Computer-Aided Design, vol. 9,

[3] J. Soukup, “Fast maze router,” in Proc. ISth Design Automation Con$,
pp. 100-102, June 1978.

141 D. A. Edwards, “MANURE2-A second generation accelerator for PCB
routing,” in CAD Accelerators, pp. 219-233, 1989.

[5] S. Sahni and Y. Won, “A hardware accelerator for maze routing,” in
Proc. Design Automation Con$, pp. 800-806, 1987.

[6] R. A. Rutenbar and D. E. Atkins, “Systolic routing hardware: Per-
formance evaluation and optimization,” IEEE Trans. Computer-Aided
Design, vol. 7, pp. 397-410, Mar. 1988.

[7] R. Nair, S. J. Hong, S. Liter, and R. Villani, “Global wiring on a wire
routing machine,” in Proc. Design Automation Con$, pp. 224-231, June
1982.

[8] H. G. Adshead, “Employing a distributed array processor in a dedicated
gate-array layout system.” in Proc. ICCC, pp. 411-414, Oct. 1982.

[9] K. Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki, “A hardware
maze router with application to interactive rip-up and reroute,’’ IEEE
Trans. Computer-Aided Design, vol. 5, pp. 466476, Oct. 1986.

[lo] T. Blank, M. Stefik and W. van Cleemput, “A parallel bit map processor
architecture for DA algorithms,’’ in Proc. Design Automation Conf., pp.

[l l] J. Cooper and D. Chyan, “Autorouting today’s high density PCB’s,”
Printed circuit design, pp. 36-46, Oct. 1988.

[I21 A. Iosupovici, “A class of array architectures for hardware grid routers,”
IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 245-255, Apr.,
1986.

Read-
ing, MA: Addison Wesley, 1986.

pp. 1096-1112, Oct. 1990.

837-845, 1981.

[I31 N. Weste and K. Eshraghian, Principles of CMOS V U 1 Design.

[14] R. Goering, “Design automation,” High Performance Syst., pp. 2 0 4 0 ,

[I51 P. Lund, PCB Precision Artwork Generation and Manufacturing Meth-

[I61 J. Soukup, “Circuit layout,” Proc. IEEE, vol. 69, pp. 1281-1304, Oct.

[17] H. Schutzman, “A behind-the-scenes look at autorouting,” Printed

[I81 T. Blank, “A survey of hardware accelerators used in CAD,” IEEE

[I91 D. Hicks and D. Roach, “Implementing a parallel router with RISC

Dec. 1989.

ods. Bishop Graphics, Inc., 1986.

1981.

circuit design, pp. 34-40. Dec. 1988.

Design and Test, pp. 21-39, Aug. 1984.

technology,” High Performance Syst., pp. 61-64, Mar. 1990.

Ramachandran Venkateswaran (S’89) received
the B.Tech. degree in computer science from the
Indian Institute of Technology, Bombay, in 1988,
and the M.S. degree in computer science and en-
gineering from the University of Michigan, Ann
Arbor, in 1992. He is currently working toward the
Ph.D. degree at the same university.

His areas of interest include design automation
with particular emphasis on wire layout problems
and VLSI system design. Other research interests
include parallel architectures, fault tolerant comput-

ing and neural networks. In the summer of 1991, he worked at the Thomas J.
Watson Center, IBM, Yorktown Heights, NY, on hierarchical compaction.

Mr. Venkateswaran has received the IBM Graduate Fellowship in Computer
Science during 1991-1993. He is a member of ACM SIGDA.

Pinaki Mazumder (S’84-M’87) received the B.Sc.
degree in physics from Gauhati University, India,
the B.S.E.E. degree from the Indian Institute of Sci-
ence, Bangalore, and the M.Sc. degree in computer
science from the University of Alberta, Canada,
in 1985, and the Ph.D. degree in electrical and
computer engineering from the University of Illinois
at Urbana-Champaign in 1987.

He has worked over six yeras as a Senior De-
sign Engineer at Bharat Electronics Ltd., India (a
collaborator of RCA-GE) in its integrated circuits

design-and-application laboratory. During the summers of 1985 and 1986 he
was a Member of the Technical Staff at AT&T Bell Laboratories. Currently,
he is an Associate Professor in the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor. His research interests
include VLSI testing, computer-aided design, and parallel architecture.
Dr. Mazumder has received Digital’s Incentives for Excellence Award, NSF

Research Initiation Award, and Bell Northem Research Laboratory Faculty
Award. He is a member of Phi Kappa Phi and ACM SIGDA.

1

1096 I t k E TRANSACTIONS O N COMPUTFR AIDED DFSIGN VOL Y NO IO OCTOBER I Y 9 0

A Hexagonal Array Machine for Multilayer Wire
Routing

R. VENKATESWARAN AND PINAKI MAZUMDER, MEMBER, IEEE

Abstract-Maze routing is widely used in both printed circuit board
(PCB) and VLSI design. However, for the ever increasing design re-
quirements, this can no longer he done economically without the help
of special purpose hardware accelerators. A new hardware accelerator
comprised of several fast processors interconnected in the form of a
hexagonal mesh with wraparound connections is proposed.

The novelty of the proposed architecture stems from the fact that it
is suitable not only for single-layer routing, but also for routing in par-
allel on multiple layers. A hexagonal machine of dimension C G , with
about 3kC processors, can handle a k-layer grid consisting of kC' grid
points a t about the same speed as a full-grid machine with kG' proces-
sors.

A technique for measuring the performance of a hardware acceler-
ator, in terms of the average delay incurred over a full-grid machine,
is suggested. This has been formalized in case of the hexagonal archi-
tecture and is presented for various nets and mesh dimensions. The
results have been accurately verified by extensive simulation done in
C + + language. It is also demonstrated that the hexagonal mesh, by
virtue of its additional links for expansion, is resilient to about 10% of
failure in the links and processing elements. A detailed design for a
chip implementation of the hexagonal machine is also discussed.

Keywords-Hexagonal array, multilayer routing, interprocessor
cycle period, average delay factor, reconfigurability.

I. INTRODUCTION
UTOMATIC LAYOUT of wiring patterns for printed A circuit boards (PCB's) and integrated circuits (IC's)

have been in vogue for the past several years. For a PCB,
the components are IC packages and the electrical con-
nections are made by a metal etching process. Connec-
tions between layers are made by drilling holes through
the fiberglass and plating them with metal. In an IC, wire
lines of polysilicon are fabricated to carry electrical sig-
nals between circuits. In addition, one or two layers of
metal separated by insulating layers of oxide are depos-
ited and etched above the silicon to form wire lines. Holes
are left in the oxide to form interlayer contacts or vias.
Thus the routing problem, which is to connect all the
points of each net and to ensure that the wiring paths of
the different nets do not intersect each other on any layer,
is quite similar in both the environments. Furthermore,

Manuscript received July 2 I . 1989. This work was supported by the
Army Research Office under the URI program under Grant DAAL 03-87-
K-0007. by the Digital Equipment Corporation Faculty Award, and by the
National Science Foundation Research Invitation Award under Grant MIP-
8808978. This paper was recommended by Associate Editor A. E. Dunlop.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan. Ann Arbor, MI 48109-2122.

IEEE Log Number 9036682.

several constraints, such as the total wire length, number
of vias used, critical nets, etc., are imposed on the solu-
tion generated. In this paper, we propose a new hexagonal
mesh architecture for a parallel multilayered routing al-
gorithm that is applicable in both of these environments.

Several algorithms, such as the channel [4], [23], maze
[l I], river [15], a - /3 [9], etc., have been proposed in
the literature for routing interconnects in IC's and PCB's.
Among these, the maze router, originally proposed by Lee
[1 I], uses breadth-first search, and thereby it is admissi-
ble in the sense that it always finds a shortest-length path,
if one exists. This attribute of the maze router is fre-
quently exploited in practice to minimize the total inter-
connect length and, presumably, the overall chip area.
Section I11 deals with the Lee algorithm in greater depth.
Many commercial routers use the Lee algorithm or its
variant [7], [6] exclusively, or initially use some other
algorithms to rapidly interconnect most of the nets and
then utilize the Lee algorithm to interconnect the remain-
ing nets. However, this is achieved by paying a high pre-
mium of large storage space (in the worst case, an ex-
ponential to the path length L) and expensive runtime (in
the worst case, 0 (L 2) time to find a path of length L) .
Elegant coding schemes, such as the one suggested by
Akers [I] , can be used to alleviate the storage space prob-
lem. However, time continues to be a severe constraint in
a uniprocessor implementation. Two schemes suggested
were the pipeline-based approach of Sahni [IS] and the
raster-based approach of Rutenbar [171. These ap-
proaches, though economical in hardware, often reduce
the 0 (N 2) time complexity by only a small constant fac-
tor, and hence, are inadequate for large problem sizes.

For multiple layers, the problem becomes even more
acute. The accepted strategy is to route as many nets as
possible on each layer independently. A global routing is
attempted only for the unfinished nets. However, it is well
established that these few remaining nets account for the
majority of the time required in routing.

Specially designed multiprocessor-based routing en-
gines or hardware accelerators thus become absolutely
necessary [2] for doing the complex routing in the very-
large-scale integrated (VLSI) circuits of today. The Lee
maze algorithm, by its very nature, offers much potential
for parallelization, and hence, is an excellent candidate.

The ideal architecture would be an interconnected N X
N k-layer processor array, where each processor Pyk has

0278-0070/90/ 1000- 1096$01 .OO 0 1990 IEEE

VENKATESWARAN A N D MAZUMDER: A N A R R A Y MACHINE FOR MULTILAYER WIRE ROUTING

a one-to-one correspondence with a grid cell al,k in the
layout. Such a fill-grid machine, however, requires kN2
processors and 2kN(N - 1) + N(k - 1) links for a
k-layer N x N grid, which is clearly expensive. Breuer
and Shamsa's L-Machine [3] is the first published design
of this nature. However, it is inflexible in the sense that
it is incapable of handling problem sizes larger than the
physical size of the processing array. Thus the need for a
better architecture, where the grid array can be efficiently
mapped onto a much smaller subset of processors, has
been widely recognized (the folding problem). One of the
chief factors affecting the performance of any such archi-
tecture implementing the Lee algorithm is the interpro-
cessor cycle period (ICP). The ICP is defined as the
smallest number of distinct processors that are encoun-
tered before one gets repeated, while traveling along any
straight line on the grid.

The wire routing machine (WRM) built by Nair et al.
[8] is probably the precursor of the present trend of virtual
machines. It consisted of processing elements connected
in the form of a square mesh. The chief difference of the
WRM was that it used general-purpose microprocessors
rather than custom-made hardware for the node elements;
thus trading compactness for versatility. Martin [121 has
suggested the suitability of the torus-like mesh for folding
operations. Suzuki and others 1211 have built a machine
with 64 processors interconnected in the form of a twisted
torus. Other similar implementations are described in [191
and 1221.

The intention of this paper is to propose a new archi-
tecture for the physical implementation of the Lee algo-
rithm, wherein the processors are interconnected in the
form of a C-wrapped hexagonal mesh. Table I reflects the
superiority of the hexagonal interconnection topology to
existing ones. The larger ICP value implies fewer con-
flicts in processor assignments during wavefront expan-
sion, thereby improving the overall performance. Since
each processor is connected to six others, the hexagonal
machine can do multilayer expansion in parallel, unlike
existing accelerators. This again results in shorter routing
time requirements. Performance results, as obtained from
extensive simulation runs and supplemented by analytical
derivations, have been very promising.

The basic labeling scheme used in the hexagonal array
machine is a very powerful one. It can be used for ma-
chines where the number of nearest neighbors of each pro-
cessor is other than 6. For example, reconfiguring the
basic hexagonal machine by deleting all diagonals along
any one of the three directions yields a cheaper machine
that is still extremely efficient in handling two-dimen-
sional maze routing on a single layer. This is because the
ICP property is unaffected by the number of neighbors pres-
ent. This property also makes the hexagonal array ma-
chine resilient to link and processing element failure, so
far as its routing capability goes.

The rest of the paper is organized as follows. Section
I1 introduces the architecture, labeling scheme, and other
salient properties of the hexagonal array machine. Section

~

1097

TABLE I
EVALUATION OF INTERCONNECTION TOPOLOGIES FOR MALE ROUTING

Interconnection Interprocessor Cycle Multilayer
Topology' Period Routing Recontigurability

Square mesh [8] A X X

Twisted torus 1211 - N X X

L
Hexagonal mesh N J J

'Wraparound topologies with N processing elements. X indicates No
and J indicates Yes.

I11 explains how concurrent multilayer wire routing is
possible on the hexagonal array machine. In Section IV,
an analytical model for estimating the delay is presented.
Section V discusses both hardware and software issues for
chip implementation of the hexagonal array machine. Per-
formance is analyzed in Section VI. Reconfiguration and
fault tolerance aspects are discussed in Section VII.

11. HEXAGONAL-ARRAY MACHINE
Dejnition I : A C-wrapped hexagonal mesh of dimen-

sion e is comprised of 3e (e - 1) + 1 (= N, say) proces-
sors, labeled from 0 to 3e (e - 1), such that each proces-
sor s has six neighbors [s + 1IN, [s + 3e - 1IN, [s +
3e - 2IN, [s + 3 e (e - 1) I N . [s + 3e2 - 6e + 2]N,
and [s + 3e2 - 6e + 3 I N , where [a],, denotes a (mod
b) .

Property 1: An unwrapped hexagonal mesh of dimen-
sion e can be partitioned into 2e - 1 rows in three pos-
sible ways: along the horizontal direction, along the 60-
deg counter-clockwise direction, or along the 120-deg
counter-clockwise direction.

Observation I : Along any of the three directions, let
Ro be the top row, R , the second row, and so on until
R 2 r - 2 . Then a C-type wrapping is obtained by wrapping
the last processor in RI to the first processor in

Fig. Ita) shows an H-mesh of dimension 3 with the
wrappings indicated alongside the arrows. Note that in
this case there are 19 nodes distributed over five rows,
with the wraparounds in the three directions as noted in
Observation 1. For example, in Fig. 1, the last processor
in R, along the horizontal direction, viz., node 2 is
wrapped to the first processor in R4, node 3. The chordal
equivalent of the hexagonal mesh, showing all the wrap-
arounds is shown in Fig. l(b). Such a topology and la-
beling scheme have also been studied in relation to ex-
perimental distributed real-time systems such as HARTS
1-51 and FAIM [20].

Property 2: A C-type wrapping is a homogeneous in-
terconnecton. Any node can be labeled as node 0, that is,
as the center of the mesh.

Lemma I : For a C-wrapped hexagonal mesh of dimen-
sion e, the ICP, i.e., the number of distinct processors
that one encounters before returning to the same processor

R,l + P - I I ? ? - I.

1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. IO. OCTOBER 1990

1 3 3 4 4 5

5
10

1s 3

9 14

0

14 15 15 IS 16 11

(a)
Fig. 1 . (a) A wraparound hexagonal mesh of dimension 3. (b) Its chordal

equivalent.

while traveling along any of the three directions, is p =
N = 3e2 - 3e + 1.

Proof: From Observation 1 , we know that the last
node of row Ri is connected to the first node of row
R,; + e - - , . This can be interpreted as being a linear con-
gruent sequence of the form mod (a, + b) m. In our case,
wehavea = 1, b = e - 1 , x = i, andm = 2e - 1. From
random number theory, this sequence has been shown to
have the maximum possible period of m if and only if b
is relatively prime to m [lo]. This implies, that in our
case, the sequence will be of length 2e - 1 (the number
of rows in the unwrapped hexagonal mesh of dimension
e) if (e - 1) is relatively prime to (2 e - 1) .

Hence, our assertion that p = 3e2 - 3e + 1 is true,
provided that the node numbering is unique. This is true
in the horizontal direction, as we number the nodes with
consecutive numbers. However, from Property 1 and Ob-
servation 1 , it follows that it must also be true in the other
two directions. Q.E.D.

111. ROUTING ON THE HEXAGONAL MESH

The hexagonal array machine is unique in the sense that
it is the first to attempt concurrent multiple-layer routing.
By cleverly assigning processors to grid points on the ac-
tive wavefront, the hexagonal array machine considerably
reduces the otherwise enormous time requirements. Con-
current multilayer wire routing has several advantages.

Via Minimization: A via is a contact used to connect
a wire that extends over two physical layers (metal and
polysilicon). Vias not only take more area but also reduce
the reliability of the circuit. Hence, minimizing the num-
ber of vias is an important issue and is usually carried out
by a post-processing step. This additional cost is often
very high and sometimes unacceptable.

Most routers constrain the polylines to run in one di-
rection (say horizontal) and the metal lines to run in the
other (vertical) direction. Thus the two can be superposed
and a common wavefront propagated. However, every
bend in a wire route causes a switch in the layers, and

hence, must be realized using a via. Clearly, a high per-
centage of these vias are unnecessary and could have been
avoided by allowing poly and metal to run in both direc-
tions. Relaxing the constraint is made possible in the hex-
agonal array machine by allowing for multiple wavefronts
at the same time. It also implicitly assigns an additional
cost to each via during the wave-expansion step. In this
way, paths with more vias become less attractive cost-
wise.

Increased connectivity: Usually maze routers pro-
ceed by routing one net at a time. The question of net
ordering is, therefore, an important one. The hexagonal
array machine does not eliminate this problem. However,
by treating the metal and poly (and possibly other layers)
separately, an obstacle on one layer does not preclude
routing on the other. Now, consider a router that does
multiple-layer routing by considering one layer at a time
in a serial fashion. An important question for such routers
is where to introduce the vias? This question is rendered
irrelevant by routing on all layers simultaneously.

Technology: Current IC technology is capable of
more than two layers: two-metal and two-silicon layer
technology is already in production. In PCB’s, several
layers have traditionally been used. So the need for mul-
tiple-layer wire routing is an accepted one.

The rest of this section will explain how the hexagonal
array machine can perform concurrent multiple-layer
routing. Before proceeding any further, we digress a little
to outline the basic Lee maze routing algorithm. The Lee
algorithm consists of three distinct phases, namely a) wave
expansion, b) backtracing, and c) label clearance. The
wave-expansion step starts from the source cell/cells by
labeling all unoccupied adjacent cells. These newly la-
beled cells constitute the new wavefront for the next ex-
pansion. The process is repeated until the target cell is
reached. If we assume that all cells and all nodes have
similar behavior, and that the propagation speeds are sim-
ilar in all directions, even in the case of an asynchronous
implementation, then for uniform labeling these wave-
fronts appear as diamond-shaped fronts. This observation

VENKATESWARAN AND MAZUMDER: AN ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1099

suggests that any good mapping strategy must ensure min-
imum repetition of processors along any 45- or 135-deg
lines. In the backtracing step, the labels are traced back
from the target to the source, and the shortest path found.
In the final label-clearance step all extra labels are cleared
and the cells on the new net are marked as being occupied
for future expansions.

For multiple layers, each cell must now expand the
wavefront not only to its four neighbors on the same layer,
but also to its neighbors on the adjacent layers. Such an
expansion is possible in a single step on the hexagonal
array machine, since each node has six adjacent neighbors
with which it communicates directly. In a square mesh or
torus topology, the usual strategy is to assign the same
processor to handle the cell au in all the layers. However,
expansion can no longer take place in a single step, re-
sulting in longer routing times.

Definition 2: (Operator) Let CP be the mapping opera-
tor, such that

+:zr x r,. x rz -+ P

where Zi is { k IO I k I i , where i is the dimension of
grid} a n d P is { m l O I m < e 2 - 3e + l } . Then

where a is the processor assigned to the grid cell (0, 0,
0) , wy = 3e - 1 and w, = 3e - 2 , and [a I b refers to a
mod b .
9 is derived based on the mapping scheme shown in

Fig. 2. For other assignments, the formula for 9 can be
similarly derived. Fig. 3 shows the mapping for a two-
layer 16 by 16 grid, using a four-dimensional C-wrapped
hexagonal array. As can be seen, it consists of repeated
folding of the tile, corresponding to the unwrapped four-
dimensional hexagonal array.

Mapping: Of the six neighbors of each node of the hex-
agonal mesh, four of them are assigned to cells on the
same layer and the remaining two to the up-and-down
neighbors on the adjacent layers. Since cells on different
layers are reached in subsequent expansions, vias are im-
plicitly given the cost of traveling along an arc. If a greater
cost must be attached to them, then we can assume the
different arcs to have different weights. For instance, a
weight of 3 can be assigned to the z-links to represent the
additional cost of the vias. To discourage bends in the
wiring path, a cost of 1 or 2 can be assigned to an x / y
link emerging from a node, depending on whether the link
lies in the same direction or in a different one from that
by which that node has been labeled. For an N-node hex-
agonal mesh, it has been shown in Lemma 1 that all hor-
izontal, vertical, 45- and 135-deg paths are mapped on a
cycle containing all cells of the machine, i.e., on a cycle
of periodicity N. This clearly leads to a processor assign-
ment with the fewest conflicts. The revised Lee algorithm
for multiple layers is given in the following.

(I-3eISOUTH (i-3elDOWN

Fig. 2. Processor labeling scheme

0 I 5

I

I 2 7 4 5 6 7 8 9 I O I

(5 - 2 7 2 8 2 9 3 0 3 1 3 2 3 3 1 4 3 5 36 0 I 2 3 4 5

0 -

m

15 -

0 5

3 5 1 6 0 I 2 3 8 9 I O l l l 2 : 3

24 25 26 27 28 2 9 3 0 31 32 33 34 35 36 0 I 2

2 3 4 5 6 7 8 9 1 0

28 29 30 31 32 3 3 34 35 36

17 18 19 20 21 22 23 24 25

Fig. 3 . Mapping for the two-layer 16 by 16 grid using a four-dimensional
H-mesh.

A . ModiJed Lee Algorithm for Multilayer Concurrent
Routing

This algorithm is a variant of the Lee algorithm. It
makes use of the six links of each processor in the hex-
agonal array to propagate the wavefront simultaneously
over all the layers and find the most optimal path, if one
exists.

1) Wave Propogation Phase:
1) Initialization. Set obstruction flags, I source flags

(SC’s), and target flags (TC’s) in the appropriate proces-
sors. Mark SC as the active processor to be expanded.

2) Expand from the active cells in all six directions

‘These represent the terminals and the obstructions posed by the nets
that have been previously routed.

I100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. N O . 10. OCTOBER 1990

(a) (b)

Fig. 4. (a) Processor assignments for a three-layer 4 by 4 grid. (b) Initial
netlist.

along the links of the hexagonal mesh. Transmit to each
processor the following four-tuple:

(a) (b)

Fig. 5 . (a) Snapshots of wavefronts on three layers. (b) Final wiring

TABLE I1
PROCESSOR ASSIGNMENTS DURING W A V E PROPAGATION CYCLES

Clock Processor Assignments

Cycle Layer 1 Layer 2 Layer 3

where X is the layer, x and y are the x and y coordinates
of the cell being reached in this expansion, and c repre-
sents the cost for reaching the cell along this path and can
be omitted if unequal weights are not assigned to the var-
ious links.

3) If TC has been marked, go to the backtrace phase.
Else repeat step (2) .*

2) Backtrace Phase:
1) Let l be the final label of the TC. Mark TC as the

cur-node.
2) Mark all the adjacent (at most six) nodes which have

the label l - 1. If there is only one such node, go to step
4.

3) Choose the node that is on the same layer as
cur-node if possible. If there is more than one possible
candidate, then pick the one that lies in the same direction
as cur-node was with its predecessor.

4) Mark the new node chosen in steps 2 or 3 as the
cur-node. If it corresponds to the source, then quit, as a
path has been traced out. Else go to step 2 .

Example: We now illustrate the process by means of
an example. We consider a 4 by 4 three-layer grid.3 Fig.
4(a) shows the processor assignment to the 64 grid points,
obtained by applying the operator Cp. Fig. 4(b) shows two
nets, A and B, that have been previously routed. Our as-
signment is to route the third net, C , whose endpoints are
also shown. At this stage, one may note that it is not pos-
sible to complete this interconnection without using the
third layer.

*It is assumed that all processors can simultaneously send and receive
messages from their neighbors. This enables us to mark all the neighbors
which need not be expanded in the next phase. To further speedup the
process, we may mark the cells in all layers at the same (x , y) position
as the TC as targets. This is true if we assume accessibility of terminals
from all layers.

'The three layers could represent a two-metal and one-silicon layer
technology.

1 9
2 IO. 17 2
3 1 1 , 18 3 14
4 0, 12 4 3 , 15
5 5 4, 1 1 , 16
6 0, 5 , 12. 17
7 0 1, 6, 13
8 1 , 8 2, 14
9 15 2, 9 3

I O 16 I O
I I 17

Fig. 5(a) is the snapshot at the culmination of the wave
propagation phase of the modified Lee algorithm. The
shaded areas indicate the previous obstacles. The number
in each square is the label associated with that grid point,
i.e., all cells with a label i would lie on the ith wavefront.
For this example, the wave propagation phase requires
eleven clock cycles. There are also no processor conflicts.
Table I1 shows the active processors in each clock cycle.
The distinction between layers is made solely to aid un-
derstanding. Thus during clock cycles 3 , 4 , and 9, a com-
mon wavefront exists over all three layers. Fig. 5(b)
shows the final route for all three nets.

IV. DELAY MODELING FOR THE HEXAGONAL ARRAY
MACHINE

The performance of the hardware accelerator, using
multiple interconnected processors folded to yield a larger
grid size, is usually measured by how much the mapping
minimizes the additional delay incurred over the corre-
sponding full-grid implementation. For our machine, the
maximum additional delay for any given wavefront is de-
termined by the maximum number of cells assigned to a
single processor on that wavefront. Thus if ci is the num-
ber of cells assigned to processor Pi on a certain wave-
front, then the additional delay involved is given by [max
(c ;) - 11, where 0 5 i I N - 1. Hence, ideally, we

VENKATESWARAN A N D MAZUMDER: A N A R R A Y MACHINE FOR MULTILAYER WIRE ROUTING 1101

0 14 9 4 18 13 8

8 9 10 11 12 13 14

would like the additional delay to be as close to zero as
possible.

The extra delay is usually quite complex to calculate as
its depends on a number of factors, such as i) location of
source and destination cells on the grid, ii) obstacles on
the grid, iii) size of the grid, iv) dimension of the hex-
agonal mesh used, and v) physical implementation issues
such as SIMD/MIMD mode of control. To date, most
work in this area has been characterized by an attempt to
estimate the delay by simulation alone, which ordinarily
requires 8 (k G 2) computations for a k-layer grid of size
G X G. However, based on the nature of wavefront prop-
agation on the hexagonal mesh, we can propose a simpler
model that can yield us the same result using only 8 (kN2)
computations, where N is the number of processors avail-
able and G >> N. We believe that similar models can be
developed for other topologies as well.

Notation 1: Let Dj be a permutation of the group

z, = { [OI, [I] , [21, * * > [N - 13; @ }
of congruence classes modulo N.

Theorem I : The four diagonals of the ith wavefront ex-
pansion on the hexagonal mesh machine of dimension e,
handling a single-layer obstacle-free grid of dimension G
X G, are given by the first i + 1 columns of the diagonal
matrix, 3, where

3 17 12 7 2 16 11 6 1 15 10 5

15 16 17 18 0 1 2 3 4 5 6 7

and the Di are as per Notation 1.
Proof: We know that on an obstacle-free grid, the

wavefronts are diamond-shaped. Let us label the four di-
agonals as D l , D2, D3, and D,. As can be seen from Fig.

Fig. 6 . Wavefront expansion on 6 on a three-dimensional mesh.

It is obvious that D3 will only be a shifted version of
DI, where the shift factorj is given by

j = [N - (2e - 1) i l N

where N = 3e2 - 3e + 1.

by applying a mapping function P : D l + D2, where
Furthermore, it can be verified that D2 can be obtained

q : (x) = [N - (2e - l)x],.

Corollary 1 shows that P is an automorphism, which is
to be expected as DI and D2 are cyclic groups of order N.
Like D3, 0, will also be a shifted version of D2, where
this time the shift factor k is given by

k = [N - (3e2 - 9e + 4) i IN . Q.E.D.

Numerical Example: The D matrix for a hexagonal
mesh of dimension 3 and for i = 6 is shown in the fol-
lowing. Note that D, is D l shifted right, j = [19 - (2 *
3 - 1) 6] mod 19 = (-11) mod 19 = 8, and D4 is D2
shifted right, k = [19 - (3 * 32 - 9 * 3 + 4) 6] mod 19
= (- 5) mod 19 = 14:

6, processors along D, and D3 differ by [3e], , while those
along D2 and D, differ by [3e - 2IN. From Lemma 1 , we
know that both these result in cycles of length N. Hence,
indeed the Dj are of the form Z,.

We claim that to estimate the delay, we need know only
the ordinality of the set of cells assigned to each processor
and not the identity of the cells or processors themselves.
Hence, without loss of generality, we can map the pro-
cessors appearing along D l by the vector { 0, 1, 2 - * * N
- 1 }., The entries on the other rows of 3 will be based
on this mapping.

‘Henceforth, it is assumed that the numbers 0. I , etc. refer to the cor-
responding set of congruence classes modulo N .

The first seven columns of D represent the processor
assignment on the sixth wavefront expansion. For in-
stance, the fifth entry of D, is the same as the fourth entry
of D2 (viz. 4). Referring to Fig. 6, we find that processor
17 is indeed assigned to both these cells. The elegance of
this scheme is that, on the basis of the D matrix alone, we
can now estimate the delay on any wavefront.

Corollary I : P = [N - (2e - 1) i I N is an automorph-
ism.

Proof: P is a bijection from D I to D2. This is true as
elements of group D, differ by (2e - 1), which is seen
to have a cycle of N.

1102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. Y. NO. 10. OCTOBER 1990

\k(x o y) = \k(x) o \k(y) for any x and y E D , and
Q.E.D. where o is the modulo N addition operator.

A . Delay Estimates When e Is 1
This is an interesting case as e = 1 corresponds to a

uniprocessor environment. The number of cells on the ith
wavefront ni for a grid of size G x G is given by the
following. For G odd

4i,

4 (G - i) ,

4i,

1
ni =

ni =

For G even

4i - 2 ,

4 (G - i) ,

1,

i <

i = G .

Hence, the maximum delay up t o j expansions is given by
j

4 ,x [min (i, G - i) - 11,
r = l

G odd or j < G / 2

i
4 c [min (i, G - i) - 11 - 2, otherwise.

i = 1

With j = G , we get MD = (G + 1), which is as expected.

B. Delay Estimates When e > 1
Notation 2:

Let D (k), i : j) be the submatrix of 33 (k) , the diagonal
matrix for the kth layer, comprising of columns i to j ,
both inclusive.

Let EDfk(i) = [max t i] , where ti is the number
of times processor Pi appears on the active wavefronts
of the ith expansion and k is the number of layers.
More formally, EDfk(i) is the number of times Pi ap-
pears in D (l) (O : [i + k - l] N) ' e * D (j) (O : [i + (k - j)] ~) * e '

D(k)(o: [i l , v) .
Let EDbk (i) = [max ri 1, where rj is the number of

times processor Pi appears on the active wavefronts of the
ith expansion, when i > G / 2 . Thus EDb differs from EDf
in the sense that it characterizes wavefronts that are cut
off by the grid boundaries. More formally, EDbk (i) is the
number of times Pi appears in D (1)(1; + k - I l N , . ~ - I) , . . .
D (j) ([i + (k - j)] N : N - l) D (k) ([i] N : N - l) '

Let D{ represent row Dj of the diagonal matrix being
repeated j times.

Observarion 2: Based on the periodicity of the proces-
sor mappings on a diagonal, as given in Lemma 1 and

from Theorem 1 , it may be observed that the processor-
to-cell mapping on the ith wavefront expansion is given
by the extended diagonal matrix D ' , where

a n d i = 1N + m.

Theorem 2: For an N-processor hexagonal machine and
a k-layer obstacle-free grid of dimension G X G , where
G >> N , the upper bound on the delay facto? to route
any net is k ((G / N) + 1) .

Proof: It is obvious that the net that will result in the
maximum time is the one spanning from the center of the
grid to a comer. This is because this leads to maximum
possible conflict in the processor assignment over the four
edges of the wavefront expansion.6

In the following derivation, we assume that one unit of
time corresponds to the time taken by a full-grid machine
to perform a single wavefront expansion. Hence, for our
machine, we estimate the time taken by counting the mul-
tiple cell-to-processor assignments on a wavefront. From
Observation 2 , the time for the jth wavefront expansion'
for a single layer, MTI (j), is given by

Hence, the total time up to the Gth expansion is given
by

'Delay factor (DF) = time taken by the hexagonal machine/time taken

6From Lemma 1, we know that this conflict is minimized over a single

'Note that after G / 2 expansions, the wavefronts are partly cut off by

by a full-grid machine.

edge.

the grid boundaries.

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING I103

If we let L (G / 2) J = aN + 6 , then (1) can be reduced
to

+ ab + aM, 1 a (a - 1)

j = b

+ J = .E I (E D f d j) + E D b d j)) (2)

where Mk = fk + bk and fk = Er=-,' ED&(i) and bk =
cyzl' EDbk(i).

Note that if b is not negligible with respect to (a . N),
then we have to add a correction factor 6 = aN EDh,(b)
- 4ab to the total time required.

The expressions in the case of more than one layer are
also very similar. The total time required to route a net
originating from the center of the top layer to a comer at
the bottom layer is given by

On simplification, we find that the total time needed is
given by

(3)

At this point we note that (2) can be obtained from (3)
by replacing k with 1 . From extensive simulation, Mk is
found to be nearly equal to 6kN. If we also assume that
(G / 2) 2: aN, then (3) reduces to

a (a - 1)
2

Tk(G) = 8k N + aM,

= 4k

= 2akN(2a + 1)

[a (. - 1)] N + a * 6kN

= kG($ + I) .

Thus the DF is given by

DF = kG(: + l > / G

= k (i + 1) . (4)

Q.E.D.

Corollary 2: For an N-processor hexagonal machine
and a grid of dimension G x G, where G >> N , the DF
in routing a net which spans from the center to a comer
of the grid is twice as much as that of a net connecting
two diagonally opposite comers of the grid, even though
the latter net is twice as long.*

For a net proceeding from comer to corner, we find that
each wavefront consists of only a single segment. For
simplicity, we are assuming a single-layer grid. The ex-
tensions to the multilayer case is straightforward and is
left to the reader. Note that there will be 2G wavefront
expansions:

2: 2Na * (2a - 1) + (4b - 1)2a

where L(G/2) J = aN + b .
Thus neglecting b , we get

DF = G(: - 2) / 2 G

Hence, from (4) and (5) , we have

G
DF(net1) = ($ + 1) 2:

G
DF(net2) = I(G - 2) 2: G.

2 N
Q.E.D.

Corollary 3: A hexagonal machine of dimension
8 (JkG) can handle a k-layer grid consisting of 8 (k G 2)
cells, at about the same speed as a full-grid machine com-
prised of 8 (kG2) processors.

Proof: From Theorem 2, we know that the delay fac-
tor in routing a net is e (k G / N) . Also, for a hexagonal
mesh, N = 8 (e 2) , where e is the dimension of the
mesh. Q.E.D.

Also, a point worth observing is that the only major
computations required are for the 2N element vectors EDf.
and EDb,, which take 8 (k N ') time at the most.

'These two nets represent extreme cases. In practice. we contend that
the maximum delay will be less by a factor of 4-5 for most other nets.

1104

¶ ?

IEEE ‘ T R A N S A C T I O N S ON C O M P U T E R - A I D E D DESIGN. VOL. Y. N O . IO. O C T O B E R 1900

A m A
0

W O
0 - 3

(u c o
-- % % Z

?/210g r m c .

--1 - - 2 _ _ 3
V “ V

PROCESSOR ARRAY

V . CHIP IMPLEMENTATION ISSUES

*xs:LL7

A . Architectural Issues

@

The hexagonal array machine, as we envision, will con-
sist of a C-wrapped hexagonal mesh of processing ele-
ments which are under the control of an array control unit
(ACU). The machine operates under an SIMD computer
organization wherein each processing element executes
the same instruction globally broadcast by the ACU.

The hexagonal array machine will act as a coprocessor,
or “routing accelerator,” to a workstation or serial main-
frame computer. Our design philosophy is oriented to-
wards a compact design suitable to packing in a VLSI
chip. Some researchers [13], (211 have advocated gen-
eral-purpose processing elements made up of commercial
chips and microprocessors. Their rationale is that they of-
fer flexibility in employing various variants of the maze
algorithm. They further believe that such a machine can
be used for design tasks other than routing. Agreeably,
this can be quite attractive in an experimental setup. How-
ever, the low speedup factors of around 3-4 achieved by
the WRM can be attributed precisely to this lack of ded-
icated hardware, interchip communication overhead, and
lack of stress on performance, among others. Hence, we
believe that a routing accelerator must be dedicated and
hardwired to do its job as fast and efficiently as possible.
It is also our feeling that any routing accelerator, at least
any in the near future, must considerably outperform its
serial version in order to be practically viable. In today’s
ever-increasing design environment, the routing acceler-
ator also must be capable of handlilig problem sizes much
larger than the physical array size. More importantly, it
must be able to address the issue of multilayer routing,
not only for PCB’s, but also for future IC design. It has
been amply demonstrated previously that the hexagonal
mapping appropriately answers all of these problems.
Hence, we employ this interconnection topology in our
goal to come up with a design of a compact, fast machine
that can handle problem sizes much larger than the phys-
ical size of the processing array.

Simulation studies have indicated that speeclup versus
mesh-dimension curve tends to level out with the mesh
dimension around 8. Therefore, we believe that an eight-
dimensional processing array, consisting of 169 process-
ing elements, is ideal for the problem size that can typi-
cally be expected.

Fig. 7 gives us an overview of the hexagonal machine
while Fig. 8 shows the block diagram of a typical pro-
cessing element. Thus the two important components of
the hexagonal array machine are i) the ACU and ii) the
array of interconnected processing elements. The ACU is
responsible for the interface with the host computer. To
begin with, the host computer would pass on to the ACU
information regarding the size of the grid, position of ob-
stacles on the routing surface, if any, and coordinates of
the terminals of the various nets. The other functions of
the ACU will become evident shortly.

i / 2 :

RECEZVE U N I T

SEND CNIT

~ a t a + S t r o b e _ i n e s
6x to eacn ne1ghbol.I

Fig. 8. Block diagram of a single processing element

The processing array is the actual workhorse of the hex-
agonal array machine. Each processing element has spe-
cial-purpose hardware for receiving and propagating la-
beling information with its six neighbors.

VENKATESWARAN AND MAZUMDER: AN A R R A Y MACHINE FOR M U L T I L A Y E R WIRE ROUTING 1105

From Fig. 8, it is obvious that the major bottleneck,
both in terms of space and performance criteria, is the
local memory. The local memory must store pertinent in-
formation regarding the various cells that have been
mapped onto this processing element. Each entry can be
assumed to consist of two parts, namely, the (x , y , h)
coordinates of the cell (fixed data) and a variable part for
maintaining the labeling information for the backtrace
phase; status of the cell, i.e., whether it has been ex-
panded already or whether it is a terminal (source or des-
tination) or whether it is blocked, etc.

In a full-grid machine, such as the L-Machine, the in-
formation that one processor must send to its neighbor
during wavefront expansion can be as simple as a I-b to-
ken. This is possible as each processor is mapped to only
a single point on the grid. In any virtual machine, infor-
mation must also be passed on to the neighbor identifying
the cell instance that corresponds to that expansion. For
our machine, each processor based on the knowledge of
its position in the grid can calculate the (x , y , h) coor-
dinates of its neighbors and send it. This scheme, though
simple, is also very inefficient. Even for a four-layer grid
of dimension 256 by 256, this would entail having to send
18 b each time to each neighbor. More importantly, a pro-
cessing element upon receiving the token must extract in-
formation regarding that cell from its local memory. So,
unless the memory is organized as an associative mem-
ory, there will be a tremendous overhead in processing.

The alternative would seem to be that each cell pass to
its neighbor, during wavefront expansion, the memory
address rather than the cell contents. We shall now dis-
cuss one scheme which can do precisely that. After the
initial mapping using the operator 9 (cf. Definition 1) has
been calculated, the ACU generates a new array INDEX,
defined as follows:

INDEX [x , y , A] = { i-this is the ith occurrence of n
in layer h proceeding in a
row-major fashion }

where n is the processing element to which cell (x , y, h)
is mapped.

Each processing element then calculates the difference
A between its INDEX value and the INDEX values of its
neighbor in each direction. In case the grid boundaries are
met along any direction, an illegal value, X, is entered,
implying the expansion is not possible in that direction.
From Lemma 1 , it is evident that the maximum absolute
value of A is going to be r (G / N) 1 . For a 256 by 256
grid and N = 169, this works out to be 2. Note that this
value is independent of the number of layers in the grid.
Hence, the A value for each direction can be stored in a
3-b field. This in turns means that the fixed part of each
entry would be 18 b wide. The entry for cell (x , y, X) is
stored in the local memory of the mapped processing ele-
ment at address (Ak . . *

ho is the binary representation of X and b, . . . bo is the
binary representation of INDEX[x, y A] .

Xo, b,q * * . b o) , where ha *

Now let m,, be the address of the cell currently being
expanded. Then the information passed to the neighbor-
ing processing element in direction d is the value (m,, +
A,,), where A,, is the difference stored at mr, for direction
d. For a 256 by 256 four-layer grid, this entails sending
only eleven bits of information, as opposed to 18 in the
previous case. However, the vital gain is in the fact that
the cell information received is in the form of an address.
Hence, it results in much speedier retrieval of data from
the local memory.

The cost we pay for the new scheme is the additional
time spent in generating INDEX, even though this will be
more than compensated for by the faster processing. Also,
as the information is static for a given mapping, it can be
precomputed and loaded in the local memories once and
for all. However, the indexes will no longer be consecu-
tive for smaller grids.

The memory contents for the first three processing ele-
ments for the mapping shown in Fig. 2 are shown in Table
111. The entries marked X indicate that no expansion is
possible in those directions because of the grid dimen-
sions.

The send and receive units in Fig. 8 could be as simple
as shift registers with appropriate status flags to indicate
if any new data have arrived. The presence of a bank of
registers, one per neighbor, ensures complete parallelism
in the expansion process. The update unit, as the name
suggests, would update the pertinent cell status and la-
beling information. It could store these cells in a stack-
like structure for faster retrieval by the next-cell unit.
Also, the update unit informs the local control unit of new
data by raising a BSY (busy) line, upon new data arrival,
or the DST line, if the cell corresponds to the target. The
next-cell unit provides the expansion unit with one of the
possibly several active cells mapped on this processing
element. This unit also lowers the BSY line if it finds no
more cells remaining to be expanded by the processing
element in the given cycle. The expansion unit for direc-
tion d adds the value Ad to the address of the cell to form
the message for the neighbor along direction d. This is
then sent by the send unit, provided the Boolean condition
(A,, # X A cell-state = to be expanded) is satisfied.

The preceding operations are all carried out under the
supervision of the local control unit. The ACU broadcasts
the commands globally to all the local control units. Also,
the ACU can individually access each processing ele-
ment, using the X and Y select lines, and initialize the
processing elements at the start, as to the locations of the
initial obstacles and start and end of the nets. During
backtrace the processing elements on the net can raise the
same lines to indicate the route to the ACU. A point to
note is that in this scheme, some processors may be forced
to idle if others have multiple assignments on the current
wavefront (Procedure expand-$-busy) . Additional
speedup could be achieved if the processors were permit-
ted to continue to expand. This would correspond to an
MIMD mode of operation. The cells being expanded dur-
ing any cycle now would no longer correspond to any par-

1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. I O . OCTOBER 1990

TABLE 111
CONTENTS OF THE LOCAL MEMORY FOR PROCESSORS 0 TO 3

Local Memory -0 Local Memory -1

-1
X

o o o x
- 1 - 1 0 0 0 x 0 X
- 1 - 1 0 0 0 x - l x 0 0 0 x
0 - 1 0 x 0 x - 1 0 0 x 0 x
o o x o x o o o x o x o

1 0 - 1 0 x 0
1 0 - 1 0 x 0
1 0 - 1 0 x 0

-1 -1 -1 0 x 0
-1 -1 -1 0 x 0
-1 -1 -1 0 x 0
0 - 1 - 1 0 x 3

I I I

Local Memory - 2 Local Memory - 3

o o o o o x
0 0 0 0 o ' x
o o o o o x
o o o o o x
o o o o o x
0 1 0 0 0 x
O l O X O X

0
0
0
0
0
X
-1
-1

o x o x o
1 - 1 0 x 0
1 - 1 0 x 0
1 - 1 0 x 0
1 - 1 0 x c
1 - 1 0 x (

x - 1 0 x c
0 - 1 0 x (

4" 1 0 0 0 0 :
0 0 0 X

0 0 - 1 0 x c
0 0 -1 0 X
0 0 - 1 0 x
0 0 - 1 0 x 0
0 1 - 1 0 x 0
0 1 - 1 0 x (

ticular wavefront. Procedures 1-5 describe the various
software routines in pseudocode.

B. Procedures f o r an SIMD Model of Computation on
the Hexagonal Machine

Procedure 1: PROC-ELEM main loop
repeat

Process CU command
Execute the appropriate routine, viz.,

EXPAND, EXPAND-IF-BSY, or BACKTRA CE
until OVER.

Procedure 2: EXPAND
for each Ri do

if new data received
Check with cell bank if this is a new cell
if new

Update the labels for the cell
Set DST flag if target reached

cnt+ +

Expand one unexpanded cell by sending message to
the applicable neighbors
cnr- -
if cnr > 0

set BSY flag ON

else

end.
reset BSY flag

Procedure 3: EXPAND-IFBSY
if BSY flag is ON

else

end.

if new data received or if DST flag set

Perform Algori thm EXPAND

skip

Procedure 4: BACKTRACE

if neighbor on cur-dir has correct label

else if neighbor in direction n on same layer has cor-
rect label

else if neighbor in direction n on adjacent layer has

Next = cur-dir

Next = n

correct label
Next = n

cur-dir = Next
Send message to neighbor in direction Next

end.

Procedure 5: CONTROL-UNIT main loop
Compute the mapping of cells to processors
Load mapping information onto the cell banks of the
processors
repeat

Broadcast the source and target for this net
EXPAND
Read DST vector and go to next net if set or if route
not possible
while BSY vector # 0

EXPAND-IF-BSY
until all nets over.

VI. PERFORMANCE ANALYSIS
A simulation has been made based on the preceding ar-

chitecture and the multilayered routing algorithm pro-
posed. The simulation program has been coded in C + +.

We ran several simulations, varying different parame-
ters, such as the hexagonal mesh dimension, the grid size,
and the number of layers to be routed. Thus we were able
to investigate their impact on the routing time. We varied
the mesh dimension from 2 to 32 (i .e . , from seven pro-
cessing elements to 2977 for the 32-dimensional mesh).
We performed sample routing on grids of sizes ranging
from 16 by 16 to 1024 by 1024 and comprised of 1-8
layers. All these routing problems were considered on an
empty grid (i.e., with no previous blockages). A net orig-
inating from the center of the grid and proceeding to a
comer, along with another running between two diago-
nally opposite comers, were always considered. Our mo-
tivation here was simply to get a feel for the order of
delays that we may expect from a hexagonally intercon-
nected machine. The aforementioned two nets, as we have
already shown, require the most time to route.

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING I107

4: 1 :I G;\l, ,

l o G=128

3

2 3 4 5 6 1 8 9

30 -
G=128x8

-

30 -
G = l 2 8 x 8

oi > 4

I
-1

o 7 . , . , . , . , . , . , -- I

0 55 31 i.

2 0 -
>.a 4 - 1

0.. 3.2

G . 1 6 ~ 2

E ; 2 5 1 0 -

2 3 4 5 6 7 8

Hmesh Dimension Hmesh 31mens;on

(C) (d)
Fig. 9. Simulation and analytical results of routing time on the hexagonal

array machine. (a) Simulation results (one layer). (b) Analytical results
(one layer). (c) Simulation results (multilayers). (d) Analytical results
(multilayers).

TABLE IV
ANALYTICAL RESULTS OF DF FOR A K-LAYER 128 BY 128 GRID

128' x 1 128' x 2 128' X 4 128' x 8
Mesh No. of
Dim PES MI DF, M2 DF' M , DFj M4 DF,

2 7 31 13.869 1 73 28.3 184 I63 57.5332 392 118.5470
4 37 211 3.3750 400 6.5213 74 1 12.2754 I537 24.621 I
8 169 1021 2.0039 I967 4.0137 3671 7.4297 6342 13.1484

16 72 1 4447 I .7578 8836 3.4395 I6967 6.662 I 30838 12.8145
24 1657 10273 1.6582 20697 3.2402 40452 6.3633 75167 12.4043
32 2977 I8499 1.5820 37549 3.1816 74085 6.3457 140376 12.3281

The graphs in Fig. 9 show the timing characteristics of
the hexagonal array machine as obtained from simulation.
Also shown are the upper bounds on the time as projected
by the analytical model of Section IV. Both single-layer
and multiple-layer routing results are plotted. Each plot
is of the time needed to route versus the dimension of the
mesh used. The unit for the y axis is taken as the time
taken by a processor to perform one expansion. Table IV
shows the analytical results for Mk and the DF, which are
as expressed in Section IV.

It is seen that the graphs are all exponential in nature
and of the form y = b * IO-", where b and c are positive
numbers. As is intuitively evident, the graphs show that
for a very small dimension, such as 2 or 3, there are many
multiple assigments of cells to the processing elements
per wave expansion. This does not mean a lack of parallel
processing. It only implies that since the same work is to

be handled by fewer processors, the overall time required
to complete the routing is more. As the number of pro-
cessing elements available increases, we need lesser and
lesser time to perform the same routine. Note that the
quality of routing obtained is not dependent on the num-
ber of processors used. It is determined by the routing
algorithm, like the cost functions employed during wave
expansion or the manner in which backtracing is per-
formed. After a mesh dimension of around 8, all of these
curves seem to flatten out, in the sense that increasing the
number of processors available does not provide any sig-
nificant reduction in routing time. Hence, we feel that a
practical implementation which would be required to
tackle problems of these specifications could ideally be
built as an eight-dimensional mesh comprised of 169 pro-
cessing elements. In this way, we will be able to do rout-
ing nearly as fast as a full-grid implementation made up

1108 IEEE TRANSACTIONS ON COMPUI'EK-AIDED DESIGN. VOL. Y. N O IO. OCTOBER I Y Y O

- Layer 1 _ _ _ _ _ _ _ Layer 2
Fig. I O . Sample two-layer routing-example.

of thousands of processing elements. Another conclusion
that we were able to draw was that the time required to
route for most nets is about 0.65-0.85 times the upper
bound on the delay, as predicted by Theorem 2 . Thus this
measure of the delay can be very simply used for evalu-
ating the suitability of a mesh of a certain dimension for
solving a given class of problems.

The rest of the section shows the routing produced for
two, more complex problems considered. Fig. 10 shows
the layout obtained for a sample problem involving 14
nets on a two-layer grid of size 128 by 128. All the blocks
and terminals of all nets lie on the top layer only. Fig. 11
shows the initial blockages and the wiring obtained for a
four-layer PCB problem. In this case, 25 nets were suc-
cessfully routed. Table V summarizes the performance re-
sults for the two problems for meshes of dimensions 4 and
8, respectively.

The results are very promising indeed. For a problem
similar to the two-layer case, Suzuki et al. [21] had ob-
tained an average of 3.4 cells assigned per processor (to-
tal of 64 processors) over each wavefront. This is nearly
twice the value that we get with a five-dimensional mesh
(61 processing elements). We contend that this is a direct
reflection of the superiority of our mapping, viz., the same
processor appears at every N processors along any direc-
tion, instead of the smaller periodicity of N / 2 or less ob-
tained by others. Also, our solution is not unnecessarily
constrained by horizontal-vertical restrictions on wire di-
rections. This offers scope for a greater number of wires
being routed.

Table VI shows the netlist used for the two-layer sam-
ple problem, whose solution is given in Fig. 10. Average
MAF refers to the multiple assignment factor of cells to
processing elements on a given wavefront average over

1 n

Layer 0 Layer 1

L I I I

Layer 2 Layer 3

Fig. 1 1 . Sample four-layer PCB routing example

all wavefront expansions. Total time gives an estimate of
the amount by which our machine might be slowed down
as compared to a full-grid implementation. It is based on
an SIMD mode of computation wherein some processing
elements may remain idle (similar to masking) during the
period when others are handling multiple expansions for
that particular wavefront. Avg PrUt refers to the average
processor utilization percentage.

Table VI1 shows the netlist for the four-layer PCB ex-
ample of Fig. 11. All columns have the same implications
as before.

VII. RECONFIGURABILITY A N D FAULT-TOLERANCE
ISSUES

A . Reconjiguration
The ability of the hexagonal array machine to perform

multilayer routing stems from the fact that each process-
ing element is directly connected to six other neighbors.
Obviously, this implies an increase in the total number of
links required. In fact, for an n node machine, a square
mesh topology requires 2n links as compared to the 3n
links required by the hexagonal machine. However, it is
now possible to perform multilayer routing very effi-
ciently. Currently, most routers tackle a multilayer prob-
lem one layer at a time. This necessitates the onerous task
of finding out the optimal point for the vias, to optimize
the routing criteria as well as to maximize the connectiv-
ity ratio. These routers, therefore, adopt heuristic mea-
sures to simplify the problem, as a result of which, we
may frequently obtain unacceptable results. However, for
two-layer horizontal-and-vertical routing, a four-neighbor
interconnection topology may suffice. For this purpose, it

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1 IO9

TABLE V
PERFORMANCE RESULTS O N T H E HEXAGOYAL A R R A Y MACHINE

No . of Mesh No . of Total Wire Avg. Total Avg. Completion
Grid Size Layers Dim. Nets Length MAF Time Pr. Util. Ratio

128 x 128 2 4 14 877 2.9872 5.0735 50 100%
128 X 128 2 8 14 877 I .3063 2.8302 20 100%
64 x 64 4 4 25 1048 2.5573 4.7643 40 100%
64 x 64 4 8 25 1048 I .2539 2.641 1 15 100%

TABLE VI
NETLIST A N D PFRFORMANCE DATA FOR SAMPLE TWO-LAYER ROU r l N G PROBLEM

Avg. Pr.
Source Target Avg. MAF Total Time Ut.

Wire No . of No. of
Net x Y X y Length Vias Bends 4D 8D 4D 8D 4D 8D

1 14 90 26 70 34 0 3 2.1930 1.2789 4.1471 2.6471 42 14
2 20 50 70 55 57 2 1 3.2904 1.3373 5.2456 2.8421 55 22
3 20 40 50 30 42 2 1 2.6543 1.3175 4.6191 3.0238 48 16
4 20 113 70 90 73 0 3 2.5556 1.1665 4.1644 2.2055 56 24
5 55 113 30 60 80 2 I 3.6429 1.4512 5.8000 3.5750 57 20
6 85 113 60 85 55 2 2 2.9429 1.3024 5.0546 2.6546 52 22
7 113 55 90 40 38 0 3 2.4581 1.2258 4.2368 2.3947 49 19
8 68 40 40 48 36 0 I 2.7963 1.2779 4.6667 2.6944 49 19
9 40 29 113 25 79 2 I 3.7639 1.4903 6.3544 3.6962 53 20

I O 70 85 70 14 I35 2 3 4.1843 1.4472 6.7704 3.5259 58 24
I I 30 14 80 50 110 2 3 2.9041 1.2473 5.0000 2.6636 52 21
12 20 25 50 25 46 2 4 2.1899 1.1811 4.3696 2.3261 42 17
13 35 60 70 65 40 0 1 2.6402 1.2038 4.8500 2.4500 45 19
14 85 85 80 40 52 2 1 3.6048 1.3611 5.7500 2.9231 54 23

TABLE VI1
NETLIST A N D PERFORMANCE DATA FOR SAMPLE FOUR-LAYER PCB ROUTING PROBLEM

Source Target Avg. MAF Total Time Avg. Pr. Ut
Wire No . of No. of ~~

Net x y X y Length Vias Bends 4d 8d 4d 8d 4d 8d

I I O 50 I O 30 20
2 13 50 35 28 46
3 25 52 13 30 40
4 25 25 35 25 I O
5 12 20 12 I O I O
6 15 20 27 I O 22
7 18 19 40 I O 31
8 15 55 45 55' 42
9 15 52 38 30 47

I O 30 I O 50 20 32
I 1 35 57 41 30 47
12 44 50 44 30 42
13 46 50 46 30 48
14 45 7 15 I O 41
15 5 50 I O 8 49
16 5 53 I O 5 57
17 55 51 55 20 43
18 55 54 24 5 96
19 55 57 14 5 I l l
20 12 60 27 60 17
21 30 60 50 60 24
22 23 30 37 30 16
23 25 57 40 6 72
24 15 57 30 8 70
25 25 22 36 20 15

0
2
6
0
0
0
0
0
2
2
6
2
2
0
0
0
0
2
4
0
0
2
6
6
0

0
2
1
0
0
2
2
4
3
2
3
5
3
4
2
2
2
5
3
2
2
0
3
1
3

2.3827
3.2050
3.5517
I .4895
I .0427
1.3010
2.5292
2.8576
3.1545
3.4796
2.5776
3.0325
3. I453
3.0886
2.7349
2.7076
2.1820
2.9367
2.6883
1.8967
1.9835
1.8767
3.3784
3.0558
I .6553

1.2001
1.3398
1.4173
1.0886
1 .oooo
1.0433
1.2163
1.2596
1.3338
1.4337
I .2290
1 ,3446
1.3235
1.3088
1.2993
1.3271
I . 1427
1.2719
1.4638
1.2126
I . I372
I . I365
1.391 I
1.2962
I . I296

4.5500
6.2609
6.7750
2.7000
I . 3000
2.0909
4.0968
5.4524
5.9149
6.2813
4.5745
5.2381
5.1875
6.0732
5.6122
5.3684
4.2326
5.5417
5.0360
3.9412
3.7917
3.3750
6.5139
6.0000
3.2000

2.3000
3.0435
3.4250
1 ,7000
1 . 0000
1.3636
2.4516
2.7857
2.9787
3.4688
2.6170
2.9286
2.7083
3. I219
3.2449
3.0351
2.3256
2.8438
3.1441
2.647 I
2.2083
2.1875
3.4306
3.0000
2.0667

40 18
45 20
47 20
31 I I
19 5
26 8
37 13
47 20
47 20
49 19
45 17
38 14
36 15
43 18
44 16
46 17
36 14
45 19
46 15
34 I I
43 16
41 13
48 19
47 20
33 I I

11 10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. IO, OCTOBER 1990

2 3 a

11

10

16 3

Lay.= 1 Layer 2

0 Fig. 13. Additional blockages caused by faulty processing elements.

2 TABLE VI11
EFFECTS OF FAULTY LINKS ON ROUTING

15 16 11

Fig 12 Four-dimensional hexagonal array with diagonals links removed. Average Average
of Faulty Average Total Via per Bends per Average

Time Wirelength Net Net Pr. Util. Links

is possible to simplify the basic hexagonal mesh topology
by deleting the two additional links of each processing
element. One way to achieve this is by removing all the
links along one of the three main directions. Fig. 12 shows
the modified architecture for a four-dimensional mesh,
where all the links along the 60-deg direction have been
removed. Since the interprocessor cycle period is still n
for an n-node mesh, this mapping would result in fewer
conflicts in processor assignment than a comparable
square-mesh or toroidal interconnection.

B. Fault Tolerance
Can routing machines tolerate some amount of failure

in the links or processing elements? This is a very impor-
tant question, especially for WSI or VLSI technology,
where such faults could arise due to imperfections in the
manufacturing process. Unfortunately, this issue is often
unaddressed. What then are the ramifications of faulty
links and processors on routing on the hexagonal array
machine? Clearly these faulty elements will hinder wave-
front expansion and backtracing. In fact, a faulty pro-
cessing element can be modeled as a case where all the
six incoming links are treated as being faulty.

From the point of view of grid layout, these faults,
however, can be conceptualized as creating additional ob-
stacles on the grid surface. The darker squares in Fig. 13
show these additional blockages caused by ten out of the
37 processing elements (27 %) becoming faulty. Conse-
quently, 138 additional cells (26.75%) get blocked. In
spite of this high failure rate, it is heartening to note that
all wires could still be routed for a sample problem as
described in Section VII-B-2).

I) Faulty Links: We took the routing problem of Table
VI and randomly assigned faulty links. This information
is easily handled by setting the appropriate A entries in
the local memory of the two processing elements con-
nected by the faulty link to the illegal X value. Table VI11
summarizes the results obtained.

We observe that the time needed to route, as well as
that for the processor utilization, remains practically the

0
2
3
4
5
6
7
8
9

10

5.0735
5.1231
5.2181
5.1558
5.2059
5.1369
5.2001
5.3131
5.2753
5.4035

877
879
823
877
86 1
877
879
829
837
797'

1.2857
1.4286
1.4286
1.2857
1.7143
1.2857
1.2857
1.5714
1.5714
1.3846

2.0000
2.3571
2.2143
2.4286
3.4286
2.4286
2.5000
2.4286
2.9286
3.8462

50
49
49
50
49
49
49
48
49
49

' 1 net could not be routed in this case

same. The quality of routing in terms of the number of
bends and number of vias used per net deteriorates
slightly. An interesting observation is that in some in-
stances with faulty links, there is a reduction in the total
wire length needed (chiefly for nets 10 and 11). There
are a couple of reasons for this. Firstly, we employ a very
simple backtracer which favors a reduction in the number
of bends and vias to an increase in the wire length. Sec-
ondly, it is another indicator to the effect of net ordering
on performance. Our conclusion, therefore, is that a small
amount of link failure, say about 5% (in this instance,
9%), will not be catastrophic to the hexagonal machine.
Part of this assurance is based on the additional 2 deg of
freedom available to each processing element for expan-
sion.

2) Faulty Processors: To study the effect of processor
failure on routing, we considered a grid corresponding to
the mapping shown in Fig. 2. Our objective was to route
four nets in the presence of 0-10 faulty processing ele-
ments, out of a total of 37. Although the processing ele-
ments were randomly set faulty, we ensured that none of
the source or target cells were mapped onto them. A faulty
processing element can be represented either by setting
the appropriate six A entries in the local memories of the
six neighbors to an illegal value or by considering all cells
mapped to it as being blocked. The results are summa-
rized in Table IX.

Our conclusion here, also is that the hexagonal machine
can survive a large amount of processor failure, but at the

VENKATESWARAN A N D MAZUMDER: A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1111

1 I 1 I

(a) (b)

Fig. 14. Wiring results in the presence of faulty processors. __ Layer
1; ---- Layer 2.

TABLE IX
EFFECTS OF FAULTY PROCESSING ELEMENTS ON ROUTING

Avg. of Avg. of
of Faulty Total Average Avg. Vias per Bends per
Processors Wirelength Time Pr. Util. Net Net

0
1
2
3
4
5
6
7
8

10

62
64
64
62
66
66
90
74
66
94

2.131
2.0873
2.0976
2. I245
2.0461
1 ,9603
I . 8454
2.0227
2. I460
1.6962

26
21
24
23
22
24
19
20
18
16

~

0.50
0.50
0.50
0.50
1 .oo
0.50
1.50
I .oo
1 .oo
2.00

~

I .25
1.50
2.00
2.75
1.75
4.00
5.00
3.75
3.25
6.50

cost of additional vias and bends. Fig. 14(a) shows the
wiring when no processor is faulty and Fig. 14(b) shows
the wiring when ten of the 37 processing elements are
faulty. All the blocks shown are on the top layer, as are
the terminals of all nets. Also note that net 1 running on
layer 2 is partly covered by net 4 running on layer 1. So
is net 4 partially covered by net 2 . Although the routing
in this case is of poor quality, it is worth noting that this
is an instance where nearly 27% of the processing ele-
ments are faulty.

VIII. CONCLUSION
The popularity of hardware routers can be attributed to

their utmost importance in any automated design environ-
ment. Powerful processors are required to achieve faster
turnaround times even though design requirements are
steadily increasing. Full-grid designs like the L-machine
are no longer possible. The question of net ordering in
achieving 100% connectivity with a minimum (or ab-
sence) of overflow nets continues to be a vexing issue for
automatic routers. Some amount of rip-up and rerouting
will inevitably be required in the absence of a scheme for
determining the optimal net order a priori. This rerouting
phase often accounts for the bulk of the total time re-
quired. Allowing for multiple layers is one approach to
reduce the number of overflow nets and thereby the re-
routing overheads. Concurrent multiple-layer routing also

minimizes the number of vias introduced, thereby im-
proving reliability of the circuit. More nets can be con-
nected because of the additional routing space available.
However, existing accelerators based on square-mesh or
torus topologies are not successful when it comes to mul-
tiple layers. We believe that this is a restriction of any
topology wherein each processing element has only four
nearest neighbors.

In this paper, we have investigated the hexagonal mesh
architecture for the physical implementation of the Lee
algorithm. We have shown the high promise of such a
machine in handling routing on single as well as on mul-
tiple layers. The mapping, corresponding to a C-wrapped
hexagonal interconnection of N processing elements, re-
sults in an interprocessor cycle length of N . This is much
superior to the N / 2 results obtained by other researchers
[131, [2 11. Consequently, fewer conflicts arise during
wavefront expansion and a good quality routing can be
achieved in a much shorter period.

We have shown that a mesh of dimension JGk can do
routing on k-layer grids with kG2 grid points at speeds
comparable to the full grid machine. For example, we es-
timate that a four-dimensional hex mesh, with 37 proces-
sors, will take about ((256/37) + 1) 0.6 - 5 times
more than the full-grid implementation having 65 536
processors. We have discussed some of the major issues
involved in physically implementing such a machine. An
SIMD-type model, along with a unique labeling scheme
to lower the local memory requirements, has been pro-
posed. We have also shown the ability of the hexagonal
mesh to withstand considerable link and processing ele-
ment failure and still produce acceptable wiring.

ACKNOWLEDGMENT

The authors would like to sincerely thank Prof. Kang
G. Shin, Director of the Real-Time Computing Labora-
tory for his stimulating discussions about the hexagonal
mesh with wraparound topology.

111

I21

131

141

151

f61

171

191

181

1 101

REFERENCES
S . Akers, “A modification of Lee’s path connection algorithm.” IEEE
Trans. Electron. Cornput., pp. 97-98, Feb. 1967.
T. Blank, “A survey of hardware accelerators used i n CAD,” IEEE
Design Test Cornput., pp. 21-39, Aug. 1984.
M . A. Breuer and K. Shamsa, “A hardware router,” J . Digital Syst.,
vol. 4 , no. 4. pp. 393-408, 1980.
M . Burstein and R. Pelavin. “Hierarchical channel router,” in Proc.
Design Automation Con$, 1983, pp. 591-596.
J . W . Dolter, P. Ramanathan. and K. G . Shin, “ A microprogram-
mable VLSI routing controller for HARTS.” Tech. Rep. CSE-TR-
12-89, Univ. of Michigan, Dep. of EECS, 1989.
1. M . Geyer. “Connection routing algorithms for printed circuit
boards,” IEEE Trum, Circuit Theon . vol. CT-18, pp. 95-100, 1971.
F. 0. Hadlock, “A shortest path algorithm for grid graphs,” Nets-
works, vol. 7, pp. 323-334, 1977.
S . J. Hong, and R. Nair, “Wire-routing machines-New tools for
VLSI physical design,” Proc. IEEE, vol. 71, pp. 57-65, Jan. 1983.
Hu and Shing, “The alpha-beta routing.” in VLSI Circuit Layout:
Theory and Design, T.C. Hu and E. S. Kuh, Eds. New York: IEEE
Press, 1985, pp. 139-144.
D. E. Knuth, The Art of Computer Programming. 2nd Ed. Reading,
MA: Addison Wesley, 1973. vol. 2.

1112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER 1990

C. Y . Lee, “An algorithm for path connections and its applications,”
IRE Trans. Elec. Comput, pp. 346-365, 1961.
A. J. Martin, “The toms: An exercise in constructing a processing
surface,” in Proc. Second CalTech Con$ on VLSI, Jan. 1981, pp.
527-537.
R. Nair, S. J. Hong, S . Liter, and R. Villani, “Global wiring on a
wire routing machine,” in Proc. Design Automation Con$, June 1982,

T. Ohtsuki, “Maze running and line-search algorithms,” in Layour
Design and Verification. Amsterdam, The Netherlands North-Hol-
land, 1986, chap. 3, pp. 99-132.
R. Y. Pinter, “River routing: Methodology and analysis,” in Proc.
Third CalTech Con$ VLSI, Mar. 1983, pp. 141-163.
B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Sys-
rems. Menlo Park, CA: BenjaminlCumming, 1988.
R. A. Rutenbar, “A class of cellular computer architectures to sup-
port physical design automation,” Ph.D. dissertation, Univ. of Mich-
igan, 1984.
S . Sahni and Y. Won, “A hardware accelerator for maze routing,”
in Proc. Design Automat. Con$, 1987, pp. 800-806.
S. Sastry and R. Kumar, “Parallel placement on reduced array archi-
tecture,” in Design Automat. Con$, 1988.
K. S. Stevens, “The communication framework for a distributed en-
semble architecture,” AI Tech. Rep. 47, Schlumberger Res. Lab.,
Feb. 1986.

pp. 224-231.

[21] K . Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki, “A hard-
ware maze router with application to interactive rip-up and reroute,”
IEEE Trans. Computer-Aided Design, pp. 466-476, Oct. 1986.

[22] T. Watanabe, H. Kitazawa, and Y. Sugiyama, “A parallel adaptable
routing algorithm, and its implementation on a two dimensional array
processor, ” IEEE Trans. Computer-Aided Design, vol. CAD-6, pp.
241-250, Mar. 1987.

[23] T. Yoshimura and E. S . Kuh, “Efficient algorithms for channel rout-
ing,” lEEE Trans. Computer-Aided Design, pp. 180-190, Jan. 1982.

*
R. Venkateswaran received the B.Tech. degree
in computer science from the Indian Institute of
Technology, Bombay, in 1988. Currently, he is
working towards the Ph.D. degree at the Univer-
sity of Michigan.

His areas of interest include physical design,
fault tolerance, neural networks, and high-level
synthesis.

*
Pinaki Mazumder (S’84-M’87) for a photograph and biography, please
see page 511 of the May 1990 issue of this TRANSACTIONS.

	HAM
	Routing
	58_HexagonalArrayMachine

