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Abstract—Transistor tapering is a widely used technique applied
to optimize the geometries of CMOS transistors in high-perfor-
mance circuit design with a view to minimizing the delay of a
FET network. Currently, in a long FET network where MOS
devices are stacked over one another to form a series chain
network, the dimensions of the transistors are decreased from
the bottom transistor to the top transistor in a manner where the
width of transistors is tapered linearly or exponentially. However,
it has not been mathematically proved whether either of these
tapering schemes yields optimal results in terms of minimization
of switching delays of the network. In this paper, we rigorously
analyze MOS circuits consisting of long FET chains under the
widely used Elmore delay model and derive the optimality of
transistor tapering by employing variational calculus. Specifi-
cally, we demonstrate that neither linear nor exponential tapering
alone minimizes the discharge time of the FET chain. Instead, a
composition of exponential and constant tapering actually opti-
mizes the delay of the network. We have also corroborated our
analytical results by performing extensive simulation of FET
networks and showing that both analytical and simulation results
are always consistent.

Index Terms—Circuit optimization, circuit theory and design,
Elmore delay, field-effect transistors, transistor sizing, transistor
tapering.

I. INTRODUCTION

T RANSISTOR sizing is frequently used in high-perfor-
mance integrated circuit design in order to improve the

speed of operation and concomitantly to reduce the power dis-
sipation of a constituting circuit block [1]. Transistor tapering
is a special class of transistor sizing technique where, instead of
having a stack of uniformly wide FETs, the widths of FETs in
the stack, monotonically increase from the top n-type transistor,
connected to the output node, to the bottom FET, connected
to ground. For a p-type stack, the top transistor is the widest
and is connected to the supply voltage, while the FET with the
smallest width will be the bottom p-type transistor, connected
to the output node. In high-speed CMOS domino and dynamic
logic families, only one type of switching network (pull-down
in the case of NMOS network and pull-up in the case of
PMOS network) is used to implement a Boolean function.
In such a FET network, transistor tapering must be carefully
selected in order to minimize delay and power dissipation of
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the logic circuit as well as to improve its noise performance
by reducing charge sharing between the output node and the
FET network’s internal nodes. Shoji [2], [3] first proposed the
transistor tapering technique in 1982 and demonstrated that it
can significantly improve performance of large FET networks.

It may be observed that an n-type FET chain may discharge
faster if widths of the FETs decrease gradually from bottom
FET to the top. There are two effects associated with the re-
duction of channel width of the top transistor in a chain. First, a
smaller channel width means larger effective transistor-ON resis-
tance, causing to discharge the load capacitance slowly. Second,
by reducing the FET size, the input and output parasitic capac-
itances associated with the FET also reduce, which translates
into reduction of the discharge time of the output node. When
the parasitic capacitance is large in comparison with the load
capacitance, the latter effect may dominate over the first one,
hence resulting in a faster discharge process. In the case when
the load capacitance is not very small, transistor tapering may
not produce significant improvement in speed. However, power
consumption may still be significantly reduced [4], [5], mainly
because of the smaller input capacitance.

Ideally, one wants to size each FET in the chain separately
to fully explore the possibility of performance gain. By using a
Monte Carlo optimization, Wurtz [6] developed an approach of
independently sizing the transistors, which works well for FET
chains having a small number of transistors[7]. As the size of

increases, the search space quickly becomes too large, since
the number of variables increases rapidly.

A commonly used way to reduce the problem complexity is
to use a tapering scheme. For example, under a linear tapering
scheme, the widths of adjacent transistors are decreased by a
constant . Therefore, is the only adjustable variable.
This approach can be considered as searching for suboptimal
solutions in a one-dimensional subspace of the whole variable
space. Besides linear tapering, exponential tapering is another
widely used tapering scheme. Under this scheme, the width ratio
of any two adjacent FETs is a constant. Example FET chains
with linear and exponential tapering are shown in Fig. 1(b) and
1(c), respectively.

Now the question is whether either of the two commonly used
tapering schemes is optimal, i.e., whether the global optimal so-
lution lies within the one-dimensional subspace defined by ei-
ther of them. Shoji does not remark on this issue in his papers;
instead, he applied an exponential tapering scheme in [3]. One
serious attempt to find the optimal tapering scheme is presented
by Bizzanet al. in [8], in which the discharge time of a FET
chain is viewed as the sum of the delay terms through the ef-
fective resistance of each transistor. The authors proposed an
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Fig. 1. FET chain. (a) Without tapering. (b) Linear tapering. (c) Exponential tapering. (d) Combination of constant and exponential (proposed).

analytical approach to the FET chain tapering problem based
on an observation that the delay terms were equal in near op-
timally sized FET chains. This has been incorporated into an
automated layout system [9]. However, they could not give an
analytical proof for their observation.

In this paper, we propose a new tapering shape which is a
composition of constant and exponential functions, as shown in
Fig. 1(d). We give analytical proof that the proposed tapering
scheme is optimal in the long chain limit (asapproaches in-
finite). Simulation confirms the superiority of the scheme and
shows it outperforms linear and exponential tapering schemes
for reasonable size of FET chains. Furthermore, we actually
have a similar observation as the one by Bizzan and give an an-
alytical proof.

The rest of the paper is organized as follows. In Section II, the
formulation for the transistor tapering problem under Elmore
delay model is presented. This formulation is also extended to
the continuous limit. In Section III, we propose a new tapering
scheme and prove its optimality in the continuous limit. Sec-
tion IV compares the three tapering schemes by simulation. The
proposed scheme works consistently better than linear and expo-
nential tapering schemes whenis moderately large. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

A. RC Model of FET Chains

A series connected FET chain can be modeled as a resistor
chain with parasitic capacitors [10] as shown in Fig. 2. Since
long p-type FET chains are less common in high-speed CMOS
circuits, our analysis will be based on NFET chains. However,
the formulation and analysis presented in this paper apply to
PFET chains the same way.

Using the Elmore delay formula [12], the discharge time of
the FET chain can be written as the sum ofdelay terms

(1)

Fig. 2. RCmodel of FET chains.

where the delay term is the Elmore delay contribution of the
th transistor, the is effective resistance of theth FET, is the

parasitic capacitance at nodeand is the load capacitance
(not shown in Fig. 2). Equivalently, the discharge time can be
written as the sum of the products of each of the parasitic and
load capacitors and their respective resistances to the ground

(2)

We further assume that the effective resistances and parasitic
capacitances are inversely proportional and proportional to the
width of the FETs, respectively, [10], [11]. Therefore, the par-
asitic capacitance between theth and the ( )th FET is

, as shown in Fig. 3, whereis the unit capac-
itance. Under this assumption, (2) can be rewritten as

(3)

where is the unit effective resistance and the undefined vari-
able is considered to be zero.
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Fig. 3. Parasitic capacitances.

B. Optimal Transistor Tapering

As shown in (3), is a function of variables:
. The optimal tapering can be obtained

by solving an array of equations

Now substitute (3) to the above equation array. After simplifi-
cation, the partial derivative equation with respective to variable

reads

(4)

In practice, we have a channel width upper limit for a tran-
sistor sizing problem. For the simplicity of presentation, we will
thereafter assume the maximum transistor width is normalized
to 1. Obviously, increasing the channel width of the the lowest
transistor will always bring down the discharge time. Hence the
best size of this transistor is 1. And now we only need to solve
the rest equations under the constraint thatis less than
or equal to 1 for any .

Before any further analysis of the FET chain tapering
problem, we will first discuss a basic property of optimally
tapered FET chains.

Lemma 1: (Property of monotonicity) In an optimally ta-
pered transistor chain, transistor widths decrease monotonically
from bottom (ground) to top (load).

Proof: Assuming there exist two numbersand such that
and , let us swap the sizes of those two FETs.

Let us first consider the parasitic capacitance associated with
those two FETs. The discharge time before swapping is

where is the effective resistance below theth FET and
is the resistance between theth and the th FETs. Similarly, the
discharge time after swapping is

Therefore, the change in discharge time due to those capacitors
reads

Since , is always negative.
The rest of the capacitors can be classified into three cate-

gories.

1) Apparently, the discharge time of the capacitors below the
th node does not change after the swapping.

2) The discharge time of the capacitors above theth node
(including the load capacitor ) also will not change
because their respective resistance to the ground does not
change.

3) The discharge time of the parasitic capacitors between the
th and the th FETs will decrease because they have less

resistance to ground after swapping.
In all, the FET chain discharges faster after swapping. This

observation contradicts the claim that the original sizing is op-
timal. Therefore, the lemma is proved.

Note that Lemma 1 does not state that transistor widthsre-
strictivelydecrease monotonically. For example, when the load
capacitance is so large that parasitic capacitances of the FET
chain are negligible, the optimal transistor sizing is constant,
i.e., for all .

C. Continuous Limit

The array of (4) can be solved numerically for small
values without much difficulty. The real problem arises when
is moderately large. Instead of trying to solve a large array

of nonlinear equations, we study the limit whenis infinitely
large. In this scenario, the summations in (3) can be approxi-
mated by integrations. The new equation reads

(5)

where is the normalized transistor width function.
We will thereafter refer to the condition that the above ap-

proximation is valid as thecontinuous limit. In this limit, a FET
chain is actually modeled as anRC sheet with uniformly dis-
tributed resistance and capacitance.

It is known that as the value of increases the problem be-
comes harder to solve, because the size of the equation matrix
also increases. Continuous limit is the case when some sort of
analysis is really demanded. It is also the case when the word
optimal taperingshapemakes sense. We will show later under
Section IV what should be the value of so that it can be con-
sidered as large enough. And it is derived by simulation.
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Equation (5) involves dual integrations. To simplify the form,
let us define the resistance to the ground as

(6)

Then transistor width function can be expressed in terms of

(7)

where the prime refers to the derivative with respect to. Hence,
(5) can be transformed to a mathematically more manageable
form with single integration

(8)

It may be noted that Lemma 1 is applicable to the continuous
case as well as the discrete case. Finally, the minimum FET
chain discharge time problem can be stated as follows:

Problem 1: (Optimal tapering of FET chains) given positive
constants , and , find the best functional form of
such that

is minimized and

is satisfied.

III. A NALYTICAL APPROACH TOFET CHAIN TAPERING

Our goal is to find the optimal shape of the transistor width
function. This class of problems belongs to the domain of vari-
ational calculus in mathematics. Therefore, we will first intro-
duce the fundamental equation in the variational calculus: the
Euler–Lagrange differential equation.

If a cost function is defined by an integral of the form

where and are prescribed, thenhas a
stationary value if the Euler’s equation

(9)

is satisfied. Furthermore, in case does not explicitly
depend on , the Euler’s equation can be reduced to

(10)

The readers are referred to [13] and [14] for the proof of
the above theorem. Similar to the maxima/minima problem in
simple calculus, the basic principle of the variational calculus is
that the stationary (optimal) function is one that is stable under
any small variation upon the function.

Fig. 4. RCsheet with fixed resistor.

A. RC Sheet With Fixed Resistor

According to Section II, our problem is to find the optimal
width function of anRCsheet with a capacitive load of . In
this subsection, we will first obtain the optimal shape of anRC
sheet connected with a fixed resistor, as shown in Fig. 4. This is
stated in Lemma 2.

Lemma 2: (Property of exponential shaping) consider anRC
sheet connected to the ground through a fixed resistor. The
optimal shape of theRCsheet is an exponential function

(11)

where the decay rate is given by

(12)

where is the total resistance that includes the resistance of the
RCsheet and .

Proof: The discharge time in terms of is

Let and .
Apparently, does not explicitly depend on. Therefore,
we can use (10)

After simplification, we get

from which the functional form for can be obtained

where and are two constants that can be determined by the
two boundary conditions, and

(13)
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Therefore, the width of theRCsheet as a function of can be
calculated as

B. RC Sheet Without Fixed Resistor

Now let us return to our original problem, i.e., anRC sheet
without a resistor at the bottom. Letting , we get
from (13). Therefore, , which means that we cannot
get a physical solution using Lemma 2. That is, exponential
shape is no longer the optimal shape.

Similar to our earlier argument that the lower-most transistor
should always be sized as large as possible, it is always benefi-
cial to increase as is very small, which leads to a singular
point at . This is the reason that Lemma 2 fails in this case.
However, noticing the constraint that the maximum width is 1,
we come to the following lemma.

Lemma 3: (Property of fixed-width shaping) In an optimally
taperedRC sheet, there exists a positive value such that

for .
Proof: Euler’s equation is not applicable here because of

the singularity at . But we can still use the basic principle
of variational calculus, i.e., an optimal shape is one that any
perturbation upon it will only increase the cost function.

Consider a small increase in width, , at
. This has two effects on the discharge time. First, the

portion ofRCsheet above will be discharged faster since it
has smaller effective resistance.

Second, larger width (therefore, larger capacitance) atre-
quires additional time to discharge through the lower portion
of theRCsheet.

Notice that has an integration from 0 to . Therefore,
when is very small, the value of will be very small.
On the other hand, is always a finite negative value. This
implies that the discharge time will always decrease as one
increases the width at position. However, under our assump-
tion, the maximum width is 1. Therefore, the optimal width as

is 1 for a very small .

C. Optimal Transistor Chain Tapering

Based on Lemma 2 and 3, one can expect that the optimal
width shape of theRC sheet is constant from the bottom till a
specific point , then it decreases exponentially. To make
it a physical solution to the problem, the continuity condition at

position has to be satisfied. Note that since the starting
point for the exponential decrease is now instead of
, (11) is rewritten as

The constant part of theRC sheet near the bottom has a resis-
tance of . Therefore, we have

which, on simplification, yields

The continuity constraint implies that the optimal shape is not a
simple combination of arbitrary exponential and constant func-
tions. Those two parts are related. For example, a small constant
part suggests a large value of; therefore, a steeper exponential
decrease.

Theorem 1: (Optimal tapering of FET chains) given the load
capacitance and maximum width 1, the optimal tapering
shape of a transistor chain in the continuous limit is a combi-
nation of constant and exponential functions given by

(14)

where is determined by solving the following equation:

(15)

Proof: First, the optimality of the proposed shape function
can be verified in three regions.

1) When , theRC sheet at is effec-
tively a resistor of resistance . Using Lemma 2, one
obtains that the optimal shape of this portion of the sheet
is an exponential function

2) When , using the continuity property we have

3) When , according to Lemma 1 (Property of
monotonicity), the only possible solution is

Next is to determine the value of parameter. When
, . When , the resistance to

ground can be calculated as

The total discharge time is
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After simplification, it reads

(16)

Finally, the value of can be determined by solving the equation

Note that an value less than 1 means that the wholeRCsheet
has a constant width 1. Therefore, the FET chain is actually not
tapered. This is the case when is large in comparison with
the parasitic capacitances. From (15), one can easily obtain the
condition that transistor tapering is not required

(17)

where can also be viewed as the total capacitance of anRC
sheet with constant width of 1, or, in the discrete case, total
parasitic capacitances of a FET chain with all FETs having the
maximum allowable width.

The left-hand side of (15) is a transcendental function. Hence
one cannot write an analytical expression forwith respect to
circuit parametersand . For the purpose of hand-calculation
or CAD program, one can use the following iterative approach
to get a numerical value of

(18)

Since , the term dominates in the left-hand side of
(15). Therefore, a good starting point for the iterative equation
can be chosen as

(19)

Usually, it only takes a few iterations to get a good numerical
solution.

D. Equal Delay Terms

Equal delay term observation [8] states that theRC delay
of each transistor in an optimally tapered chain is equal. The
RCdelay of a FET is defined here as the product of the effec-
tive resistance of the FET and total capacitance that discharges
through the transistor, i.e., the total capacitance above the tran-
sistor. The following corollary is the continuous correspondence
to the equal delay term observation.

Corollary 1: (Equal delay terms) under the optimal tapering
shape, differential delay term function

is a constant when .
Proof: We have the following equations under the optimal

tapering:

Fig. 5. Comparison of linear, exponential and proposed tapering schemes.

Therefore, the differential delay term can be calculated as

which is a constant independent of variable.
Here the equal delay term argument is valid only in the ex-

ponential tapering region. However, since the transistors in the
lower part have maximum channel width, this does not add com-
plexity in using the corollary. It is also noted that neither linear
nor exponential tapering has the equal delay term property.

IV. EXPERIMENTS

A. Continuous Limit

We will first compare linear, exponential and the proposed
tapering schemes at the continuous limit of FET chains using
the Elmore delay model. The discharge time of a FET chain
under the proposed tapering scheme has been calculated in (16).
Similarly, we can derive the discharge time of FET chains under
linear and exponential tapering schemes.

The transistor width function for a linearly tapered transistor
chain is . The effective resistance from a given
position to the ground is calculated as

Therefore, the discharge time reads

After simplification, we get

(20)
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(a) (b) (c)

Fig. 6. FET chain width shape. (a)C =c = 0:01. (b)C =c = 0:05. (c)C =c = 0:2.

The transistor width function for an exponentially tapered
transistor chain is . The effective resistance from
position to the ground is calculated as

Discharge time reads

After simplification, we get

(21)

In each case, is a parameter indicating the relative location
in the one-dimensional subspace under a given tapering scheme.
The minimal discharge time under each of the tapering schemes
can be found by solving the equation: .

Fig. 5 shows the least discharge time of a FET chain with
respect to the value under each of the three tapering
schemes. The discharge times are normalized to those obtained
without performing transistor tapering. We show in a
logarithmic scale so that it covers a very wide range. The
proposed tapering scheme consistently outperforms both
linear and exponential tapering schemes. This is especially
the case when is relatively large, that is, when tapering
begins to be beneficial. In this region, exponential and linear
tapering schemes do not produce any noticeable performance
improvement while the proposed scheme does. The simulation
result, in another way, verifies the superiority of the proposed
tapering scheme.

The performance gain due to transistor tapering is more sig-
nificant for smaller values under all of the three schemes.
Linear tapering is actually better than exponential tapering when

is larger than about 0.02. However, when is very
small, the performance of linear tapering deteriorates because
of the choked neck effect near . On the other hand, the
optimal tapering shape approaches the exponential shape at the
limit that goes to zero. Therefore, exponential tapering
performs well as is very small.

The best FET width shapes under different tapering schemes
are shown in Fig. 6 for three different values: 0.01, 0.05,
and 0.2, where the horizontal axis isand the vertical axis is
normalized FET width . Solid, dashed, and dotted lines

Fig. 7. Discharge time as a function of�(C =c = 0:05).

represent the width shapes under the proposed, exponential and
linear tapering schemes, respectively.

Using the proposed tapering scheme, it is observed that the
discharge time is not very sensitive to the parameter. As shown
in Fig. 7, there is a very flat valley region around the optimal

value. To put it more quantitatively, when the value oflies
between 2.29 and 3.53, the discharge time increase is within 5%
of the optimal value, which corresponds to avalue of 2.92.

Fig. 8 depicts the range of FET width shape under the same
5%-increase assumption for three different values. The
solid lines represent optimal shapes while the dashed ones stand
for the boundaries. It is also observed that the shape can have
larger variation as is large, as is the case in Fig. 8(c). When

is even larger, one can expect the dashed line marked
by will eventually hit the upper-right corner at a certain
point. This is the case when tapering cannot generate more than
5% performance gain over nontapered FET chain and is some-
times a more practical criterion to determine whether tapering
is needed. Numerically, we obtained the following equation:

(22)

which is approximately one fourth of what (17) gives.

B. Finite Number of FETs

The comparisons in the above subsection are valid only in the
continuous limit. In a real circuit, the number of transistoris
a finite value. In this subsection, we discuss the effect associated
with the discretization. Elmore delay model is still assumed.
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(a) (b) (c)

Fig. 8. Sensitivity of discharge time on the parameter�. (a)C =c = 0:01. (b)C =c = 0:05. (c)C =c = 0:2.

(a) (b) (c)

Fig. 9. Effect of discretization. (a)C =c = 0:01. (b)C =c = 0:05. (c)C =c = 0:2.

Note that the proposed tapering scheme is proved to be optimal
only in the continuous limit. It is again a suboptimal solution
when a FET chain has only finite number of transistors.

Fig. 9 compares the discharge times under three different load
conditions: . Note that there is no dif-
ference among the three schemes when , since there
is one controllable width anyway. The superiority of the pro-
posed tapering scheme is apparent, however, whenis rela-
tively large. From Fig. 9, one can observe that the proposed ta-
pering scheme is worthwhile for equals to or greater than
five. An example circuit having this value is a dominoand4
gate. For FET chains with smaller, none of the three tapering
schemes shows consistent advantage over the other two.

In the case that the maximum allowable width is very large,
the value becomes large in comparison with . Therefore,
the proposed tapering shape approaches traditional exponential
tapering for moderate sized FET chain. This conforms to the
empirical observation made by circuit designers which indicates
that the exponential tapering performs well.

C. SPICE Simulation

Note that the delay model we used is a simplified one. In a real
FET chain, many assumptions we made like simpleRCmodel
of FET chains, Elmore delay formula, etc., may not exactly
hold. One should also consider short channel effects, Miller
and back-gate coupling effects and so on, in a real deep sub-
micron circuit. However, it is very difficult to include those

second-order effects into a manageable formulation. It is even
more difficult to solve the formula, once obtained, analytically.

Therefore, in this subsection, we study the FET chain based
on HSPICE simulation to see if the result obtained from the
simple model works adequately for real world circuits. Finite
number of FETs is assumed and real FET models (HSPICE
Level 49 [16]) are used. As real cases that FET chains are used
in circuit design, we study a set of dominoAND gates:and4,
and5, and6, andand7. Simulation is carried out in a 0.18-m
technology at 1.6 V, 55C and typical process.

Fig. 10(a) shows theAND gate implementation in domino
CMOS style [15]. For simplicity, we do not use the optional
keeper as that is not our main purpose. The maximum channel
width of a transistor is set to 20m. We change the size of the
output inverter to change the value of the FET chain. Three
different sizes of load inverters are used: 1, 2 , and 4 sized
inverters, where a unit inverter has a PFET width of 2m and
NFET width of 1 m. The spacing between two adjacent tran-
sistors in the chain is set to 4according to MOSIS deep sub-
micron rule.

To determine the parameter, one needs to know both the
load capacitance and the parasitic capacitance. Since it is
difficult to obtain the accurate value of effective parasitic capac-
itance of the transistors, we search the parameter space exhaus-
tively to get the lowest delay value under each of those three dif-
ferent schemes. A program written in C is developed serving as
a batch program which calls HSPICE for each different param-
eter and reads the measured delay data generated by HSPICE.
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(a) (b) (c)

Fig. 10. Domino gates. (a) Multi-inputAND gate. (b) OA654 321 gate. (c) OA424 242 gate.

(a) (b) (c)

Fig. 11. Comparison of the tapering schemes by simulation. (a) 1-INV. (b) 2-INV. (c) 4-INV.

The shortest delay time and its correspondingvalue are then
reported.

Simulation results for the dominoAND gates are shown in
Fig. 11. Delay is measured from inputs to nodeS. It is observed
that the performance gains of the three tapering schemes are
quite comparable in each single cases. This is a common phe-
nomenon when several suboptimal solutions, each of which is
the optimal solution in their respective subspace, are compared.
It also explains the reason that linear and exponential taperings
have worked fine for the past two decades. Nevertheless, the
proposed tapering scheme consistently outperforms linear and
exponential schemes in all cases. Finally, we show the optimal
widths of the NFET chain in theand7gate under different in-
verter loads in Fig. 12.

The mixed constant and exponential tapering shape is pro-
posed for a simple chain of FETs. However, the basic idea that
we should keep the transistor width of the lower portion of a
long chain constant may apply to a larger class of circuits like
complex dominoOR–AND(OA) gates. In Fig. 10(b) and 10(c),
we show two examples: domino OA654 321 and OA424 242
gates. The former one is the example used in Shoji’s pioneer
paper on transistor chain tapering [3]. It is a special case when
transistor tapering will generate large performance gain. On the
contrary, our second example represents a more general sce-
nario. Note that those circuits are not unreasonably large since

domino CMOS circuits usually have very complex logic com-
bination [3]. In practice, the internal nodes of large NFET trees
are also precharged to in the precharge phase to solve
the charge-sharing problem. Therefore, we assume the internal
nodes discharge from in our simulation. The maximum
channel width for the transistors in the OA gates are set to 10

m and we assume the size of the output inverters is 1 unit.
Simulation results on those OA gates are shown in Fig. 13.

Linear tapering is better than exponential tapering in one case
and worse in the other case. The proposed scheme wins out with
a decent margin in both cases.

V. CONCLUSIONS

The problem of optimal tapering of a series connected FET
chain is studied in this paper. In contrast to conventional ap-
proaches which try to first solve the problems for special cases
whenN is small, we begin with the limit whenN approaches in-
finite. The results obtained from smallNproblems are not appli-
cable to problems of larger sizes; therefore, empirical tapering
schemes like linear and exponential shapes are used. We show
that the optimal tapering shape obtained in the continuous limit
works well for FET chains with medium number ofN and it ac-
tually outperforms linear and exponential tapering schemes in
our simulations.
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(a) (b) (c)

Fig. 12. Optimal transistor widths ofand7gate under different loads. (a) 1-INV. (b) 2-INV. (c) 4-INV.

Fig. 13. Simulated results for twoOR-ANDgates.

Overall, the contributions of the paper can be concluded
as follows: 1) FET chain tapering problem is first formu-
lated and analyzed in the continuous limit; 2) a new mixed
constant and exponential tapering scheme is proposed and
proved to be optimal in the long chain limit; 3) the proposed
tapering scheme is demonstrated better than linear and expo-
nential tapering schemes in most cases; 4) for the first time,
an analytical framework is provided to the the equal delay
terms argument/observation; and 5) it is shown that the load
capacitance has to be about a quarter of the total effective
parasitic capacitance of a FET chain to make transistor tapering
worthwhile for speed improvement.

In this paper, we study the original tapering problem [3] con-
sidering discharge time as the only optimization goal. In real
circuit design practice, one may consider other design metrics
like minimization of power consumption, charge sharing, and
so on. For example, one may formulate the problem such that
the power-delay product is minimized. Also, one may need to
add certain penalty for FETs with very small channel width
to guarantee adequate noise margin. Searching for optimal ta-
pering shapes for multi-objectives under multi-constraints poses
a challenge for future research.
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