
BISRAMGen: A Self-Healing Memory Compiler Developed by Prof. Pinaki Mazumder’s Research Group 
 

 

 

 



BISRAMGen: A Self-Healing Memory Compiler Developed by Prof. Pinaki Mazumder’s Research Group 
 

 

 



BISRAMGen: A Self-Healing Memory Compiler Developed by Prof. Pinaki Mazumder’s Research Group 
 

 

 



BISRAMGen: A Self-Healing Memory Compiler Developed by Prof. Pinaki Mazumder’s Research Group 
 

 

 



352 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 2, APRIL 2001
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Abstract—In this paper, we present the description and evalu-
ation of a novel physical design tool, BISRAMGEN, that can gen-
erate reconfigurable and fault-tolerant RAM modules. This tool,
first proposed in [3], designs a redundant RAM array with ac-
companying built-in self-test (BIST) and built-in self-repair (BISR)
logic that can switch out faulty rows and switch in spare rows.
Built-in self-repair causes significant improvement in reliability,
production yield, and manufacturing cost of ASICs and micropro-
cessors with embedded RAMs.

Index Terms—Built-in self-testing (BIST), die cost, reliability,
self repair, yield.

I. INTRODUCTION

I N the 1980s, the field of VLSI testing witnessed remarkable
growth. As the chip size has grown phenomenally to more

than a million transistors per chip, the complexity of testing
chips has increased, more and more subcircuits have become
inaccessible for testing due to the diminishing pin-to-device
count, and physical design has become considerably more com-
plex and time-consuming. Built-in self-test (BIST) was intro-
duced for various structured logic and memory arrays, to allow
comprehensive testing for functional, electrical, and parametric
faults. BIST circuits ensure that bad chips will be automatically
spotted and eliminated on the production line, thus ensuring
quality control. However, in the 1990s, the growth of the VLSI
industry has been even more spectacular, ushering in sophisti-
cated nanofabrication technology for manufacture of complex
VLSI chips (such as microprocessors, DRAMs, etc.) using sev-
eral million transistors. Deep submicron CMOS processes are
associated with peculiar defect mechanisms that cannot be com-
prehensively tested using traditional “stuck-at” type tests. As ef-
fective channel lengths of transistors shrink below 0.12m, even
minor process variations across the surface of a silicon wafer can
cause layout defects [10], [11]. Even though such defects are not
always associated with immediate functional failure, they may
lower the reliability and diminish the operational life-span of the
chip if left unrepaired for a long time (for example, by causing
the chip to drain a large amount of current). To improve the
yield and reliability of VLSI chips, BIST alone is not sufficient;
built-in self-repair (BISR) is of growing importance. Further-
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more, BIST and BISR are essential in improving the testability
and repairability of RAMs used as embedded memories (such
as instruction and data caches of high-performance micropro-
cessors, embedded memories in ASICs used in digital cameras
and cellular modems), or in mission-critical space, oceanic, and
avionic applications where external field testing and repair are
prohibitively expensive or infeasible.

RAM compilers were introduced in 1986 by Texas Instru-
ments [23]. The first reported compiler, called RAMGEN,
generated layouts, simulation models, symbols and datasheets
(for setup and hold times, read access times and write times,
and supply currents and voltages) for RAMs, ROMs, and PLAs.
Since this effort, RAM compilers have become progressively
more powerful and sophisticated. CMOS SRAM compilers
have been designed by Motorola and Mentor Graphics (the
Memorist compiler [24]), Cascade Design Automation (the
CDA RAM compiler [19]), and at the University of Michigan
(the Aurora GaAs MESFET RAM compiler (ARC) [4]).
Some of these compilers, such as the CDA and the ARC,
try to achieve process independence; that is, the ability to
generate layouts for any input process technology and set
of design rules. In 1992, Kebichiet al. [8] reported a RAM
compiler for built-in self-testableRAMs. In this paper, we
describe a physical design tool,BISRAMGEN , for built-in
self-repairable static RAMs.BISRAMGEN is design-rule
independent and can generate efficient layouts and simulation
models for built-in self-testable and built-in self-repairable
RAM arrays. It achieves low area overheads for BIST and
BISR, of at most 7% for realistic array sizes for embedded
RAMs. We have examined a wide range of microprocessors
spanning almost a decade and have observed that realistic
array sizes for embedded memories used as internal caches
range between 64 Kb and 4 Mb. For example, the embedded
Level Two (L2) cache used inside a recent Pentium III Xeon
processor introduced on March 17, 1999, is 256 kbyte (2 Mb)
(as documented in http://www.intel.com/pressroom/kits/pro-
cessors/quickreffam.htm), and the internal Level One (L1)
cache used inside a recent AMD-K6-III processor is 64 kbyte
( 512 Kb) (see http://www.amd.com/products/cpg/k6iii/tech-
features.html). Our calculations show that built-in self-repair
achieves significant improvement in production yield and
reliability and lowers the manufacturing cost of dense ASICs
and microprocessors with embedded RAMs.

II. OVERVIEW OF BISRAMGEN

Fig. 1 gives an overview of the layout synthesis and simulation
model generation ofBISRAMGEN . From a set of user-
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Fig. 1. Overview of BISRAMGEN.

specified geometry parameters and the CMOS technology
data, BISRAMGEN builds a library of leaf cells that are
subsequently used for generating modules or macrocells in
a bottom-up (hierarchical) fashion to complete the overall
layout.

The user needs to specify a CMOS process before invoking
BISRAMGEN . A range of 3-metal processes with feature
widths in the range of 0.5m and above, such as the Cascade
DesignAutomationprocessesCDA.53m1pandCDA.73m1p,
and the MOSIS process mos.63m1pHP, may be chosen by
the user. When invoked,BISRAMGEN allows the user to
input the values of the circuit parameters for a wide-word
RAM employing column-multiplexed addressing. As shown
in Fig. 2, in column-multiplexed addressing, a single column
stores multiple bits, the number of bits per column being
denoted by . The number of bits per memory word is
denoted by . A log -to- column decoder chooses
exactly one out of bitline pairs from each of I/O
subarrays, producing a -bit word. The parameters explicitly
specified by the user include: , , number of words,
number of spare rows (4, 8, or 16), size of critical gates
in the RAM circuitry, and thestrap space (i.e., the spacing
between subarrays at regular intervals). The value ofmust
be a power of 2. Critical components in the RAM circuitry,
such as the precharge transistors and the word line drivers,
are made larger than minimal size to increase their current
drive strengths. Moreover, for a given gate size, theand

transistors are automatically sized to balance the rise and
fall times. This is made possible by built-in access to SPICE
utilities. Thestrapspace parameter provides design flexibility
in increasing the spacing between subarrays at regular intervals.
This may be required for various reasons; for example, to

allow over-the-cell wiring across the RAM array to save silicon
area.

Note thatBISRAMGEN is not designed to build a RAM
array to meet a user’s timing, power and/or area specifications.
Rather, it can generate simple leaf cells ahead of time and
extract and simulate them, thereby extrapolating and providing
timing, area, and power guarantees for the overall system before
designing the overall layout. If the user is unsatisfied with these
guarantees,BISRAMGEN will attempt to build the layout
using any user-provided building blocks (e.g., user-specified
library of leaf cell and custom RAM designs). However, this
process is not guaranteed to complete successfully in one
pass and the layout generation may require varying degrees of
manual intervention by the layout designer.

The characteristics ofBISRAMGEN that make it attractive
to a CAD designer are as follows.

1) Efficient Place-and-Route combined with structured
custom design: BISRAMGEN exploits the array-like
regularity in module functions and interconnections to
build the macrocells:RAMarray and peripheral circuitry
such as sense amplifier and row and column decoder
arrays,DATAGEN(test data generator),ADDGEN (test
address generator),TLB (BISR circuit), TRPLA (for
storing the control program), andSTREG(state register).
During this structured design, no routing is necessary
and the signals in adjacent modules are perfectly aligned
and connected by abutments between macrocells. Hence,
signal propagation delays between modules are minimal.
To complete the routing phase,BISRAMGEN uses
an efficient algorithm for macrocell place-and-route. It
sorts the rectangular macrocells in decreasing order of
areas and uses heuristics to make the overall layout “as
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Fig. 2. Column multiplexed addressing in RAMs.

rectangular as possible.” Some of these heuristics are as
follows.

a) Port alignment: Suppose I/O ports of a macrocell
need to be connected to I/O ports of another

macrocell and that these ports are present on
one edge of each macrocell. Thenand will be
placed such that these two edges face each other
with the corresponding ports in alignment. Using
this heuristic has two advantages: i) it improves
routability and interconnect lengths betweenand

and ii) it avoids the long computation involved
in trying out all 64 pairs of orientations between

and . This heuristic contributes to the overall
rectangularity of the layout.

b) Stretching: Sometimes, one macrocell may need
to be stretched relative to another so as to cause
better port alignment between the two macrocells,
thereby decreasing interconnect lengths by causing
all or most of the ports to be connected by abut-
ments.

The layout generation quality is provably-optimal
(which means that the layouts differ from optimal by a
factor of , for a fixed, “small” that does not
depend on the size of the memory array). For proof of
this, see [2]. It tries to reduce timing delays by a clever
placement strategy that brings ports to be connected close
together and often uses over-the-cell routing with third
metal, instead of channel or global routing, to reduce the
interconnect lengths and delays. A CAD designer using
BISRAMGEN can complete the BISR-equipped RAM

module generation without switching between tools
and can thereby achieve a lower turnaround time and a
high-quality design.

2) Solution Quality: The area overheads with BIST, BISR,
and redundant rows is less than 7% for all realistic RAM
array sizes. The BISR technique used achieves a very tiny
delay (that can be easily masked by circuit techniques) on
the RAM access time and produces significant improve-
ments in chip yield, reliability, and cost.

III. CRITICAL EXAMINATION OF OTHER EXISTING BIST/BISR
RAM IMPLEMENTATIONS

A RAM generator was described by Kebichi and Nicolaidis
[8] for RAMs equipped with BIST andtransparentBIST, i.e.,
BIST techniques that result in the normal-mode contents of the
RAM to remain unmodified at the end of the self-test. Their
approach does not include self-repair.

A built-in self-repair scheme was proposed by Sawadaet al.
[17] in 1989. This was a very simple scheme based upon the
address comparison method; that is, registering a failed address
(in a fail address register) during test mode and comparing this
address with an accessed address during normal mode. An ad-
dress match would thereby indicate that the accessed address
has faults and would cause access into a spare memory module.
This scheme was originally designed to repair single address lo-
cation faults, because only one faulty address location could be
registered. Chen and Sunada [5] have extended this design to re-
pair multiple faults and have also proposed a novel architecture
to reduce the access time penalty, one of the main drawbacks
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of the address comparison method. Hence their architecture is
suitable for high-capacity SRAMs.

Chen and Sunada [5] have used ahierarchicalcell array or-
ganization to minimize the overall memory access time. Two
salient features of their design are: having the self-test and self-
repair logic away from the critical data path to minimize de-
lays and keeping the self-repair logic as simple as possible to
minimize sensitivity to processing defects. In their design, the
entire system is composed of a number of subblocks organized
in an array structure. These subblocks are recursively decom-
posed into smaller and smaller subblocks until a level is reached
where a flattened implementation of the word-oriented memory
is better in terms of speed, area and ease of testability.

The major part of the self-test and self-repair scheme is incor-
porated at the lowest level of the hierarchy. Self-test is carried
out at this level. The test algorithm used is IFA-13 [18] that in-
cludes a functional test followed by a data retention test. The
main components of this lowest level organization are briefly
explained.

1) Test Enable signal: This signal switches the memory
from normal mode to the test/repair mode and vice versa.

2) Address and data generators: The address generator in-
crements or decrements addresses in a sequential fashion
during marches. The data generator generates data pat-
terns to be stored in the memory. Theinversionsignal
from the clock generator causes either the data pattern or
its complement to be stored.

3) Addresscorrectionblock:Duringtheself-test,theaddress
generated by the address generator is sent to the address-
correction block which passes it directly to the address de-
coder. After a fault or defect has been diagnosed and the
system switches back to normal operational mode, any in-
comingaddress intendedforafaultymemory location isdi-
verted to a new address by the address-correction block.

4) Fault signature block: The word patterns written into
and subsequently read out from the memory are compared
with the original word patterns. Any discrepancy causes
a pulse on thecapturesignal. Such a pulse activates the
fault signature block, which captures the memory address
where the error occurred. This circuit, which contains two
fault capture blocks, is capable of storing and repairing at
most two faults at different address locations.

5) Redundant memory locations and the fault assembler:
Redundant memory locations are introduced at different
levels of the hierarchy and the BISR scheme can repair at
most two faulty addresses in each subblock. Failure to re-
pair a subblock results in exclusion of the subblock from
the system using fault-tolerant logic (calledfault assem-
bler), implemented at the top level, to divert accesses from
dead blocks to functional blocks.

BISRAMGEN offers several attractive advantages over the
above approach.

1) In Chen and Sunada’s scheme, there is no discussion of
the delay penalty. In fact, although their hierarchical de-
coding scheme will alleviate the penalty by pushing it
down to the lowest level of the hierarchy, the address
correction and fault signature blocks will still cause a

small penalty on the RAM access time. This is because
of the fact that during normal operation, the incoming
address is compared sequentially, instead of in parallel,
with the two addresses stored in the two fault capture
blocks. Their scheme is, therefore, impractical for em-
bedded memories used inside modern high-speed micro-
processors.BISRAMGEN , which uses a very fast, par-
allel comparison of the incoming address with a set of
stored faulty addresses, produces a very tiny delay penalty
if 4 spare rows are used. This penalty can easily be
masked using circuit techniques, described later.

2) Chen and Sunada’s scheme is practical only with a hier-
archical decoding scheme. If hierarchical decoding is not
used, their approach requires modifications for becoming
practical.

3) Chen and Sunada’s scheme provides the capability of re-
pairing only two faulty addresses in each subblock.BIS-
RAMGEN affords a much greater degree of fault toler-
ance of about to faulty addresses in each sub-
block, assuming that the subblocks employ column-mul-
tiplexed addressing with bits per column.

4) The data generator used by Chen and Sunada applies a
single data pattern or its complement on each memory
word. The data generator built byBISRAMGEN imple-
ments a Johnson counter that allows multiple data back-
grounds to be applied to the memory words, instead of
only the all-0’s or the all-1’s patterns. This improves the
fault coverage for coupling faults between bits of the same
word.

IV. CIRCUIT IMPLEMENTATION

The RAM arrays built byBISRAMGEN employ circuit tech-
niques for high speed and high bandwidth. Furthermore, they
use a BIST scheme that guarantees comprehensive fault cov-
erage. The various components of the BISR-RAM circuit are
described as follows.

1) Columnmultiplexedaddressing:To implementcolumn-
multiplexing, theoutputsof thecolumndecodersaresent to
pass-transistormultiplexers,whichselectonesetof
pairs. This scheme is illustrated in Fig. 2.

Column-multiplexing improves the data bandwidth
of memory devices, by increasing the number of bits
accessible in a single cycle. This technique is thereby
very useful for high-bandwidth requirements of em-
bedded memories such as caches, multimedia memories,
video RAMs, and application-specific memories in
telecommunication ASICs.

2) Addressing logic:The regular rows of the RAM have row
decoders. The address of a word stored in the RAM has
two fields: row and column. The row address part is de-
coded by the row decoders to select a unique row. The
column address part is decoded by the column decoders
and then sent to the column multiplexers, described in the
previous paragraph. As a result, a unique -bit word
in a particular row is selected. In addition to the reg-
ular rows, the RAM array has redundant rows of memory
cells. These redundant rows are fully integrated with the
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Fig. 3. Current mode sense amplifier design generated byBISRAMGEN .

main array and share the same column multiplexers. The
address diversion to these redundant rows is achieved
using a hardware translation lookaside buffer (TLB) that
performs an extremely fast, parallel address comparison
between the incoming address pattern and a set of stored
address patterns, and selects a unique spare row and a
multi-bit column.

3) Fast-access memory design:Fast memory access is
achieved by using current-mode sensing, as shown in
Fig. 3. In this technique, a minor current differential in
the and lines latches the sense amplifier. In write
mode, the sense amplifier is bypassed and the bit-lines
are directly accessed.

V. BUILT-IN SELF-TEST CIRCUIT

BISRAMGEN uses a low-area overhead, microprogrammed
BIST circuit design for applying the IFA-9 test [18] on a static
RAM array. The microprogrammed control unit is calledTest
and Repair Controller PLA (TRPLA). As the name indicates,
it is a combined test and repair controller that is used for gen-
erating control signals in both BIST and BISR modes of oper-
ation. It is implemented as a pseudo-NMOS NOR-NOR PLA
loaded with the control code. During layout synthesis of the
BISR-RAM module, the control code is read in at runtime by
BISRAMGEN from two input files (one for the AND plane,
the other for the OR plane). Changing these files to implement
a different test algorithm is a simple and straightforward matter.

In addition toTRPLA, the test circuitry consists of aTest Data
Background Generator(DATAGEN) and aTest Address Gen-
erator (ADDGEN). The circuit can also send a signal to the
processor to generate a reset state during which data retention
testing is done.

The test involves two passes. In the first pass, the memory
array is tested and faulty addresses are stored in a transla-
tion lookaside buffer (TLB). In the second pass, the array is
retested along with the mapped redundant addresses. Any fault
detected in the second pass produces a “Repair Unsuccessful”
status signal, which implies either too many faults in the
memory array or faulty spares. This two-pass algorithm can
be easily converted to a 2-pass algorithm; that is, the cycle
of self-testing and self-repair may be iterated to repair faults
within the spares themselves.

The march notation for the IFA-9 test is as follows [18]:
, , , , ,

Delay, , Delay, . An important component of
the IFA-9 test is data retention testing. The BIST circuit imple-
mented byBISRAMGEN requires the intervention of the em-
bedded processor for signaling the start and end of the waiting
period for this test. During this period, the embedded processor
tristates all the address, data and control lines for a fixed period
of time (say 100 ms). After this duration, the control is passed
back to the test controller.

IFA-9 detects a wide range of functional faults caused by
layout defects; for example, stuck-at and stuck-open faults, tran-
sition faults and state coupling faults. For a wide-word RAM,
this test has to be repeated with multiple background patterns in
order to test pairwise couplings between cells of the same word.
To run this test, a binary up-down counter for address generation
(ADDGEN) and a Johnson counter for background data gener-
ation (DATAGEN) are provided.

The test address generatorADDGEN needs to generate
a forward as well as a reverse addressing sequence. Conse-
quently, it is implemented as a binary up/down counter. The
test data generatorDATAGEN is a Johnson counter that can
generate data backgrounds for a -bit RAM word.
In reality, we need to generate only words, as
follows: all-0, ,

, all-1.
However, the generation of background patterns in

each word requires less hardware than that of patterns,
and is thereby preferable, even though it causes a greater test
application time. It is proved in [2] that a Johnson counter pro-
duces all the background patterns required.

The test data generatorDATAGENnot only generates back-
ground patterns, but also compares the read data with their ex-
pected values. Since each read data is the inverse of the immedi-
ately preceding write data (and vice versa) in the IFA-9 test, this
comparison is done using exclusive-OR gates and a-input
OR gate in a straightforward manner.

VI. BUILT-IN SELF-REPAIR CIRCUIT

The faulty row addresses detected by BIST are stored in a
translation lookaside buffer (TLB). This circuit uses an innova-
tive design that associates a sequence of faulty addresses with
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a unique,predetermined, strictly increasing sequence of redun-
dant addresses. These addresses are stored in the TLB during the
first pass of the BIST. In the second pass, the incoming address
is compared in parallel with all the stored addresses in the TLB.
If a match is found, then an address diversion occurs to a re-
dundant location. This approach causes both the regular and the
mapped redundant locations to be tested comprehensively. The
strictly increasing sequence of redundant addresses guarantees
that provided enough spares are available, any faulty (nonspare
or spare) row can be replaced.

The TLB produces a modest delay penalty (of about 1.2 ns
with four spare rows and a 0.7-m technology) for matching
and mapping the incoming addresses during normal operation.
This small delay, which is at least an order of magnitude smaller
than the RAM access time, willnot result in stretching of the
RAM access time. This is due to the fact that the TLB operation
can be completely masked or overlapped with other components
in the read or write cycle. Some of the circuit techniques for
functionally masking the TLB delay are as follows.

1) In case of an asynchronous RAM, it may be possible to
overlap the TLB delay with the precharge phase following
an address transition detection (ATD) signal of a read or
write cycle (note: often RAM bit-lines are precharged in
anticipation of read in order to reduce the access time,
even though the actual operation may have been a write).

2) In case of a synchronous RAM with a level-sensitive ad-
dress register, the address bits are sent simultaneously to
the address register and the TLB, and the operations of
the TLB (address comparison and issue of the spare ad-
dress pattern) are done in parallel with those of the ad-
dress register when the clock is low. When the clock is
active, either the address selected by the TLB (in case of
a “match”) or the address register output (in case of no
match) is sent to the row and column decoders. This selec-
tion can be achieved using suitably sized tristate buffers
at the outputs of the TLB and the address register.

3) It may be possible to compensate the TLB delay penalty
by increasing the sizes of the devices used in the row
and column decoders, so as to make the decoders slightly
faster. This will result in masking the TLB delay at the
expense of a greater power consumption by the decoders
and a slightly greater silicon area.

All these techniques rely on the fact that the TLB operation
is extremely fast. This will happen provided 1–4 spare rows are
used, causing a redundancy of between to spare
words, which is large enough in practice.BISRAMGEN will
allow a user to generate a RAM array with more spares but
will not be able to guarantee that the TLB delay penalty can
be masked.

If a column is faulty, the row redundancy will be quickly
swamped because every single word on a faulty column will
be found to be faulty. Also, in the second pass of our BIST ap-
proach, a “Repair Unsuccessful” signal will be produced, since
the redundant locations will also be faulty. Thus column failures
can be detected but not directly repaired in our approach. In this
research, we have examined high-speed high-bandwidth RAMs,
built using very deep submicron technologies, that are used as
embedded memories. The access times of such RAMs are of

the order of 1 to 2 ns, and these access times are very sensitive
to even minor changes in the main array, for example, adding
simple transistors or logic gates to the bit and word lines. For
comprehensive column testing and fault diagnosis, pass transis-
tors and latches need to be added to every single bit-line pair in
the array and these circuits would cause significant deteriora-
tion of the RAM access time. Since our goal is to implement a
self-repair solution that produces no access penalty on the RAM,
we do not advocate the addition of column testing and repair cir-
cuitry to the RAM array.

The self-test and self-repair controller consists of 59 states,
encoded using six flip-flops, and a pseudo-NMOS NOR-NOR
PLA. The controller area is found to be a very tiny fraction of
the memory array area (less than 0.1%) for a 16-kbyte RAM.

VII. Y IELD IMPROVEMENT

BISRAMGEN generates CMOS layouts of built-in self-re-
pairable RAM arrays. The circuits synthesized can repair a
maximum of faulty rows, being the number of available
spare rows. A built-in self-repairable RAM produced by
BISRAMGEN is said to be “good” if the manufacturer can
guarantee that the spares are all good and the number of faulty
words is at most equal to the number of spare words. Since
BISRAMGEN is unable to perform more than one round of
spare substitution (i.e., it is unable to substitute faulty spare
words by fault-free spare words), we use the above notion of
“goodness” of BISR’ed RAMs.

Suppose we use the Poisson model of a single cell yield, i.e.,

where represents the average number of faults per cell. Let
us also assume the well-known yield formula due to Stapper
[21], [22] to calculate the original yield of the memory array
without built-in self-repair

where
is the defect density,
is the area of the RAM array, and
is some clustering factor of the defects.

Let be the probability function for a defect pattern to be re-
pairable with respect to the fault-free spare rows available. Then
the yield is as follows:

where

where denotes the area of the additional circuitry
(BIST/BISR).

The probability of not having a failing bit in a -bit row
is given by , and the probability that at least one bit fails
is given by . A defect pattern can be repaired suc-
cessfully if and only if the number of faulty rows is at most equal
to the number of spare rows, and the spares required are them-
selves fault-free. Note that if some (but not all) spares are faulty,
the RAM module may still turn out to be repairable if those
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Fig. 4. Yield versus number of defects for a narrow RAM array with 1024 rows,bpc = 4 andbpw = 4; theY -axis shows yields corresponding to four plots, as
follows: (a) no spares (and no BISR); (b) 4 spares+BISR; (c) 8 spares+BISR; and (d) 16 spares+BISR.

faulty spares are not used. However, since we require the RAM
modules to be also repairable during field use, we adopt a stricter
definition of “goodness” from the standpoints of both manu-
facturing yield and field reliability, namely, that all the spares
should be fault-free. For a given numberof defects and a single
memory cell, exponentially decreases with the product of

, , and ; it is proportional to .
Let us assume that the defect densityremains unchanged

when we add BISR and redundancy to a RAM array. Fig. 4
displays the improvement in yield due to BISR for a RAM with
1024 rows, and with . The axis denotes the
total number of defects injected into a nonredundant RAM array
(i.e., the product “ ” in the equation for for a RAM without
redundancy). For a RAM with redundancy and BISR, the total
number of defects shown in theaxis must be multiplied by the
“growth factor” (i.e., the area of the redundant array with BISR
divided by the area of the corresponding nonredundant array).
For example, suppose a RAM array with BISR and four spares
is 10% larger than the corresponding array with no BISR and no
spares. Then a point on the yield plot for this RAM array
(similar to the plots shown in Fig. 4) represents the yieldwhen
the total number of defects injected into the array is .

Four yield plots are shown corresponding to: (a) no spares
(i.e., ); (b) 4 spares with BISR; (c) 8 spares with BISR; and
(d) 16 spares with BISR. Obviously, in cases (b)–(d), we are
plotting the corresponding values.

The BISR circuitry produced byBISRAMGEN is suitable
for wide-word RAMs that are typically used as embedded
macrocells within high-density microprocessors and applica-
tion-specific integrated circuits (ASICs), for example, those
used in telecommunication and local-area network applications.
Almost all modern microprocessors have on-chip data and
instruction caches or combined caches. In addition, some mi-
croprocessors use different levels of caches (called, L1 and L2

caches), such as Alpha® 21164. Some microprocessors, such
as Motorola 68060, use a “branch cache” for storing branch
prediction addresses. Therefore, it is necessary to analyze the
yield improvement due to BISR not only for the RAM circuits
themselves, but also for the entire chip that includes the RAM
as an embedded component.

The simplest model we can use to estimate the yield of a
chip is the product of the yield of all the constituent macro-
cells, including the redundant RAM array with BISR. If a micro-
processor includes macrocells excluding the RAM, the chip
yield model is as follows:

In this model, we may lump together all themacrocells that
are assumed to include no redundancy or self-repair, as done by
Khareet al. [9], and analyze the yield of only the RAM. This
approach, however, is complicated by two factors, namely: a)
defects in the RAM layout may have global effects on the chip
and b) if the chip area is limited, the effective area within the
chip (i.e., the area available for placement and routing of the
other macrocells) is reduced as a consequence of BISR in
its caches, and this may impose layout constraints on the other
macrocells. Commercial microprocessors that use on-chip re-
dundant caches, such as SuperSPARC®, often have a large area
overhead due to redundancy and the effective area may be as
low as 73% [13].

Examples of problem a) are when a RAM layout defect
causes a break in a global node or net of a microprocessor
such as the or GND lines, causing a fault that cannot be
repaired by any means within the RAM and that might produce
global failure. Using simulation approaches with prototype
CAD tools, Khareet al. [9] show that the critical area for these
fatal flaws, plotted against the defect radius, may be either
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very high (100 m or above) for all realistic defect radii or
nonexistent for all realistic defect radii, depending on which of
two possible RAM layout templates are chosen.BISRAMGEN
implements the 6T SRAM cell layout that causes a near-zero
critical area for these fatal faults. Hence, this problem of having
fatal critical areas is very unlikely inBISRAMGEN -generated
RAM layouts.

The BIST/BISR area overhead as a percentage of the global
chip area of commercial microprocessors is found to be less than
1.5%, with only a few exceptions (in one case it was seen to be
as high as 3.3%); as a result, problem b) described above will
not be encountered.

VIII. R ELIABILITY IMPROVEMENT

In this section, the word “failure” is used as a synonym for
“hard”’ (or permanent) failure.Transientfailures (i.e., failures
due to transitions in system state such as startup or shutdown),
temporary failures (such as those due to alpha particle hits,
cosmic rays, static discharges, etc.) andintermittent failures
(such as those caused by resistance and capacitance variations
and crosstalk), affect the system for too short a duration to
be detected and repaired by BISR techniques. We begin by
recapitulating a few definitions.

Definition 1: The reliability (also known as survivability)
of a system as a function of time, is the probability of

correct functioning of the systemuntil time .
Expressed mathematically

with

and

(Note: In the above, is a random variable denoting the time
at which a failure occurs, and denotes the probability
that .)

Definition 2: The failure probability density function ,
, is defined as the rate of decrease of reliability with time

; i.e., the negative derivative of .
Hence, .
Definition 3: Themean time between failuresMTBF, also

known as themean time to fail MTTF, is defined as the ex-
pected value of the time at which failure occurs.

In other words, .
Integrating the above by parts, we conclude that:

. (For example, if , then
.)

Suppose that a memory module generated byBISRAMGEN
consists of regular rows, spare rows, bits per column,
and bits per words. Assume that the failure rate per bit
per unit time is . Then a single RAM cell is fault-free with
a probability of . Therefore, the probability that a -bit
RAM word is faulty at time , denoted by , is as follows:

The RAM module will survive until time if and only if at
most of the regular words are faulty until time, and
the spare words are themselves fault-free until this time.
Let be a random variable denoting the number of faulty
words at time . Then the reliability function of the built-in
self-repairable RAM module is as follows:

TheMTTF is computed by integrating the reliability function
, from to infinity. The result is as follows:

Evaluation of the reliability equation reveals that the relia-
bility typically increases with the numberof spares only after
a period of several years after manufacture. Initially the relia-
bility is found to decrease with the number of spares.

Fig. 5 illustrates the reliability as a function of time (i.e., the
age of the device), for a RAM with 1024 regular rows,

. The defect rate per cell has been fixed at per
kilo-hour. This plot indicates that the reliability increases with
the number of spares only after a certain age of the device. Until
this age, however, the reliability with more spares will be less
than that with fewer spares. For example, the reliability with
four spare rows is greater than that with eight spare rows until
the age of the device becomes about 8 years (i.e., 70 000 h after
manufacture).

IX. A REA OVERHEAD

BISRAMGEN produces low-area overhead BIST/BISR cir-
cuitry. Table I gives some examples of the area overhead in-
cluding redundancies, BIST and BISR. In these tables, the pa-
rameters used are: ( the number of words), , , and
spares( the number of spare rows), the geometries being spec-
ified as .

Note that the redundant rows are not considered as overhead
since redundancy is used in a vast majority of large RAMs
(and in some cases, ROMs) even if there is no self-repair.
In case there is no self-repair, the following techniques are
commonly used for reconfiguration of RAMs and ROMs: a)
electrically-programmable redundant elements [12] and b)
laser-blown polysilicon or diffusion fuses [1], [7], [14], and c)
electrically-blown programmable polysilicon fuses [6], [15],
[20]. These techniques are difficult and/or too expensive to use
for embedded memories. Even if we count the redundant rows
as overhead, the fact that we have only 4 redundant rows in the
array containing 512 or 1024 regular rows (see Table I), causes
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Fig. 5. Reliability for a RAM with BISR with a defect rate of10 per kilo-hour per memory cell; the RAM has 1024 regular rows, withbpc = 4 andbpw = 4.

TABLE I
BISR OVERHEAD WITH FOUR SPARE ROWS, PROCESSCHOSEN FOR

ILLUSTRATION: CDA0.7U3M1P

their contribution to be much less than 1% of the RAM array
area without redundant rows.

The BISR area overheads are found to be comparable with re-
sultspublishedbyotherresearchers,suchas[5].Most researchers
base their results on either a custom layout or a very rough tran-
sistor count metric, and typically for one specific process tech-
nology. Since our results are based on BISR RAM layouts actu-
ally built for a wide range of commercial CMOS processes, we
feel that they are very reliable. Note that the above area overhead
translatestoonlyabout1%ofthetotalchiparea,asobtainedusing
die floorplan analysis for a range of microprocessors and ASICs
[2].Typical layoutplotsproducedbyBISRAMGEN areshownin
Figs. 6 and 7. The sizes are respectively 64 and 128 kbytes, which
are typical for embedded RAMs.

X. COST IMPROVEMENT

The basic manufacturing cost model (known as the MPR
model [13]) that we can use is as follows:

Manufacturing cost/chip Die cost Test & Assembly cost

Package & Final test cost

Fig. 6. SRAM array with 4 K words of 128 bits each (bpw), 8 bits per column
(bpc), 32 cells between strap, four spare rows and buffer size 2 (i.e., twice the
minimum size).

As will be shown, in order to obtain the total cost of the pack-
aged and tested microprocessor chips with and without built-in
self-repairable on-chip caches, we need to modify the “die cost”
component of the basic MPR equation. The components of the
cost model are explained.

1) Cost per die:The type of process being used determines
the wafer cost. The wafer cost can be obtained from
sources of industrial data, such as [13]. The number of
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Fig. 7. SRAM array with 4 K words of 256 bits each (bpw), 16 bits per column
(bpc), 32 cells between strap, four spare rows and buffer size 2.

dies-per-wafer can be easily calculated from the die area,
assuming a 150-mm (6-in) wafer, or a 200-mm (8-in)
wafer, as appropriate. Since wafers are circular and dies
are rectangular, the larger wafers increase the wafer cost,
but more than proportionatelyincrease the number of
dies-per-wafer. In particular, when we go from 150-mm
(6-in) wafers to 180-mm (8-in) wafers, the wafer cost
increases by about 50% but the number of dies-per-wafer
increases by 80–100%, causing an overall cost improve-
ment. Most of the recent microprocessors, such as IBM’s
microprocessors, Intel, MIPS and SPARC processors
are built on 200-mm wafers. The yield calculation for
each die with and without built-in self-repair is done
as described before. The die cost is then calculated as
follows:

Die cost
Wafer cost

Dies per Wafer Yield

Note that in the above equation, the die contains the en-
tire microprocessor circuit, including any on-chip cache.
The yield per die, therefore, will be the product of the

yield values for the individual macrocells, such as Instruc-
tion Unit, Floating Point Unit, Instruction Cache, Data
Cache, and so on. Improving the yield of the cache(s)
by a factor of will therefore, also cause the overall die
yield to improve by the same factor. Except the caches,
all other macrocells are assumed to have no redundancy
or fault-tolerance; hence, their yield values will be the
same before and after the use of built-in self-repair for
the cache.

From the above equation, it can be easily seen that for a
given process, the die cost is inversely proportional to the
product of dies-per-wafer and the yield. Use of built-in
self-repair slightly lowers the first factor (i.e., dies-per-
wafer) but significantly increases the second factor (chip
yield). Hence, the die cost has been found to be signifi-
cantly less with BISR than without BISR.

2) Test and Assembly cost:Since all dies in a wafer must be
tested, the total wafer test time can be amortized across all
the good chips; producing an average of about $5.00 per
minute for wafer test [13]. The total test time of the mi-
croprocessor dies includes a full test for each good chip,
and a few seconds for each bad chip. As reported in [13],
the test time for good chips varies between 30 s for a
Intel386 to as long as 5 min for a multimillion transistor
microprocessor such as SuperSPARC or Pentium. Also,
the wafer testing cost is reported [13] to vary from $50.00
to $500.00/h, depending on the number of signals to be
tested and the signal frequencies. In particular, a low-cost
tester may be used for a 20-MHz embedded processor in
a 40-pin package, for instance, whereas a much more ex-
pensive tester (costing more than a million dollars) would
be required for a modern Pentium-III processor running
at above 500 MHz.

3) Packaging and final test cost:There are several inde-
pendent package vendors. It is reported [13] that the cost
of packaging a chip and performing a final test is about
one cent per pin. This calculation includes an adjustment
for final test yield; for PQFP packages, a realistic value
of this final yield is 93%, whereas, for PGA packages, it
is found to be greater (about 97%). Moreover, the cost is
significantly affected by the percentage of the final chips
that fail, and is greater for chips with expensive dies or
packages.

It should be noted that the cost equation just described is a
simplified model. There are several factors that complicate the
model, some of which are listed.

1) For microprocessors produced using the same manufac-
turing process, minor process variations cause a statistical
distribution of the number of chips about a median clock
frequency; instead of all chips having exactly the same
clock frequency. Consider the hypothesis that this curve
is a normal distribution, as shown in Fig. 8. Suppose cus-
tomer demand does not match this curve and the demand
for the fastest parts is more than that given by the normal
curve. In that case, the vendor may be forced to consider-
ably expand his supply of all parts to meet this demand.
This would, in turn, result in a significant increase in the
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Fig. 8. A hypothetical frequency distribution for microprocessors that have
been manufactured with the same process.

supply of the slower parts, thereby compelling the vendor
to charge enough of a premium to cover the cost of the un-
sold (slower) parts.

2) The cost model described does not take into account the
cost of extra processing steps needed with some micro-
processors; for example, MIPS processors rely on a more
area-efficient, four-transistor cell RAM array for on-chip
cache (instead of the usual six-transistor cell), and this ne-
cessitates a second polysilicon layer to be incorporated in
the process. This effect can be modeled by adding a cer-
tain realistic increment to the wafer cost for chips with
two polysilicon layers or for chips with a local intercon-
nect layer; for example, counting the extra polysilicon
layer as an extra metal layer, and the local interconnect
as one-half of a metal layer.

3) The packaging cost component considers various pack-
ages such as TAB, BGA, CQFP, PQFP, and PGA. Nowa-
days, some processors, for example, the HyperSPARC®,
use multichip module (MCM) packages. In case of MCM,
the cost may be less than the combined cost of packaging
of all the individual components.

4) Defect densities that affect the “yield” component of the
“cost-per-die” equation vary from process to process and
also vary within the operational life-time of any process.
The defect rate for new processes (i.e., in the early part
of the learning curve) is high, whereas the defect rate
for more mature processes is lower. For example, when
Intel started adopting 0.8m BiCMOS process for Pen-
tium® (1993), derived from their existing 0.8m CMOS
process, the defect rate was initially quite high but fell
rapidly within the next few months as they gained more
experience with the process.

Table II shows the cost-per-die for a range of microproces-
sors. The table entries were calculated based on the results we
got for typical yield improvement and area overhead with BISR
(four spare rows), and wafer cost and die per wafer data from

[13]. To calculate the embedded RAM (without BISR) yield
from the die yield, we can use the simple formula:

Embedded RAM yield (Die yield)

The die photographs for the microprocessors [13] are used to
calculate the embedded RAM area as a fraction of the die area.
The RAM yield improvement factor due to BISR is then multi-
plied by the chip yield to produce the chip yield with embedded
RAM BISR. This approach makes two assumptions: a) the de-
fect clustering coefficient is the same for the die and the em-
bedded RAM and b) the embedded RAMs shown in the die
photographs do not already include redundancy and self-repair.
Note that the assumption of the same defect clustering coeffi-
cient for the embedded RAM and the die is realistic since the
same process is used to manufacture the whole die.

Blank entries in Table II correspond to those chips that use
only two metal layers; BISR RAMs built byBISRAMGEN re-
quire three metal layers, hence it is not possible to implement
BISR for those chips using our tool. As seen in Table II, there is
a significant decrease in the cost per good die with RAM BISR,
often by a factor of about 2.

We next consider the total manufacturing cost per chip, as
given by the cost equation. For a wide range of modern, high-
density microprocessors, it is observed [13] that the die cost
is between 30–70% of the total manufacturing cost per chip.
Therefore, BISR with only four spare rows would produce a
significant reduction of the total manufacturing cost. Table III
displays the calculated and estimated total costs of the pack-
aged chip including die cost, wafer testing and assembly cost,
and cost of packaging and final testing, without and with RAM
BISR.

Table III indicates that the total cost of packaged micropro-
cessors would reduce by 2.35% (in case of Intel486DX2) to as
much as 47.2% (in case of TI SuperSPARC), if the caches are
made built-in self-repairable. We have extrapolated these results
for other microprocessors that use 3-metal and higher CMOS
and BiCMOS processes, and the results are equally impressive.
Examples of other such microprocessors are: AMD486DX2,
MIPS R4600, PowerPC 604, and Alpha 21064A.

XI. CONCLUSION

The RAM layouts produced byBISRAMGEN use efficient
circuit techniques for fast access and high data bandwidth. Such
techniques include: static row and column address decoding,
column multiplexed addressing, and current-mode sense ampli-
fiers for reading data out at high speed. The area overhead with
BIST and BISR alone (i.e., without considering the redundant
rows) is quite modest (only about 1% of the entire chip area).
Such low area overheads justify the use of this tool for the de-
sign of reconfigurable embedded memory modules in ASICs
and microprocessors. The BIST algorithm microprogrammed
into the control PLA achieves a high fault coverage for func-
tional and parametric faults (such as stuck-open, data retention,
and state coupling faults). The production yield and reliability
with built-in self-repair are significantly greater than without
built-in self-repair. A CAD designer not having access to a tool
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TABLE II
COST PERGOOD DIE BEFOREWAFER TESTING FOR AVARIETY OF COMMERCIAL MICROPROCESSORS, WITH AND WITHOUT RAM BISR AS

PROPOSED INTHIS WORK, BASED ON SEPTEMBER1994AND AUGUST 1993 DATA (FOR OLDER PROCESSORS), AS FOUND IN [13]
(NOTE: N IN COLUMN 2 REFERS TO THENUMBER OF METAL LAYERS USED)

TABLE III
TOTAL MANUFACTURING COST PERPACKAGED AND TESTEDCHIP FOR A VARIETY OF COMMERCIAL MICROPROCESSORS, WITH AND WITHOUT RAM BISR AS

PROPOSED INTHIS WORK, BASED ON SEPTEMBER1994AND AUGUST 1993 DATA (FOR OLDER PROCESSORS), AS FOUND IN [13]

like BISRAMGEN would add BIST and BISR circuits manu-
ally to the RAM array. This is a major bottleneck in the design
cycle. By automating the task of integrating BIST and BISR
circuitry with the RAM layout,BISRAMGEN is, therefore, a
great help in speeding up the time-to-market.
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