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Restructuring of Square Processor Arrays by Built-in
Self-Repair Circuit
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Abstract—This paper introduces two types of neural net-
works that can be integrated into array-type VLSI/WSI chips
to restructure themselves automatically so that, in the presence
of multiple random faults, the array circuits can correctly com-
pute their tasks. In the first implementation, the neural net-
work is interconnected and programmed such that it can read-
ily execute a maximum matching algorithm and thereby it can
substitute the faulty components by appropriate fault-free spare
elements. The second implementation rearranges the surviving
fault-free processors to restore the logical structure, and it can
adjust its interconnection complexity based on the quality of
solution (i.e., performance) desired. These two approaches have
been compared with the traditional reconfiguration algorithms,
and by simulation it is shown that the proposed neural net tech-
niques provide superior quality performance (i.e., higher sur-
vivability rates). It is also shown that the intrinsic fault-toler-
ant nature of neural networks maintains a degradable
reconfiguration control even in the presence of faulty neural
network components. The speed of neural networks provides
an added advantage for on-line reconfiguration, where the chip
can be repaired quickly by itself, thus reducing the system
down-time (unavailability).

I. INTRODUCTION

LARGE number of scientific and signal processing

problems are frequently computed in an orderly and
pipelined fashion by replicated hardware similar to itera-
tive logic or processor arrays, where each processing ele-
ment is connected to a fixed number of physically adja-
cent processing elements in such a way that the overall
interconnection structure describes a regular geometry.
One vulnerable feature of such array networks is that, even
if a single processing element fails to perform its intended
function correctly due to some physical defects, the entire
computation may become erroneous. To restore the cor-
rect computation capabilities of the array, it must be re-
structured appropriately so that the defective processing
elements are eliminated from the computation paths, and
the working processing elements maintain correct logical
connectivities between themselves. Various reconfigura-
tion schemes have been described in the literature to di-
agnose and restructure a faulty physical array into the
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fault-free target logical structure [2], [3], [11], [22], [29].
Some of these techniques employ very powerful recon-
figuration schemes that can repair a faulty array with al-
most certainty, even in the presence of clusters of multi-
ple faults. Nevertheless, the key limitation of these pow-
erful reconnection algorithms is that they are written in
software programs to run on an external host computer,
and they cannot be implemented efficiently within a pro-
cessor array chip by using special-purpose circuits. This
paper shows how self-reconfiguration (self-repair) can be
done by exploiting the intelligence and combinatorial op-
timization capability of a built-in electronic neural net-
work. This automatic self-repair helps reduce system
down-time and makes reconfiguration possible when the
processor array is embedded within a VLSI chip such that
the fault pattern cannot be monitored externally through
the boundary pins of the chip.

A first attempt for developing self-reconfiguration
schemes was due to Negrini et al. [23], and Sami and
Stefanelli [26]. The design approach of their repair con-
trol scheme begins with a heuristic algorithm that in-
volves only some simple local reconnection operations.
The redundant interconnection circuits are then derived
accordingly to support the chosen control scheme. Such
control scheme may fail to successfully exploit the full
potentialities of the interconnection network for finding a
reconfiguration path which requires the knowledge of the
global structure of the array network. Consequently, a
partially damaged processor array, which is certainly re-
pairable, may frequently be considered unrepairable by a
control scheme similar to theirs.

Conversely, in the proposed neural network recon-
figuration scheme, the neural net is distributed over all
processing elements to gather the complete defect pattern,
and, through massive associative interactions between its
neurons, it derives globally optimized repair solutions.
Through simulation studies, it is shown here that the
probability for a successful repair on an array with ran-
dom defects significantly improves, if the neural net is
distributed over the entire processor array as described
herein.

Another advantage of the use of a built-in neural net-
work is that it is intrinsically fault-tolerant and robust in
the sense that it only gracefully degrades in performing
its intended function, even in the presence of multiple
faulty neural network circuit elements. The present au-
thors made extensive simulations in their earlier work on
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memory self-repair by a built-in neural network, and they
showed that the network’s capabilities in finding a repair-
able solution degrades very slowly if multiple synaptic
resistors fail or biasing circuits slightly change [20]. The
network degrades rather rapidly with the growing number
of faulty neurons whose outputs are stuck permanently to
either a firing or nonfiring state. In contrast to the neural
restructuring technique, a self-reconfiguration scheme
similar to [23] has a potential disadvantage in this respect,
because its simple logic design scheme lacks intelligence
and will require high overhead if it is designed for a com-
parable fault-tolerance capability.

Finally, the overhead of a neural network in electronic
implementation is small. A neuron processor can be as
simple as a pair of inverters, and a synaptic link can be
emulated by a transistor. The basic device switching time
is only a few nanoseconds, and because the neurons in the
entire network interact to alter their states concurrently,
the reconfiguration task can be performed very quickly.

The rest of this paper discusses the neural-net-con-
trolled self-repair approach, and is organized as follows.
In Section II, a method suitable for neural computing,
called Direct Substitution, is proposed. To study the fea-
sibility of the proposed built-in self-repair (BISR) scheme,
the neural network has been implemented on an 8 X 8
image processing processor array. The overhead com-
plexities involved in the redundant interconnections and
the neural nets are also analyzed. Comparisons are made
with some conventional approaches to demonstrate the ef-
fectiveness of the neural network self-repair method. In
Section III, another neural network self-repair design,
called Window Substitution, is presented as a possible im-
provement over the Direct Substitution method. Finally,
the neural net reconfiguration schemes are evaluated fur-
ther with faulty neural net components, and the overall
yield is estimated.

II. DIRECT SUBSTITUTION METHOD

In random access memory repair, columns or rows con-
taining defective memory elements are replaced by spare
columns and rows [19], [27], [32]. For some array pro-
cessors, such as the Massive Parallel Processor by Good-
year Aerospace [1], faulty processor columns are also re-
placed in entirety by spare columns. In contrast, this work
concentrates on individual substitutions that bypass faulty
cells and maximize the utilization of fault-free processor
elements.

Some repair algorithms embed certain logical struc-
tures, such as linear arrays, rectangular arrays, and trees,
into the original array having defective components [4],
[8], [12], [25]. In this work, we limit ourselves to the
repair of faulty arrays, where the defective components
are carefully bypassed to restore the rectangular target ar-
ray. The embedding of other logical structures can be done
on the restored rectangular logical arrays, if needed.

Koren has designed a strategy such that reconnections
are done by passing messages through multistage paths
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between adjacent processors [12]. In the proposed design,
a dedicated physical connection between a pair of neigh-
boring elements is always maintained to ensure fast inter-
processor communications.

This study concentrates on the reconfiguration of two-
dimensional (2-D) square meshes with one row and one
column of redundant elements. Usually the masking com-
plexities of interconnects are much simpler than those of
processing elements and also the interconnects fail largely
due to pinhole defects which can be controlled to a large
extent in the modern processing techniques. On the con-
trary, the processing elements employ complex logic cir-
cuits where the materials and processing defects can eas-
ily manifest themselves into timing, parametric, or
functional defects. Interconnect defects can be accom-
modated into our fault model, but to retain the simplicity
of our design approach, we assume that only the proces-
sors can be defective in our model.

A. Interconnections Design

Let the size of a 2-D array be m X n. The element at
the intersection of row i and column j is denoted by (i, j),
1 <i<mandl = j < n, with the spare elements lo-
cated in row 0 and column 0. By direct substitution, we
mean that a spare element can replace any single faulty
element in its row or column. For example, a faulty ele-
ment (i, j) can be bypassed horizontally by identifying
each of its input-outputs with the corresponding one of
(i, 0). Similarly, a faulty element (i, j) can be bypassed
vertically by identifying each of its input-outputs with the
corresponding one of (0, j). The physical locations of
processors and the interconnections are illustrated in Fig.
1 by a2 X 2 processor array.

Let h and w be the height and width of a processor ele-
ment, respectively. We assume that the distance between
two adjacent processors is negligible compared with the
dimensions of the processors. The total length of the links
is 4nh + 4mw, which increases linearly with the dimen-
sions of the processor array and the processor element,
while the total number of 3 X 3 switch boxes is (n + 1)(m
+ 1). One disadvantage of this redundant connection
scheme is, for the worst case, that the signal line length
between two adjacent elements is proportional to the
number of elements in a row or column. An obvious way
to reduce the maximum signal line length by half is to
place the spares in the center row and column.

Now let us represent a damaged array in a graph model.
Let U be the set of defects in the array and V the set of
fault-free spare elements. We have U = {(i,j): 1 < i <
M, 1 = j < N; (i, j) being defective}, and V = {(i, j):
0<i=<M,0=<j<Nsuchthati-j=0;(i,j) being
fault-free}. The replacement relation between the defects
and the spare elements can be defined by a set E, E =
{(G, ), (m, n)): (i,j) € U, (m, n) € V, and either i = m
orj = n}. The graph G = (U U V, E) is clearly bipartite,
since by definition of U and V there are no edges in G
connecting vertices within U or V. Fig. 2 shows an ex-



MAZUMDER AND JIH: PROCESSOR ARRAYS

a.2)

sy

i

<
A.Eé 2,1 (2,2) 2,0
Hi--h
i |
¥ [ Y |4
P — (0,2)

5
1

Fig. 1. Two-by-two processor array interconnections for Direct Replace-
ment method.
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Fig. 2. Example defect pattern and its corresponding graph representation
[Note: The indices for the spare row and column are (0, *) and (*, 0),
respectively.].

ample of a defect pattern and its corresponding graph rep-
resentation.

As is pointed out in [16], the spare allocation part of
the reconfiguration can be considered as the well-known
maximum matching problem in graph theory [24]. Given
the vertex set partition {U, V}, and the edge set E, let é
be the maximum number of mutually disjoint edges (re-
placements) in E. We are interested in finding out if 6 =
[U] that is, whether every defective element can be
uniquely replaced by a working spare element.

B. Neural Net Reconnection Control Unit

As first described by Hopfield [9], the neural net is
modeled here as a set of neurons (computation elements)
interconnected by synapses (weighted links). The state of
neuron i is represented by a binary value s;, with 5; = 0
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representing a nonfiring condition an s; = 1 and impulse-
firing condition. The unit influence fired between neuron
i and neuron j is multiplied by a synaptic weight factor wy;
(= w;;). Besides the influences it receives from other neu-
rons connected to it, a neuron, say i, also obtains a con-
stant bias b; regardless of its present state. Now, let s/
denote the ith neuron’s next state value. From the preced-
ing description one can represent the neural net state tran-
sition function as follows:

0, if2w

J

si+ b <0,

]

S, = 1, ifz W’}s] + bi > O,
J
Sis otherwise.

We assume that neurons which receive a larger influ-
ence in magnitude will have a faster state transition (i.e.,
it will have higher probability of early transition). Neuron
processors are expected to operate in an asynchronous and
random fashion.

The total energy E™, commonly known as the Lya-
punov function [9], is given by

ENN = _‘% ; Z SiWiij - ; b,-si.
J

Note that if w; = 0, for all i’s, the change of state by
neuron i will result in an absolute decrease of L; w;;s; +
f(s) b; in energy, where f(s) = 1 if s; = 0, and —1 oth-
erwise. Together with the fact that the total energy is
bounded, the network is guaranteed to reach a local min-
imal energy fixed point [10].

For the processor array repair problem, since it is nec-
essary to determine the direction (vertical or horizontal)
for each faulty element, we allocate two neurons for each
processing element in the array. The two neurons asso-
ciated with processor (i, j) will be represented by (i, j, 1)
and (i, j, 2).

Let the state of a neuron associated with processor
(i, j) bes; ; . A faulty processing element is replaced ver-
tically (horizontally) if and only if 5; ; | = 1 (s; ;2 = 1).
Since a faulty element is replaced by one spare element
only, the case s; ; y = 5;;,2 = 1 is considered acceptable,
but redundant. As for the fault-free processing elements,
the associated neuron pairs are disabled after fault diag-
nosis, that is, 5; ; ; = s;;,» = 0if (i, j) is operational.

The second step is to formulate an acceptability func-
tion @ of the neural network states. Our first objective
here is to discourage the cases where there are more than
one vertical fault in a column or more than one horizontal
fault in a row. Therefore, we have

35 (B 1)

1=

2
—A4/2 2 <Z} Sijn — 1) , A>0,
7 i

as a term in @. Here A4 is a constant and its value is de-
cided empirically. According to the definition, @, is max-
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imized when there is exactly one fault marked vertically
in each column and one fault marked horizontally in each
row. Incorrect assignment of spares are thus discouraged.
But, some side effects are also incurred. For example, if
(i, j) is the only defective element in row i and column j,
it is encouraged to be marked vertically and horizontally
at the same time, which is redundant but acceptable as
mentioned earlier.

For the processor array repair problem, a partially re-
covered array is no better than the unrepaired faulty array.
Only, a complete matching of the faulty processing ele-
ments to the spare elements is of interest for the repair
purpose. To get a complete solution, we create a term

@, = -B/2 Z Z iy + St,j,z)sz(i,j),
i J

24> B > 0,

where F (i, j) = 1 if (i, j) is defective, and zero other-
wise. Here B is a constant which is typically larger than
A, but not by a larger factor because if B is very much
larger than A the effect of the first factor @, will be masked
by @,. This way, every fault is encouraged to be replaced
by a spare in the same row or a spare in the same column.
The redundancy of one defect replaced by two spares is
also avoided.

The third step of the construction is to determine the
weights of the synapses and neuron biases of the neural
network. This can be done by making the negative ac-
ceptability function, —@, equivalent to the neural net-
work energy function. The symmetric synaptic intercon-
nection weight matrix [w,,’s] and the biases b,’s are
derived as follows:

—A, ifx =580y =S84 Or
X =Sk Y = Sy Vi k.
Wy = —B, ifx =581,y =5;2 or
X =8;2Y=S;1, Yi,J.
0, otherwise.

b, = A + B/2 for all z associated with a defect.

Thus, by making the neural network energy function
E™ equivalent to ~@, the neural network convergence
toward local minimal energy levels is transformed into
searches of maximal matchings. Note that the synaptic
weights are independent of the actual defect patterns. Only
the biases to the neuron processors are affected by the ac-
tual array defect pattern. In general, a neural network of
this kind requires 2mn neurons and mn(n — 1) /2 + nm(m
— 1)/2 + 3mn synapses. Let [ be the total wire length
for synaptic connections, then

n k-1 m k-1
ls=mh<2 Zi>+nw<2 Zi),
k=1i=0 k=1i=0

which is of complexity O (nm (hn* + wm?)).
The example neural network synaptic interconnections
defined for a 4 X 4 processor array is shown in Fig. 3,
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: synapse with weight = -B

. : neuron

Fig. 3. Example neural net synaptic interconnections.

where the biases are defined according to the fault pattern
given in Fig. 2.

Now, let us examine the effect of an unrepaired defec-
tive element u in a maximal but incomplete matching of
defects. According to the definitions of w,,’s and b,’s, the
two neurons associated with the element « will each re-
ceive a positive bias of A + B/2, and a negative feedback
of —A. The total influence to each of the two neurons is
B/2, B > 0. Once one of the two neurons is turned on,
the other neuron will be suppressed from turning on due
to an extra —B amount of influence, provided by the com-
peting neuron after it locks in the firing state.

If the neuron, which represents a vertical (horizontal)
repair, is turned on, a conflict between two repairs will
occur in the column (row). The two conflicting firing neu-
rons will in turn each fire —A amount of feedback to itself
and the other neuron. At the same time, each neuron will
also receive —2A4 amount of feedback and (4 + B/2)
amount of bias. By the assumption A > B/2, a total of
—(A — B/2) amount of influence will be received by a
firing neuron to turn itself off. After one neuron is turned
off, the other one will be freed of a —A4 amount of feed-
back, resulting in a total influence of B/2, which will
ensure that it will remain in the firing state.

Thus, we have shown that incomplete matchings can-
not be made stable states (local minima) of the neural net-
work, and there will only be at most one neuron firing in
each row and column. Although the backtracking decision
from incomplete maximal matchings toward a complete
matching are made in a random fashion, the neural net-
work thus constructed will eventually find a complete de-
fect-spare matching, if the defect pattern is repairable.
Conversely, the neural network will not be able to stop
naturally by arriving at a stable state if the given array
defect pattern is not repairable in the first place. In this
case, a time-out mechanism must be installed to stop the
self-repair operation.

We have simulated processor arrays of sizes 8 X 8 and
16 X 16 with one redundant row and one column for per-
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formance evaluation. For each class of defect patterns
with k defects, up to 5000 random patterns have been gen-
erated for reconfiguration. The neural-net-controlled re-
configurations were simulated in software to determine its
effectiveness in terms of the percentage of array defect
patterns that can be repaired. The proposed neural-net-
controlled scheme, Direct Substitution (NNDS), is com-
pared against the Direct Reconfiguration (DR), Fixed
Stealing (FS), and Variable Stealing (VS) algorithms. The
resulting curves are shown in Fig. 4.

Roughly, all four repair schemes can easily repair
nearly all defect patterns with the number of defects within
one-fourth of the maximum. As the number of defects in-
creases, NNDS continuously maintains the best repair
percentages. The differences in repair percentage of
NNDS against the other three schemes are narrowed only
when the number of defects exceeds about three-fourths
of the maximum.

C. Electronic Implementation

A feasible implementation of an electronic neural net-
work for processor array reconfiguration is demonstrated
here. In this design, a neuron is realized as a pair of in-
verters in series connection which convert analog input
voltages to binary output voltages. The firing neuron state
is represented by the high-voltage output, and the nonfir-
ing state by the low-voltage output. The synaptic influ-
ences between neurons as well as the biases to neurons
are represented by electrical currents. Thus, a positive in-
fluence propagated to a neuron can be realized by inject-
ing current to the corresponding inverter input. Similarly,
a negative influence propagated to a neuron can be real-
ized by sinking current from the corresponding inverter
input. The synaptic amplification is simulated by the
branch resistance regulating the amount of current that
passes through it. The extra neural net logic in transistor
level for each processor element of an 8 X 8 array is
shown in Fig. 5. The overhead per processor, in terms of
transistor count for processor arrays of any size, can be
easily determined as follows:

® 64 - w transistors for four switching circuits, where
w is the width of the input-output buses. Each
switching circuit consists of six transmission gates
and two inverters.

® 12 + 2(n + m) transistors for neurons and synapses,
since the array size is n X m.

¢ Four transistors for neuron enable/disable logic.

An 8 X 8 processor array for image processing is im-
plemented for an example. Each processor holds one pixel
of the image to be processed. The only function of a pro-
cessor is to take inputs from itself and the four adjacent
neighbors to perform a majority vote. The result replaces
the pixel previously stored in the processor. The proces-
sor element, redundant interconnections, and neural net-
work have been implemented in MOSIS 2-ym CMOS dig-
ital process technology. Because of space constraints, the
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Fig. 4. Performance evaluations between conventional and neural network

reconfiguration methods: (a) 8 X 8 processor arrays; (b) 16 X 16 processor
arrays.

actual layout is not shown here. It may be noted that, for
an 8 X 8 array, altogether 112 extra transistors per pro-
cessor are required for implementing the neural net recon-
figuration control circuit. The total chip area including the
neural network was 8128 um X 12 686 pm. The most
critical part of the neural net design is the calculation of
the transistor sizes for the exact amounts of currents
through pull-up and pull-down transistors. The neural net-
work behavior has been verified by performing SPICE
simulations. An example repair on a 16 X 16 array with
nine defects is shown in Fig. 6. The defective processors
are represented by the shaded squares. An arbitrary in-
complete assignment of defective processors to the
boundary spare processors was made to define the initial
state of the neural net.

Let Hi (Vi) be the horizontal (vertical) neuron of pro-
cessor i. The defective processors 2 and 3 were not as-
signed to any spares initially. Therefore, all the neurons
associated with these two processors, H2, V2, H3, and
V'3 started firing right away. But, as soon as their voltage
levels were high enough, H2 and H 3 started to discourage
each other, since they were seeking the same spare.
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Fig. 6. Example 2-D processor array reconfiguration circuit simulation.

Moreover, H2 (H3) were also receiving negative influ-
ence from V2 (V3) to turn off. As a result, both proces-
sors 2 and 3 were substituted vertically. A similar sce-
nario happened to processors 1 and 7, except they were
eventually substituted horizontally.

For the remaining substitutions, notice that initially
both H8 and H9 were firing, that is, these two processors
were assigned horizontally to the same spare. After the
reconfiguration started, H8 and H9 tried to turn each other
off. Gradually, both neurons came down to a low-voltage

output state so as to remove the conflicting assignments.
Then, to repair processors 8 and 9, the same two neurons
started to turn on the firing state again. But, this time an-
other competitor, V9, also started to turn on to the firing
state. V'8 was discouraged by V'S, which had been in the
firing state since the beginning. In the competition, H8
and V9 were mutually independent, but both opposed H9
to turn on to the firing state. Finally, H9 started to turn
off, and the network reached a stable state for a successful
assignment of spares.
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III. WiNDOW SUBSTITUTION METHOD

Direct Substitution, which has been proven to be a
powerful self-repair method, is based on the direct re-
placement of a defective processor by a spare processor
that is located on the same row or on the same column as
the defective processor. In this section, an approach,
called Window Substitution, is invented as an improve-
ment over Direct Substitution. The idea behind this de-
sign is to associate each element in the physical array with
some subset of positions in the logical array so that the
element can move to any one of the positions in the sub-
set. The reconfiguration serves to arrange the movements
of the surviving fault-free elements to fill all the positions
in the logical array. While a subset can be any combina-
tion of the logical positions, we will narrow the attention
to square subarrays, or windows, as possible subsets of
positions.

Definition 1: A window of size p X g, denoted by L, ;,
associated with the processing element (i, j) is given by

L;={(—-a,j—5b)|0=<a=<mn(p-1,i),
0 <bh<min(q — 1, )}

Definition 2: Let the positions inside a window be
numbered sequentially in row-major fashion starting from
zero. A move by element (i, j) is denoted by (i, j, k) where
k is the position number inside the window. In other
words, the logical position that corresponds to the move
@, j,kisG+ |k/q] —p+1,j—qg+ 1+ kmodg).

If we assume that the set of positions and the set of
fault-free elements are two sets of vertices, and each pair
of a fault-free element and an associated position as an
edge, then the proposed processor array interconnection
can be modeled as a bipartite graph G. The reconfigura-
tion problem will be to find a maximum matching between
the set of positions. Fig. 7 shows an example 4 X 4 pro-
cessor array and its bipartite graph model.

A. Redundant Interconnections
Observation 1: The set of possible south neighbors,
Ni;, of element (i, j) is given by

Nij={i-aj-bli-aj-b

H#

GJj)y-pr=<a=sp-2 -q+1
=b=sgqg-1}.

The set of possible east neighbors, N{;, of element (i, ;)
is given by

Ni;={(—-a,j~b|G—aj—b
@ j) —prp+l=<a=sp-1,
—-q <b=<gq- 2}

Observation 2: The cardinality of the preceding sets is
given by

max |N7;| = max|N{;| =4p - q — 2p — 2q.
i, j vi,j
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Fig. 7. Four-by-four processor array graph model for Window Substitu-
tion method.

Given the neighboring information in Observations 1
and 2, it is sufficient for the design of the redundant in-
terconnections, that is, for each element, a 1:(4pq — 2p
— 2g) demultiplexer can be used to direct its horizontal
output to one of its possible east neighbors, and another
1:(4pg — 2p — 2q) demultiplexer to direct its vertical
output to one of its possible south neighbors. But, there
are two problems involved in this approach. First, be-
cause of the mutual movement between an element and
its potential neighbors, each demultiplexer should be pro-
vided with information by up to 4pq — 2p — 2q + 1
elements about their moves within the windows. Second,
the movement information should be further translated to
control signals for the demultiplexer.

Observation 3: The set of possible east neighboring
moves, M, of (i, j, k) is given by

M= {G+ |k/q] = [m/q],
j+ kmodg — mmod g + 1, m)|
@,j)# G+ [k/q) — |m/q],
j+ kmod g — mmod g + 1),
k+1+#m if (k+ 1)modgqg # O,
O<m=<p-q-1}.

The set of possible south neighboring moves, M;;, of
(i, j, k), is given by

Mi=1{G+ [k/q] — [m/q+ 1],
Jj + kmod g — m mod g, m)|
Gj)# G+ [k/q} — |m/q],
j+kmodg — mmod g + 1),
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k+1#m if (k+ 1)modgq #+ 0,

O<m=<p-q-1}.

To avoid the two problems mentioned earlier, we pro-
pose an interconnection design in which an element is now
surrounded by two pg: 1 multiplexers on the input sides,
and two 1: pg demultiplexers on the output sides as shown
in Fig. 8(a). If an element takes a move to position k in
its window, each of the multiplexers and demultiplexers
will direct its horizontal or vertical input-output through
line k. Among the elements, a horizontal demultiplexer
output line that corresponds to, say, move (i, j, k), is
identified with those horizontal multiplexer input lines that
correspond to the moves in M; ; , given in Observation 3.
Similarly, a vertical demultiplexer output line that corre-
sponds to move (i, j, k) is identified with those vertical
multiplexer input lines that correspond to the moves in
M;; . Overall, the interconnection design requires 4nm
multiplexers or demultiplexers, and the total length of the
links is

[m +2m - Dl(n — Dw + 2(m — Dw
+[n+20nm~DJm— 1)h +2(n — Dh,

which is of complexity O (nm(w + h)). An example con-
nection of a 3 X 3 processor array is shown in Fig. 8(b).

In this connection structure, a net may consist of mul-
tiple output lines and multiple input lines. But there will
be exactly one pair of input and output lines connecting
two elements, since each net is dedicated to serve as a
communication link between a unique pair of logical po-
sitions. This way, the connections are totally controlled
by the individual moves of the elements. The task of find-
ing an element’s east or south neighbor is made transpar-
ent to the element.

Observation 4: The maximum city block distance be-
tween two directly connected physical elements after re-
configuration is p + g — 1.

The communication time overhead between two neigh-
boring elements in the logical array involves a 2 [log, pq ]
logic gate level delay, caused by the demultiplexing and
multiplexing of the input-output lines, and a propagation
delay of O(p + g) caused by the distance in between.

B. Neural Net Reconnection Controller

To represent the possible moves of element (i, j), a
group of pg neurons are allocated with their states denoted
as 5; j ;'s, where 0 < k < pq. We assume that all neurons
in a group will be disabled if the corresponding element
is faulty, that is, we have s; ; , = O for all k if element
(i, j) is faulty.

1, if element (i, j) moves into position

s k inside its window.

ijk =

0, otherwise.

-
-
N

-

ﬁ
YWY

weeo
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Fig. 8. Three-by-three processor array interconnection for Window Sub-
stitution method.

Then, a cost term C, is defined to discourage an ele-
ment from making multiple moves, that is, there is more
than one firing neuron within a neuron group.

A
€ = 2 DIpop Zk ik = Sijeds A >0,
i

k k'+
C, is minimized if every element makes either no move
at all or a unique move inside the window. An element is
not utilized in the reconfiguration if no move is made by
the element.
Observation 5: Let P;; be the set of moves that can
take position (i, j).

Py={G+pi-1-1[m/q|l.j+q-1
— mmod p, m)|0 < m < pqg — 1}.

To encourage exactly one element to move into a po-
sition—i.e., there is only one element in P; ; equal to 1—
for all P; ;’s, we have a cost term C, defined.

Vsi j k€ Pij

2
B
ez=522{< 2 si,j‘k> - 1}, B>A>0.
i

C, is minimized if every logical problem is filled with a
unique physical element after reconfiguration.

After transforming the total cost function € = C; +
@, to the neural net energy function E™, the resulting
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synaptic strengths and biases are determined as follows:

—A, ifx # yandx,ye L;; for some i, j
wy =4 —B, if x, y € P, ; for some i, j
0, otherwise.

and b, = B for all z’s.

The neural network design requires pgmn neurons, and
the total number of synapses is bounded by mnpq(pq —
1) + pq. Assuming that the synaptic wirings for neurons
within a processor element are negligible, the total length
of the synaptic wirings is bounded by

ol (35 m(5 0]

which is of complexity O(mnpq(hp® + wg®)). But, by
keeping p and g small, such as two or three, the total
numbers of neurons and synapses, and length of synaptic
wirings will have a reduced complexity of O(mn).

Now, let us examine how the neural net will act when
some positions of the logical array are not filled with a
physical element, while a maximal matching has already
been reached. Let (s, ) be some position whose associ-
ated surviving elements have all been used to fill other
positions. We will ignore the possibility that all elements
associated with position (s, ) are defective, since it would
be impossible to find a complete matching in the first
place. Due to the cost term C,, every neuron in P; ; will
be encouraged to fire by a bias of B. However, due to the
cost term €, the same neuron will receive —A amount of
influence to stay in the nonfiring state. By the assumption
B > A, all neurons in P; ; will try to turn on to the firing
state to satisfy the more important need to fill position
(i, j). After one of the neurons is turned on, say neuron
(i, j, k), the B amount of bias received by the neurons in
P; ;, including (i, j, k) itself, will be canceled out by the
— B amount of influence received from neuron (i, j, k).
However, element (i, j) would have made more than one
unique move, by having two neurons from its neuron
group firing it at the same time. Due to the cost term €y,
the two conflicting neurons will fire —A amount of influ-
ence to force each other to turn off. If neuron (i, j, k)
succeeds, then the neural net is effectively starting a new
search for another maximal matching. This process is re-
peated until a complete maximal matching is found.

To evaluate the Window Substitution method, three dif-
ferent window sizes, 2 X 2 (NNWS22), 2 X 3
(NNWS23), and 3 X 3 (NNWS33), are described and
their performances are compared with the Direct Substi-
tution method (NNDS). According to Fig. 9(a), NNWS,
with a window size as large as 2 X 3, is sufficient to
achieve the highest survival rates in all cases. In fact, even
with the smallest window, NNWS22, the Window Sub-
stitution method is found to be significantly more effective
than conventional software algorithms, such as Fixed
Stealing and Direct Reconfiguration. On average cases in
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Fig. 9. Performance evaluations among neural network reconfiguration
methods: (a) 8 X 8 processor arrays; (b) 16 X 16 processor arrays.

the simulation, NNWS22 approaches the performance of
Variable Stealing as the number of defects increases, and
actually surpasses the VS’s performance when there are
14 or more defects occurring in a defect pattern.

According to Fig. 9(b), NNWS33 achieves the highest
survival rates, followed by NNDS. However, achievable
survival rates by NNWS23 and NNWS22 appear to be
severely affected by the increased array size. Let r’,‘,,,,, be
the survival rate achieved in m X n arrays with k defects.
To demonstrate the effect of array size to the achievable
survival rates, |r’§‘3 - r%’g‘wl versus k is shown in Fig. 10
for each reconfiguration method.

From Fig. 10, it can be easily identified that the Win-
dows Substitution method is the most effective technique
by the increase in array size. NNWS22, NNWS23, and
NNWS33 show the three largest peak differences in sur-
vival rates. The bell-shaped curves can be explained as
follows. When there are only a small number of defects
in the array, all methods can handle the reconfiguration
easily regardless of the array size. As the capacity of a
method is gradually saturated by more defects, the array
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Processor arrays.

size becomes quite critical. Finally, the task of recon-
figuration becomes more and more difficult as the number
of defects increases to the maximum value that can be
repaired, because the differences are reduced by the low
survival rates in both arrays. In this aspect, NNWS33 and
NNDS show the largest capacities in handling defects by
having their peak differences skewed to the maximum de-
fects.

Finally, to show the robustness of neural network con-
trol units, random faults are injected into the simulation
model of an 8 X 8 processor array such that the process-
ing elements as well as the associated neural networks can
have faulty components. The results of simulation have

been applied to Stapper’s [30], [31] well-known yield
model to estimate the improved yield values, Y,’s, of the
various types of neural networks discussed in this paper.
These estimated yields have been shown in Fig. 11 along
with the yield, Y;, of a processor array having no built-in
self-repair circuit.

IV. SUMMARY

As gargantuan ULSI and GSI chips with several billion
transistors are becoming a reality, massively large array
processors are envisioned to be ideal candidates for the
exploitation of large silicon surfaces. Even with very so-
phisticated processing technologies with as low as
0.0001% defect densities (i.e., one defective transistor
per million), several thousand transistors are likely to fail
due to some unavoidable manufacturing defects. To
achieve reasonable chip yield, built-in self-repair (BISR)
schemes are required to eliminate automatically these
faulty components. This paper demonstrates a powerful
BISR circuit which employs a distributed neural network
to collect the global fault pattern and to derive an efficient
solution for reconfiguring the array. The output of the
neural network is applied to the control inputs of multi-
plexers to program them such that the defective compo-
nents are eliminated from the paths of computation. Two
neural repair algorithms are proposed in this paper. The
Direct Substitution technique performs a maximum
matching algorithm that provides an efficient one-to-one
mapping between the defective and the spare elements,
while the more powerful Window Substitution recon-
figuration scheme rearranges logical labels of the fault-
free processors such that the connectivities of the target
array network are maintained over them. The significant
difference between these two approaches is that while the
first scheme labels the spare elements separately such that
each processor in the array has designated spare proces-
sors, the second scheme attempts to construct a logical
array of the required size over a physical array of good
and defective processors. Both schemes are efficient in the
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sense that they can achieve near-maximum utilization of
the redundant interconnections. The simulation results
show that even the less sophisticated Direct Substitution
technique has superior performance to the software heu-
ristic reconfiguration algorithms; the performance of the
more sophisticated Window Substitution scheme can be
improved further by adjusting its window size. Both these
techniques require relatively low circuit overhead and they
can ameliorate the chip yield by a significant factor. At
the same time, the BISR circuits can also improve the life
span of a chip by automatically restructuring the chip
when components fail during its normal operation. In
space and other harsh environments, where chips may fail
more frequently due to cosmic radiations and ambient
noise, the BISR circuits will improve the survivability and
availability of the system.
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