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On Optimal Tapering of FET Chains in
High-Speed CMOS Circuits

Li Ding, Student Member, IEEEBNd Pinaki MazumdeFellow, IEEE

Abstract—Transistor tapering is a widely used technique applied the logic circuit as well as to improve its noise performance
to optimize the geometries of CMOS transistors in high-perfor- by reducing charge sharing between the output node and the
mance circuit design with a view to minimizing the delay of a FET network’s internal nodes. Shoji [2], [3] first proposed the

FET network. Currently, in a long FET network where MOS . . ) . .
devices are stacked over one another to form a series chainfransistor tapering technique in 1982 and demonstrated that it

network, the dimensions of the transistors are decreased from can significantly improve performance of large FET networks.
the bottom transistor to the top transistor in a manner where the It may be observed that an n-type FET chain may discharge
width of transistors is tapered linearly or exponentially. However, faster if widths of the FETs decrease gradually from bottom
it has not been mathematically proved whether either of these e 14 the top. There are two effects associated with the re-
tapering schemes yields optimal results in terms of minimization ducti fch | width of the top t iStor | hain. First
of switching delays of the network. In this paper, we rigorously Hction orc anne_ Wi orthetop ranS|s_ salbl a(? b _|rs a
analyze MOS circuits consisting of long FET chains under the Smaller channelwidth means larger effective transistoresis-
widely used Elmore delay model and derive the optimality of tance, causing to discharge the load capacitance slowly. Second,
transistor tapering by employing variational calculus. Specifi- py reducing the FET size, the input and output parasitic capac-
cally, we demonstrate that neither linear nor exponential tapering itances associated with the FET also reduce. which translates
alone minimizes the discharge time of the FET chain. Instead, a . ¢ ducti f the disch ti fth t, t node. Wh
composition of exponential and constant tapering actually opti- intore uc_ |_on 0 ? ISC _arge |m_e orthe Ol_J pu np e. en
mizes the delay of the network. We have also corroborated our the parasitic capacitance is large in comparison with the load
analytical results by performing extensive simulation of FET capacitance, the latter effect may dominate over the first one,
networks and showing that both analytical and simulation results hence resulting in a faster discharge process. In the case when
are always consistent. the load capacitance is not very small, transistor tapering may
Index Terms—Circuit optimization, circuit theory and design, not produce significant improvement in speed. However, power
Elmore delay, field-effect transistors, transistor sizing, transistor consumption may still be significantly reduced [4], [5], mainly
tapering. because of the smaller input capacitance.
Ideally, one wants to size each FET in the chain separately
|. INTRODUCTION to fully explore the possibility of performance gain. By using a
L L Monte Carlo optimization, Wurtz [6] developed an approach of
RANSIS.TtOR ?z(;ng_ IS {rzquently uszd Irt] h'gh'perfotﬁndependently sizing the transistors, which works well for FET
mance integrated circuit design in order to Improve ains having a small number of transistdr§7]. As the size of

spee_d of operatlon_ aqd cor_mor_mtantly to reduce. b power d)vc"increases, the search space quickly becomes too large, since
sipation of a constituting circuit block [1]. Transistor taperlngh number of variables increases rapidly

is a special class of transistor sizing technique where, instead o commonly used way to reduce the problem complexity is

having a stack of uniformly wide FETS, the widths of FETs D5 use a tapering scheme. For example, under a linear tapering

the stack, monotonically increase from the top n-type transistg{: eme, the widths of adjacent transistors are decreased by a
connected to the output node, to the bottom FET, connec (dlstantAw. Therefore,Aw is the only adjustable variable.

to ground. For a p-type stack, the top transistor is the Widelslt\is approach can be considered as searching for suboptimal

and IIIS csnn;zteqlrobthfhsugptlt)/ voltatge, V\,'[h'le t.h? FET with :Q: lutions in a one-dimensional subspace of the whole variable
smallest width wilt be the botiom p-ype ransistor, ConNectel, .o pesides linear tapering, exponential tapering is another

TO t.hefOUt.?.Ut nodle. In high-spefzed C’\ﬂOS dominiand”d(yj/nam fdely used tapering scheme. Under this scheme, the width ratio
logic families, only one type of switching netwc_)r (pull- OWnos any two adjacent FETs is a constant. Example FET chains
in the case of NMOS network and pull-up in the case

: X . %ith linear and exponential tapering are shown in Fig. 1(b) and
PMOS network) is used to implement a Boolean functio c), respectively.

In such a FET networlf,.trgnsistor tapering must .be_ C"’lrefl“'l%fNowthe question is whether either of the two commonly used
selected in order to minimize delay and power dissipation Pa(pering schemes is optimal, i.e., whether the global optimal so-

lution lies within the one-dimensional subspace defined by ei-

. . . _ _ ther of them. Shoji does not remark on this issue in his papers;
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Fig. 1. FET chain. (a) Without tapering. (b) Linear tapering. (c) Exponential tapering. (d) Combination of constant and exponential (proposed).

analytical approach to the FET chain tapering problem based LOAD LOAD
on an observation that the delay terms were equal in near op-
timally sized FET chains. This has been incorporated into an |CN_, '
automated layout system [9]. However, they could not give an _| FETN- -1
analytical proof for their observation.

In this paper, we propose a new tapering shape which is a

composition of constant and exponential functions, as shown in 'CZ_'
Fig. 1(d). We give analytical proof that the proposed tapering —| FET» r2

scheme is optimal in the long chain limit (&5 approaches in- |c_‘}
finite). Simulation confirms the superiority of the scheme and _| FET: Fi !
shows it outperforms linear and exponential tapering schemes |Co_}
for reasonable size of FET chains. Furthermore, we actually _| FETo To

have a similar observation as the one by Bizzan and give an an-
alytical proof.

The rest of the paper is organized as follows. In Section Il, thg, >, rRcmodel of FET chains.
formulation for the transistor tapering problem under Elmore
delay model is presented. This formulation is also extended to ] o
the continuous limit. In Section I1l, we propose a new taperin§n€re the delay tery, ; is the Eimore delay contribution of the
scheme and prove its optimality in the continuous limit. Seéth transistory; the is effective resistance of thié FET,c; is the
tion IV compares the three tapering schemes by simulation. TRasitic capacitance at nogandC, is the load capacitance
proposed scheme works consistently better than linear and ex{it2t shown in Fig. 2). Equivalently, the discharge time can be
nential tapering schemes whéhis moderately large. Finally, written as the sum of the products of each of the parasitic and

GND GND

Section V concludes the paper. load capacitors and their respective resistances to the ground
N-1 % N—-1
[l. PROBLEM FORMULATION tp = Z ci .er +Cp, - Z rj. (2)

A. RC Model of FET Chains =0 I=0 I=0

A series connected FET chain can be modeled as a resisig further assume that the effective resistances and parasitic
chain with parasitic capacitors [10] as shown in Fig. 2. Sing@pacitances are inversely proportional and proportional to the
long p-type FET chains are less common in high-speed CM®@@fth of the FETSs, respectively, [10], [11]. Therefore, the par-
circuits, our analysis will be based on NFET chains. Howeveasitic capacitance between tii and the { + 1)th FET is
the formulation and analysis presented in this paper apply d¢o(w; +wi+1)/2, as shown in Fig. 3, whekeis the unit capac-
PFET chains the same way. itance. Under this assumption, (2) can be rewritten as

Using the Elmore delay formula [12], the discharge time of
the FET chain can be written as the sundefay terms

= W; + Wit1 ‘L N,
tp = — LN oY —. 3
; 2 Jz:;) wj Jzz:o wj ( )
N-—-1 N-—-1 N-—-1
tp = Z tpi= Z . Z ¢; +Cr (1) wherer is the unit effective resistance and the undefined vari-
i=0 i=0 J=i ablew, is considered to be zero.
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whereR; is the effective resistance below thién FET andR;;

C(Wr2+Wnr)/I2

is the resistance between tile and thejth FETs. Similarly, the
discharge time after swapping is

cw; { T 2r cw; {r
t2 = <—+2RII+—+2RI>+—J<—+2RI>-
2 wy w; 2 w;

Therefore, the change in discharge time due to those capacitors
reads

c(Witw2)2 c r "
Atp =ty —t1 = (w; — wy) - <—+23H+—>-
2 Wy i
C(WotW:)/2 Sincew; < w;, Atp is always negative.

The rest of the capacitors can be classified into three cate-
gories.

1) Apparently, the discharge time of the capacitors below the
ith node does not change after the swapping.
2) The discharge time of the capacitors abovejmenode
(including the load capacitaf;) also will not change
B. Optimal Transistor Tapering because their respective resistance to the ground does not
As shown in (3),tp is a function of N variables: change. . B _
wo,wi, ..., wx_1. The optimal tapering can be obtained 3) The dlschgrge time of.the parasitic capacitors between the
by solving an array ofV equations ith f':lnd thejth FETs will decrease 'because they have less
resistance to ground after swapping.
atp In all, the FET chain discharges faster after swapping. This
=0, ¢=0,1,...,N—1. observation contradicts the claim that the original sizing is op-
Owi timal. Therefore, the lemma is proved. [ |
] ) ~__ Note that Lemma 1 does not state that transistor wicths
Now substitute (3) to the above equation array. After simplifisrictively decrease monotonically. For example, when the load
cation, the partial derivative equation with respective to Variab(':%pacitancéJL is so large that parasitic capacitances of the FET

Fig. 3. Parasitic capacitances.

w; reads chain are negligible, the optimal transistor sizing is constant,
i.e.,w; =1forall¢=0,1,...,N — 1.
1wy 1
- Wi ot
Z w; Z w2 G =0 ) ¢. continuous Limit
Jj=0 Jj=i+l * ¢

The array ofN — 1 (4) can be solved numerically for small
In practice, we have a channel width upper limit for a tran¥V values without much difficulty. The real problem arises when
sistor sizing problem. For the simplicity of presentation, we wilN is moderately large. Instead of trying to solve a large array
thereafter assume the maximum transistor width is normalizefinonlinear equations, we study the limit whahis infinitely
to 1. Obviously, increasing the channel width of the the loweltrge. In this scenario, the summations in (3) can be approxi-
transistor will always bring down the discharge time. Hence tmeated by integrations. The new equation reads
best size of this transistor is 1. And now we only need to solve
the restlV — 1 equations under the constraint thatis less than 1 -
orequaltolforany =1,2,..., N — 1. tD I/ Cw(x)'dx'/
Before any further analysis of the FET chain tapering 0 0
problem, we will first discuss a basic property of optimally,hereq(+) is the normalized transistor width function.
tapered FET chains. o _ We will thereafter refer to the condition that the above ap-
Lemma 1: (Property of monotonicity) In an optimally ta- o.oximation is valid as theontinuous limitIn this limit, a FET
pered transistor chain, transistor widths decrease monotonicalisin is actually modeled as &C sheet with uniformly dis-
from bottom (ground) to top (load). o tributed resistance and capacitance.
~ Proof: Assuming there exist two numberand; suchthat ¢ is known that as the value d¥ increases the problem be-
¢ <jandw; < wj, letus swap the sizes of those two FETS. ymes harder to solve, because the size of the equation matrix
Let us first consider the parasitic capacitance associated Wiffg increases. Continuous limit is the case when some sort of
those two FETSs. The discharge time before swappingis  analysis is really demanded. It is also the case when the word
optimal taperingshapemakes sense. We will show later under
cw; <L n 2R1> Section IV what should be the value 8f so that it can be con-

A ! A

- - 2,
tlzcﬂ<7—+2Rn+—7+2RI>+
2 wy 4

w; sidered as large enough. And it is derived by simulation.
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Equation (5) involves dual integrations. To simplify the form,
let us define the resistance to the ground as

-
R(z) = / ——dr. (6)
=), W
Then transistor width function can be expressed in terms of
R(x)
.
= — 7

wiz) = & @ @)
where the prime refers to the derivative with respeat tdence,
(5) can be transformed to a mathematically more manageable

form with single integration Fig. 4. RCsheet with fixed resistor.
! R(z) o i
tp = / <c . TR’( ) + CLR’(a:)> dz. (8) A. RC Sheet With Fixed Resistor
0 X

According to Section IlI, our problem is to find the optimal
It may be noted that Lemma 1 is applicable to the continuouwsdth function of anRC sheet with a capacitive load 6f;. In
case as well as the discrete case. Finally, the minimum FElis subsection, we will first obtain the optimal shape oRD

chain discharge time problem can be stated as follows: sheet connected with a fixed resistor, as shown in Fig. 4. This is
Problem 1: (Optimal tapering of FET chains) given positivestated in Lemma 2.
constants:, ¢ and Cr,, find the best functional form of2(z) Lemma 2: (Property of exponential shaping) consideiR@
such that sheet connected to the ground through a fixed resiggoiThe
1 R(z) optimal shape of th®Csheet is an exponential function
tD = / <c-7’ / + CLR/(.’L’)> dx r
0 R(x) w(z) = e " (11)
RO'OC

is minimized and o
where the decay rate is given by

R (z) - a=In g (12)
is satisfied. 0
whereR is the total resistance that includes the resistance of the

[1. ANALYTICAL APPROACH TOFET CHAIN TAPERING RCsheet and?,.

Our goal is to find the optimal shape of the transistor width Proof: The discharge time in terms di(z) is

function. This class of problems belongs to the domain of vari- 1 R(x)
ational calculus in mathematics. Therefore, we will first intro- tp = / <C'7’R/(x)
duce the fundamental equation in the variational calculus: the 0
Euler—Lagrange differential equation. Let F(z) = erR(x)/R(z) + CpR (z) andy(z) = R(z).
If a cost function! is defined by an integral of the form Apparently, F'(x) does not explicitly depend on. Therefore,
we can use (10)

+ C’ﬂ%’(a:)) dz.

I= / F(x,y,y )dz
@1 const. = <c7’ ]];((a:)) + CLR/(-T)>
X
wherey(z1) = y; andy(z2) = y» are prescribed, thehhas a 9 R(z)
; ; ) ; ! X /

stationary value if the Euler’s equation R'(x) IR (D) <c7 R(2) +CLR (a:)) .

oF d oF P

By " dzdy = (9) After simplification, we get

R

is satisfied. Furthermore, in ca$&z, y,y') does not explicitly 2cr - R,((?) = const.

depend orx, the Euler’'s equation can be reduced to

from which the functional form foR(x) can be obtained

F
- y’; = const. (10)
4 R(z) = A-e*®

The readers are refer.red to [13] anq [14]'f(.3r the proof c\)/T/hereA and« are two constants that can be determined by the
the above theorem. Similar to the maxima/minima problem |n "

. S - WO boundary conditions?(0) = Ry andR(1) = R
simple calculus, the basic principle of the variational calculus is

that the stationary (optimal) function is one that is stable under

R
any small variation upon the function. A=FRo, a=ln_-. (13)

0
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Therefore, the width of th&C sheet as a function af can be positionz = a has to be satisfied. Note that since the starting

calculated as point for the exponential decrease is now= « instead ofz =
, , 0, (11) is rewritten as
wlx) = = e, | | .
(=) R'(z) Ro-« w(z) = " g—or(@—a)
0
B. RC Sheet Without Fixed Resistor The constant part of thRC sheet near the bottom has a resis-

o ) tance ofr-a. Therefore, we have
Now let us return to our original problem, i.e., &C sheet ,

without a resistor at the bottom. Lettid¢, = 0, we getA =0 —— =1
from (13). ThereforeR(z) = 0, which means that we cannot (r-a)a

get a physical solution using Lemma 2. That is, exponenti&hich, on simplification, yields
shape is no longer the optimal shape. 1

Similar to our earlier argument that the lower-most transistor =

should always be sized as large as possible, it is always bengfie ¢ontinuity constraint implies that the optimal shape is not a
cial toincreasev(x) asw is very small, which leads to a singulargjm pje combination of arbitrary exponential and constant func-
pointatr = 0. Thisis the reason that Lemma 2 fails in this casg, g Those two parts are related. For example, a small constant
However, noticing the'constramt that the maximum width is Jpart suggests a large valuewftherefore, a steeper exponential
we come to the following lemma. decrease.

Lemma 3: (Property of fixed-width shaping) In an optimally - t,e4rem 1: (Optimal tapering of FET chains) given the load
taperedRC sheet, there exists a positive valig such that capacitance’;, and maximum width 1, the optimal tapering

w(z) = 1for0 < @ < wo. shape of a transistor chain in the continuous limit is a combi-

Proof: Euler's equation is not applicable here because Rhyiqn of constant and exponential functions given by
the singularity at: = 0. But we can still use the basic principle
{ el—arn7 % <z S 1

of variational calculus, i.e., an optimal shape is one that any
0<z<i

w(z) = (14)

perturbation upon it will only increase the cost function.
Consider a small increase in widiw, at(zo — Az /2, 20+ ) } ] . ]
Az/2]. This has two effects on the discharge time. First, tHénerea is determined by solving the following equation:

portion of RC sheet above, will be discharged faster since it P L (15)
has smaller effective resistance. &3
1 Proof: First, the optimality of the proposed shape function
Atpy=|Cr +/ cw(x)dz can be verified in three regions.
ro+Azx .
°)+ /2 ) 1) Whenl/a < x < 1, theRCsheet af0, 1/«a) is effec-
X < ! _ ! ) N tively a resistor of resistaneel /«. Using Lemma 2, one
w(zo + Aw)  w(zo) obtains that the optimal shape of this portion of the sheet
1 . - : :
~ <CL +/ cw(x)dx) 7 - Aruw, is an exponential function
g w('TO) w(a:) _ r e—a(az—l/oz) _ el—aac
. . =1 = :
Second, larger width (therefore, larger capacitance)qate- (r-3)«

quires additional time to discharge through the lower portion 2y whenz = 1/a, using the continuity property we have
of the RC sheet.

zo—Az/2 - w <l) — el—a-l/a -1
Atp o =(cArAw) / ( )dx o
wlx
zo 0 3) Wheno < z < 1/«, according to Lemma 1 (Property of
:c/ ﬁda: - AzAw. monotonicity), the only possible solution is
0 wlr

Notice thatAtp » has an integration from O ta,. Therefore, w(@z) =1, 0<z<a

whenz, is very small, the value oA¢p » will be very small. ~ Next is to determine the value of parameterWhen0 <
On the other hand\tp, 1 is always a finite negative value. This; « 1/a, R(z) = r-z. Whenl/a < z < 1, the resistance to
implies that the discharge tintg, will always decrease as oneground can be calculated as

increases the width at positiarg. However, under our assump- ) . ] “ltaw _ |

tion, the maximum width is 1. Therefore, the optimal width as  R(z) = = / pogtter ¢ T2

0 < z < o is 1 for a very smalk. ] @ S/ o o

. . . . The total discharge time is
C. Optimal Transistor Chain Tapering
. 1/<l 1 1 e—l—l—aac -1
Based on Lemma 2 and 3, one can expect that the optlmﬁﬂ’_ = z-dr +/ <_ + 4> el gy
width shape of thékC sheet is constant from the bottom till a” - ¢ 0 /o \& o
specific pointz = a, then it decreases exponentially. To make CL <1 e e — 1)

it a physical solution to the problem, the continuity condition at + c o o
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After simplification, it reads ! ' L
t 1 1 C 0ot e
D == (1- =)+ L eafl' (16) é ) /”;
T-c « 2 C- ° ot Exponennal Rl
oo U, 0
Finally, the value ofr can be determined by solving the equation % /,/—"
dtp/da =0 5 0y Ll Optimal
3 Linear (_/f’
N e
el & S 06 ;_____/_;,
CL é ------- ///
2 05f ////
- z ol
Note that ar value less than 1 means that the whR@sheet 04f
has a constant width 1. Therefore, the FET chain is actually not o o
tapered. This is the case whéh, is large in comparison with ' Cu/c ‘
the parasitic capacitances. From (15), one can easily obtain the ' ' ' '
condition that transistor tapering is not required Fig. 5. Comparison of linear, exponential and proposed tapering schemes.
Cpze (17) Therefore, the differential delay term can be calculated as

wherec can also be viewed as the total capacitance oR@n 1
sheet with constant width of 1, or, in the discrete case, total Atp(z) = </ cel % dr 4 Eel—a> . (7>e—1+w) Ax
parasitic capacitances of a FET chain with all FETs having the © e
maximum allowable width. — (Ecl—aw> R Ly
The left-hand side of (15) is a transcendental function. Hence @ @
one cannot write an analytical expressiondowith respect to which is a constant independent of variable -

circuit parametergsandCy,. For the purpose of hand-calculation Here the equal delay term argument is valid only in the ex-

or CAD program, Ionel can;fuse the following iterative approacﬂbnential tapering region. However, since the transistors in the
to get a numerical value lower part have maximum channel width, this does not add com-

) plexity in using the corollary. It is also noted that neither linear

n CL
"t =1-1n <— -a(™) (18)  nor exponential tapering has the equal delay term property.

C

Sincea > 1, the terme® dominatesy in the left-hand side of
(15). Therefore, a good starting point for the iterative equation IV. EXPERIMENTS

can be chosen as A. Continuous Limit

a® —1n <2> ) (19) We will first compare linear, exponential and the proposed
L tapering schemes at the continuous limit of FET chains using
Usually, it only takes a few iterations to get a good numericHl® Elmore delay model. The discharge time of a FET chain
solution. under the proposed tapering scheme has been calculated in (16).
Similarly, we can derive the discharge time of FET chains under
D. Equal Delay Terms linear and exponential tapering schemes.

The transistor width function for a linearly tapered transistor
chain isw(z) = 1 — ax. The effective resistance from a given
sitionz to the ground is calculated as

Equal delay term observation [8] states that BR€ delay
of each transistor in an optimally tapered chain is equal. T
RCdelay of a FET is defined here as the product of the effec-

tive resistance of the FET and total capacitance that discharges e r

through the transistor, i.e., the total capacitance above the tran- R(zx) = / 1 dr = ——In(1 — azx).

sistor. The following corollary is the continuous correspondence 0 tTaT «

to the equal delay term observation. Therefore, the discharge time reads

Corollary 1: (Equal delay terms) under the optimal tapering
shape, differential delay term function re (L ,
tpiin=——1[ (1—oz) In(l-az)dz+C, <— —1n(1—a)>.

o fq «

Atp(z) = < L 1 c(r)dr + CL> r(z) - Az

. After simplification, we get
is a constant wheb/a < = < 1.

Proof: We have the following equations under the optimal re ) 1 1
tapering: tptin = 202 <(1 —a) <1n(1 —a)— 5) + 5)
) =c e Cp=" e p(a) =reT i I (1 - a). (20)
&% &%
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Fig. 6. FET chain width shape. (). /¢ = 0.01. (b)C./c = 0.05. (¢c) Cy/c = 0.2.

The transistor width function for an exponentially tapered 13
transistor chain isv(z) = ¢~**. The effective resistance from
positionz to the ground is calculated as 121
R _ “ . a‘rd _ T ax 1 g
(x) - o re T= E (6 - ) : g 09r Without Tapering
Discharge time reads go
1 5
e _ T =
tDexp = _/ (™ — Ddz + Cp—(e* — 1). A
@ Jo &

After simplification, we get

. 1—e -C 1 2 3 4 5 6
D exp = % <1 i ) 4! aL (e®—1). (1) a

«

. e . . Fig. 7. Discharge time as a function@{C, /¢ = 0.05).
In each casey is a parameter indicating the relative location

in the one-dimensional subspace under a given tapering schelrg
The minimal discharge time under each of the tapering schenntﬁ ar tapering schemes, respectively.

can.be four?d by iol\fng thg’, eiuatio?tp/aaf: 0. hain wi Using the proposed tapering scheme, it is observed that the
Fig. 5 s or;/vegt € eallst 'S% arge tlrr]nefoha FhET chain \.N'mschargetime is not very sensitive to the parametés shown
respect to theC’,/c value under each of the three tapering, Fig. 7, there is a very flat valley region around the optimal

schemes. The discharge times are normalized to those obtaig%lue_ To put it more quantitatively, when the valueolies

Witho,Ut p_erforming transis'gor tapering. We Shm/c in a between 2.29 and 3.53, the discharge time increase is within 5%
logarithmic scale so that it covers a very wide range. T the optimal value, which corresponds tar@alue of 2.92.

proposed tapering scheme consistently outperforms bot ig. 8 depicts the range of FET width shape under the same

linear and exponen_tial tapering schemes_. This is eSpe_Ciaé'%—increase assumption for three differ€it/c values. The
the case whex, /c is relatively large, that is, when taperingg iy jines represent optimal shapes while the dashed ones stand

begin_s to be beneficial. In this region, exp.onential and line?dr the boundaries. It is also observed that the shape can have
tapering schemes do not produce any noticeable performa er variation a€’y, /cis large, as is the case in Fig. 8(c). When

improvement while the proposed scheme does. The simulat@n/c is even larger, one can expect the dashed line marked

result_, in another way, verifies the superiority of the proposeég/L a_ will eventually hit the upper-right corner at a certain
tapering scheme. ) ) o oint. This is the case when tapering cannot generate more than
The performance gain due to transistor tapering is more s % performance gain over nontapered FET chain and is some-

n!ﬂcant for s.malllerOL/c values under all of the 'Fhree schemesﬁmes a more practical criterion to determine whether tapering
Linear tapering is actually better than exponential tapering Whrsnneeded. Numerically, we obtained the following equation:
Cy,/c is larger than about 0.02. However, whéf /c is very

small, the performance of linear tapering deteriorates because ‘L > 0.265 (22)
of the choked neck effect near= 1. On the other hand, the c
optimal tapering shape approaches the exponential shape avthigh is approximately one fourth of what (17) gives.
limit that C, /¢ goes to zero. Therefore, exponential tapering .
performs well ag”7, /c is very small. - Finite Number of FETs

The best FET width shapes under different tapering schemed he comparisons in the above subsection are valid only in the
are shown in Fig. 6 for three differefit; /c values: 0.01, 0.05, continuous limit. In a real circuit, the number of transistois
and 0.2, where the horizontal axisdsand the vertical axis is afinite value. In this subsection, we discuss the effect associated
normalized FET widthw(z). Solid, dashed, and dotted lineswith the discretization. Elmore delay model is still assumed.

resent the width shapes under the proposed, exponential and
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Fig. 9. Effect of discretization. (&' /¢ = 0.01. (b) Cr/c = 0.05.(c)Cr/c = 0.2.

Note that the proposed tapering scheme is proved to be optimmatond-order effects into a manageable formulation. It is even
only in the continuous limit. It is again a suboptimal solutiomore difficult to solve the formula, once obtained, analytically.
when a FET chain has only finite number of transistors. Therefore, in this subsection, we study the FET chain based

Fig. 9 compares the discharge times under three different loarl HSPICE simulation to see if the result obtained from the
conditions:Cr, /¢ = 0.01,0.05,0.2. Note that there is no dif- simple model works adequately for real world circuits. Finite
ference among the three schemes wién= 2, since there number of FETs is assumed and real FET models (HSPICE
is one controllable width anyway. The superiority of the prd=evel 49 [16]) are used. As real cases that FET chains are used
posed tapering scheme is apparent, however, wida rela- in circuit design, we study a set of domirmD gates:and4
tively large. From Fig. 9, one can observe that the proposed &rd5 andg andand7 Simulation is carried out in a 0.18m
pering scheme is worthwhile faV equals to or greater thantechnology at 1.6 V, S8 and typical process.
five. An example circuit having thi%/ value is a domin@nd4 Fig. 10(a) shows theNnD gate implementation in domino
gate. For FET chains with smalléf, none of the three tapering CMOS style [15]. For simplicity, we do not use the optional
schemes shows consistent advantage over the other two.  keeper as that is not our main purpose. The maximum channel

In the case that the maximum allowable width is very larg&idth of a transistor is set to 2@m. We change the size of the
the valuec becomes large in comparison witly,. Therefore, output inverter to change ti€, value of the FET chain. Three
the proposed tapering shape approaches traditional exponemtifi¢rent sizes of load inverters are useck 12 x, and 4x sized
tapering for moderate sized FET chain. This conforms to tlverters, where a unit inverter has a PFET width @i2 and
empirical observation made by circuit designers which indicat®§~ET width of 1um. The spacing between two adjacent tran-
that the exponential tapering performs well. sistors in the chain is set to\daccording to MOSIS deep sub-
micron rule.

To determine the parametet one needs to know both the
load capacitanc€’;, and the parasitic capacitanceSince it is

Note that the delay model we used is a simplified one. In a redifficult to obtain the accurate value of effective parasitic capac-
FET chain, many assumptions we made like sinipemodel itance of the transistors, we search the parameter space exhaus-
of FET chains, Elmore delay formula, etc., may not exactljvely to get the lowest delay value under each of those three dif-
hold. One should also consider short channel effects, Millegrent schemes. A program written in C is developed serving as
and back-gate coupling effects and so on, in a real deep satiatch program which calls HSPICE for each different param-
micron circuit. However, it is very difficult to include thoseeter and reads the measured delay data generated by HSPICE.

C. SPICE Simulation
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The shortest delay time and its correspondingalue are then domino CMOS circuits usually have very complex logic com-
reported. bination [3]. In practice, the internal nodes of large NFET trees

Simulation results for the dominanD gates are shown in are also precharged tgp, in the precharge phase to solve
Fig. 11. Delay is measured from inputs to nd@idt is observed the charge-sharing problem. Therefore, we assume the internal
that the performance gains of the three tapering schemes moees discharge frofi, 5 in our simulation. The maximum
quite comparable in each single cases. This is a common pblannel width for the transistors in the OA gates are set to 10
nomenon when several suboptimal solutions, each of which.im and we assume the size of the output inverters is 1 unit.
the optimal solution in their respective subspace, are comparedSimulation results on those OA gates are shown in Fig. 13.
It also explains the reason that linear and exponential taperingsear tapering is better than exponential tapering in one case
have worked fine for the past two decades. Nevertheless, Hral worse in the other case. The proposed scheme wins out with
proposed tapering scheme consistently outperforms linear andecent margin in both cases.
exponential schemes in all cases. Finally, we show the optimal
widths of the NFET chain in thand7 gate under different in-
verter loads in Fig. 12.

The mixed constant and exponential tapering shape is pro-The problem of optimal tapering of a series connected FET
posed for a simple chain of FETs. However, the basic idea thditain is studied in this paper. In contrast to conventional ap-
we should keep the transistor width of the lower portion of proaches which try to first solve the problems for special cases
long chain constant may apply to a larger class of circuits likehenN is small, we begin with the limit wheN approaches in-
complex domincorR-AND(OA) gates. In Fig. 10(b) and 10(c),finite. The results obtained from smallproblems are not appli-
we show two examples: domino OA654 321 and OA424 24&ble to problems of larger sizes; therefore, empirical tapering
gates. The former one is the example used in Shoji's pionesshemes like linear and exponential shapes are used. We show
paper on transistor chain tapering [3]. It is a special case whiyat the optimal tapering shape obtained in the continuous limit
transistor tapering will generate large performance gain. On twerks well for FET chains with medium numberNfand it ac-
contrary, our second example represents a more general soaly outperforms linear and exponential tapering schemes in
nario. Note that those circuits are not unreasonably large sirm& simulations.

V. CONCLUSIONS
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Overall, the contributions of the paper can be concluded[®]
as follows: 1) FET chain tapering problem is first formu-
lated and analyzed in the continuous limit; 2) a new mixed
constant and exponential tapering scheme is proposed afi!
proved to be optimal in the long chain limit; 3) the proposed[ll]
tapering scheme is demonstrated better than linear and expo-
nential tapering schemes in most cases; 4) for the first time,
an analytical framework is provided to the the equal deIa;Ilz]
terms argument/observation; and 5) it is shown that the load
capacitance has to be about a quarter of the total effectivie3]
parasitic capacitance of a FET chain to make transistor taperir}%
worthwhile for speed improvement.

In this paper, we study the original tapering problem [3] con-[15]
sidering discharge time as the only optimization goal. In real
circuit design practice, one may consider other design metriz‘}%]
like minimization of power consumption, charge sharing, an
so on. For example, one may formulate the problem such that
the power-delay product is minimized. Also, one may need
add certain penalty for FETs with very small channel widt
to guarantee adequate noise margin. Searching for optimal
pering shapes for multi-objectives under multi-constraints po
a challenge for future research.
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