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Generation of Minimal Vertex Covers 
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Absfracf-This paper lays foundations for an approach to on-chip 
row/column allocation that exploits certain properties offered by 
laterally connected networks of simple threshold devices. As a sample 
application, it is demonstrated how electronic implementations of these 
networks can be used as the basis for effective memory array repair 
systems that require little hardware overhead. 
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1 INTRODUCTION 
THE decade of the 1980s saw phenomenal advances in VLSI circuit 
technology, as shrinking feature width and increasing die size 
allowed unprecedented levels of integration. These advances, un- 
fortunately, also rendered fabrication processes more susceptible 
to impurity-related manufacturing defects, even as greater circuit 
complexity left many subsystems ”embedded,” where they cannot 
be observed externally or controlled directly As prospects for 
further technological development reach previously unthinkable 
levels, it is becoming necessary to develop built-in systems which 
can automatically repair partially faulty integrated circuits. 

This paper lays theoretical foundations for an approach to on- 
chip spare allocation in regular VLSI structures such as memories. In 
high-density DRAM chips, manufacturers commonly include spare 
rows and columns of memory cells so that rows and columns in 
which faulty cells are detected can be replaced. Repair by the re- 
placement of rows and columns of memory cells, rather than by 
replacement of individual cells or entire memory sub-arrays, offers a 
good compromise between simplicity of reconfiguration hardware 
and efficient utilization of spare memory. This reconfiguration strat- 
egy, however, gives rise to a difficult optimization problem. Given a 
scattering of faulty cells in a two-dimensional rectangular array, 
determining whether the array can be repaired using a limited num- 
ber of spare rows and columns is NP-complete [l]. 

The problem of efficient spare row and column allocation in 
redundant memories has been widely studied [l], [2], [3], [4], [SI, 
[6], [TI, [81, [9], [lo], 1111, and a variety of applicable algorithms are 
present in the literature. To be considered viable for the purpose of 
on-chip spare allocation, however, an algorithm must satisfy two 
challenging and mutually conflicting design requirements. First, it 
must lend itself to easy implementation using very little hardware, 
incurring a minimal penalty in terms of silicon area overhead, and 
second, the algorithm must be capable of rapidly generating high- 
quality solutions to spare allocation problem instances. Previously 
reported algorithms for spare row and column allocation, most of 
which were designed for incorporation into dedicated repair sys- 
tems on integrated circuit production lines, generally fail to meet 
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one or both of these criteria. In contrast to these existing methods 
of spare allocation, the approach presented in this paper offers the 
combined advantages of high execution speed, simplicity of im- 
plementation, and high rates of successful spare allocation in 
problem instances for which solutions exist. 

Section 2 of this paper begins the theoretical discussion by describ- 
ing a graph-thatic model for the problem of array repair through 
row and column replacement, relating the problem to that of finding a 
constrained vertex cover in an undirected bipartite graph. Some rele 
vant pmperties of laterally connected threshold devices are reviewed 
briefly in Section 3. Section 4 introduces a class of threshold device 
networks which is proven applicable to a generalized form of the ver- 
tex cover problem, and Section 5 concludes the theoretical discussion 
with an examination of certain convergence issues. Section 6 demon- 
strates how electronic implementations of the proposed networks can 
be applied to the problem of spare allocation in embedded memories. 
Simulation results indicate that these networks can be made to provide 
consistently feasible solutions to the computationally intractable spare 
allocation problem. 

2 GRAPH-THEORETIC DEFINITIONS AND MODEL 
We begin by defining some common terms from graph theory, 
regarding the vertex covers of undirected graphs. 
DEFINITION 1. Given an undirected graph G consisting of a set of verti- 

ces V a n d  a set of edges E ,  i.e., G = (V, E ) ,  a subset V,  of V is called a 
vertex cover of G iffevery edge i n  E has at least one endpoint in V,. 

DEFINITION 2. Given some subset R of V ,  a vertex cover V,  of G is said 
to be minimal with respect to R if there exists no vertex i in  
R n V, suck that V,  - [i]  is a vertex cover of G. 

The problem of finding a vertex cover whose cardinality is less 
than some specified constant is known as the vertex cover prob- 
lem, and a vertex cover which contains the least number of verti- 
ces necessary to cover a given graph is considered optimal. For the 
purposes of this paper it will prove useful to define a new term, 
the generalized vertex cover (GVC) problem, as follows. 
D E m I O N  3. Let G = (V, E )  be an undirected graph, and let R,, R,, ..., 

R, be disjoint subsets of its vertices. Given integer constants C,, C,, 
..., C, we define the generalized vertex cover problem for G with 
respect to R,, R,, ..., R, to be that of finding a vertex cover V,  of G 
such that the cardinality of R, n V, is less than C, for 1 5 i I D. 

An optimal solution to the generalized vertex cover problem is a 
vertex cover with the property that 

is a minimum, where I R, n V, I denotes the cardinality of R, n V,. 
Finally, we define the connection matrix associated with an 

undirected graph, a construction which will prove useful in 
later analyses. 
DEFINITION 4. Given an undirected graph G = (V, E )  in  which V has 

cardinality N ,  let the connection matrix C associated with G be the 
N-by-N matrix whose element c,, equals 1 i f a n  edge connects verti- 
ces i and j ,  i.e., i f e ( i ,  j )  E E, or equals 0 otherwise. 

It is assumed that the N vertices of G are numbered 1 through N in 
some arbitrary manner. Note that, by definition, the connection 
matrix associated with an undirected graph must be symmetric. 
Furthermore, if no edge in G connects any vertex with itself, then 
the graph is said to possess no self-loops and the main diagonal of 
its associated connection matrix consists entirely of Os. 
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An instance of the spare row/column allocation problem con- 
sists of a two-dimensional rectangular array of cells, some of 
which are designated faulty, and two integers providing, respec- 
tively, the number of spare rows and the number of spare columns 
available with which to make repairs. Any subset of the rows and 
columns in such an array constitutes a spare allocation scheme. In 
the context of memory stuck-at fault repair, we define a spare do- 
cation scheme to be valid if and only if its constituent rows and 
columns, taken together, contain every faulty cell in the array at 
hand; a valid spare allocation scheme is said to be minimal if  and 
only if there does not exist any proper subset of its constituent 
rows and columns which is itself valid. We define a valid spare 
allocation scheme to befeasible if and only if the number of desig- 
nated rows and the number of designated columns each obey their 
respective upper bounds as set forth under the particular problem 
instance at hand. Finally, we consider optimal any feasible spare 
allocation scheme which designates for replacement the minimum 
total number of rows and columns. 

Fig. 1 illustrates these concepts. Assuming there exist four 
spare rows and four spare columns with which to make repairs, 
the diagram in Fig. la  represents an instance of the spare alloca- 
tion problem. Fig. lb  indicates those rows and columns designated 
for replacement under one possible spare allocation scheme. This 
solution is valid, minimal, feasible, and optimal with respect to the 
simple problem instance at hand. 

denotes a faulty cell mdlcates cell to be replaced 

(a) (b) 

Fig. 1. A faulty array and a valid spare allocation scheme. 

The problem of spare row/column allocation in a two- 
dimensional rectangular array can be modeled as that of comput- 
ing a constrained vertex cover in an undirected bipartite graph [l]. 
Consider an array of M ,  by M ,  cells, containing a defect pattem in 
which faults occur in m, or fewer distinct rows and m, or fewer 
distinct columns, where m, I M, and m, 5 M,. If a graph on m, + m, 
vertices is constructed such that each row and each column of the 
array corresponds to exactly one vertex, and such that an edge 
connects vertices i and j if and only if a faulty cell lies at the inter- 
section of the corresponding row and column, then it is easily 
proven that valid spare allocation schemes for the faulty array 
exhibit a one-to-one correspondence with vertex covers of the 
associated graph. Applying the graph-theoretic definition pro- 
vided earlier, furthermore, it is clear that an instance of the spare 
allocation problem is easily represented as a special case of the 
generalized vertex cover problem, in which D = 2, the subset R, 
consists of all vertices corresponding to array rows, R, consists of 
all vertices corresponding to array columns, and the constants C, 
and C, are determined by the number of available spare rows and 
spare columns, respectively It is worth mentioning that this 
graph-theoretic model, and hence the results described in this 
paper, apply only to arrays of two dimensions. 

As an example, consider the faulty 1,024-by-1,024 array illus- 
trated in Fig. 2a. Fig. 2b depicts an associated bipartite graph in 
which vertices 1 through 4 correspond, respectively, to rows 42, 
118,629, and 823 of the array, and vertices 5 through 8 correspond, 
respectively to columns 37, 125,225, and 921. Every vertex cover 
of this graph can be mapped to a valid spare allocation scheme for 
the original array. 

37 125 W , I I I 9:1, Q-Q 

Fig. 2. A faulty array and an associated bipartite graph. 

3 RELEVANT PROPERTIES OF LATERALLY CONNECTED 
THRESHOLD DEVICES 

A threshold device network of the form considered throughout 
this paper consists of highly interconnected simple processing 
elements, which are numbered 1 through N in some arbitrary 
manner. The current state s, of threshold device i at any given time 
is either 0 or 1, and the current state S of the system is the binary 
vector determined collectively by the states of all N devices. 

Given a network in the current state S, its next state S’ is 
brought about by updating the state of exactly one of its constitu- 
ent threshold devices. Thus, S and S’are separated by a maximum 
Hamming distance of one. The next state s, of device i is deter- 
mined by 

1 i f  q ( S )  > 0 1 sl otherwise 

N 

sl’= 0 if c ( S ) < O  where F ; ( S ) = c w , s , + b ,  
,=1 

at the time the device is clocked. Each w,, is a constant multiplicative 
weight between the output of threshold device j and the input of 
threshold device i, and b, is a constant bias term. Fig. 3 presents a 
high-level schematic of a general threshold device network. Thresh- 
old devices are “laterally connected in the sense that the input to 
each device is a function of the outputs from every other device in 
the network. 

1 -  I I  I I I I 1 ‘ I  

1 
Fig. 3. Schematic of a general threshold device network. 

If the matrix W of interconnection weights is symmetric and 
possesses no nonzero terms on its main diagonal, i.e., if w,, = wi, 
and w,, = 0 for I I i, j I N, then the value of the function 
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threshold devices, and defining V,  as before, we state the follow- 
ing lemma. 

LEMMA 2. Let H be a network of laterally connected threshold devices 
whose energyfunction is given by E,, and whose parameters A and 
B, are chosen so as to obey the inequalities 

is guaranteed to decrease monotonically as the state of a threshold 
device network evolves. Stable states of a network, those states in 
which the next state s! of threshold device i equals s, for 1 I i < N,  
exhibit a one-to-one correspondence with the iocal minima of this 
"energy function." A network of laterally connected threshold 
devices whose stable states represent potential solutions to an 
optimization Problem Can be used as a simple means for COmPUt- 
ing these solutions [ 121. 

4 THRESHOLD DEVICE NETWORKS FOR GENERALIZED 

A >  B1(2 I L i J  -') and Bi 2 0 for 1 I i I K. 
2 

A necessary condition for  any state of H to be stable is that its associ- 
ated V,  be a vertex cover of G. 

PROOF. Suppose there exists a stable state S of H for which V,  is 
not a vertex cover of G. Then it must be true that VERTEX COVER PROBLEMS 

The primary theoretical contributions of this paper are expressed 
in three theorems, each of which contributes to the eventual d e  
velopment of methodologies for effective on-chip spare row/ 
column allocation in VLSI arrays. The purpose of this section is to 
identify and analyze a class of threshold device networks which is 
proven applicable to the GVC problem. 

Consider a network of threshold devices whose energy func- 
tion is of the form 

1) some edge in G has neither of its endpoints in V, and 
2) system energy cannot be reduced by rectifying this 

We demonstrate that our choice of network parameters ensures 
conditions 1 and 2 cannot simultaneously be satisfied. 

Condition 1 implies that z, < I L, I for some i between 1 and K. 
Suppose that switching one of the remaining I L, I - z, threshold 
devices in subset L, from state 1 to state 0 will have the effect of 
including in V, an endpoint of n edges whose other endpoints 
did not previously lie in V,. Doing so will prevent 2n nonzero 

situation. 

connection matrix elements from contributing to the value of 
the energy function, such a change in the state of results in a 
net decrease in energy iff 

where each c,, is determined by the connection matrix of some 
undirected graph G with no self-loops, and where A is any posi- 
tive constant. If a correspondence is established between device i 

-A(2 n) + Bl[(zl + 1)2 - z:] < 0 

or, in other words, A > 

of the network and vertex i of G for 1 I i I N ,  and if a subset V, is 
defined of which vertex i is considered a member whenever s, = 0, 
then we have the following lemma. 
LEMMA 1. Let H be a network of laterally connected threshold devices 

whose energy function is given by EVc A necessary and sufficient 
condition for any state to be a local minimum of E ,  and hence a 
stable state of H, is that its associated vertex set V, be a vertex 
cover of G. 

Bl(2 Z l  +I> 
2 n  

In the limiting case when only one member of L, is in state 1, 
and switching the state of this device eliminates the contribu- 
tions of two nonzero connection matrix elements, this inequal- 
ity reduces to 

PROOF OF NECESSJTY. Suppose there exists some state s of H such 
that Bl(2141 - 1) A >  
1) the state is a local minimum of E ,  and 2 
2) its associated V, is not a vertex cover of G. 

Maintaining this inequality across every parameter of H guar- 
Recalling the correspondence established between threshold antees that conditions and are incompatible. Hence, stable 

0 devices and vertices, and between connection matrix elements states of Hare associated with vertex 
and graph edges, condition 2 implies that there must be some i 
andj  such that c,, = s, = s, = 1. switchg either s, or from 1 to 0, Every stable state of a threshold device network satisfying the 
however, results in a decrease of system energy by M ,  a strictly requirements Of Le"a represents Some vertex cover Of the 
positive value. Thus is not a local minimum of and con- network's associated graph G. It is not the case, however, that 

every vertex cover of G is represented by some stable state. We dition 1 is violated. 
assert the following theorem. 

PROOF OF SUFFICIENCY. Inspection of E ,  reveals that its globally THEOREM 1. Let H be a network of laterally connected threshold devices minimal value is 0. This minimal value is achieved iff s, = 0, or whichfulfills the requirements of Lemma 2, and let U denote the un- s, = 0, or both, whenever c,, = 1. As every state S which repre- ion of all sets L, of threshold devices for which B, > 0. A necessary and sents a vertex cover must satisfy this condition, every such state sufficient condition for any state of H to be stable is that its associated is a local minimum of E,. vertex set V, be a vertex cover of G which is minimal over the set of 
Now consider a laterally connected network whose N thresh- vertices corresponding to U. 

old devices are conceptually divided into K arbitrary subsets, L, 
through L ,  such that each device is a member of exactly one sub- 
set and no subset is empty. Let us denote by z, the number of 

of G. 

PROOF OF NECESSITY. Suppose there exists some state S of H such 
that 

threshold devices in set 
Suppose that the network energy function is given by 

which, at any given time, are in state 0. 
1) the state is stable, and 

Y 
2) it does not represent a vertex cover of G which is minimal 

R 

over the set oi  vertices corresponding to U. 
E M V C ( S ) =  Evc(S)+CBizi2 . 

Establishing the usual correspondence between vertices and 
i=l Condition 1 and Lemma 2 guarantee that S does in fact repre- 

sent a vertex cover of G. Condition 2 implies that there exists 
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some vertex i in V, whose elimination from the set would yield 
a new set which is also a vertex cover, and Lemma 1 dictates 
that the value of E, cannot change as a result. The elimination 
of vertex i from V, is effected by switching s, from 0 to 1, a proc- 
ess which results in a reduction of system energy given by 

qz,z  - (ZI - 1YI 
assuming that device i is a member of set L,, and that z, mem- 
bers of this set are in state 0 when His  in state S. As this reduc- 
tion is a strictly positive value whenever device i is a member 
of U, it must be true that S is not a minimum of EMvc Hence, S 
is not a stable state of H. 

PROOF OF SUFFICIENCY. Suppose H is currently in some state S 
which represents a vertex cover that is minimal over the verti- 
ces corresponding to U. The next state of H can differ from S in 
one of three ways. Either 

1) the state of some device is switched from 1 to 0, or 
2) the state of some device which does not belong to U is 

3)  the state of some device which belongs to U is switched 
switched from 0 to 1, or 

from 0 to 1. 

Lemma 1 guarantees that S is a local minimum of E,. Since the 
sum of the remaining terms in E,, never decreases as the 
number of Os in S increases, option 1 cannot result in a reduc- 
tion of system energy. Nor can option 2, since any device which 
is not a member of U must belong to some set L, for which B, = 
0. Because option 3 inevitably ylelds a new state which does not 
represent a vertex cover of G, it must lead to an increase in sys- 
tem energy, as made evident in the proof of Lemma 2. We con- 
clude that S is a local minimum of E,, and hence a stable state 
of H. 0 

Clearly, a vertex cover which is nonminimal over some vertex 
set R can never be an optimal solution to the GVC problem with 
respect to sets R,, R,, ..., X, if X is a subset of R, u R,u ... u &,. The 
threshold device network of Theorem 1 is naturally applicable to 
the GVC problem, and a simple method for mapping any specific 
problem instance onto such a network is apparent. For a graph G 
with any given choice of disjoint vertex sets, one simply constructs 
a network whose energy function is of the form of E,, where 
each c,) is defined by the connection matrix associated with G, and 
where some set of threshold devices corresponds to each vertex set 
over whch vertex covers are to be minimized. A positive B, value 
is chosen for each such set of threshold devices, while B, values for 
any remaining sets are left at 0, and the constant A is chosen as per 
the specification of Theorem 1. 

..,lt 

(a) (b) (C) 

Fig. 4. An undirected graph, its connection matrix, and energy 
functions of networks that find minimal covers with respect to ver- 
tices 1 and 6. 

Aspects of the mapping process are illustrated in Fig. 4. Given 
the graph depicted in Fig. 4a, suppose it is desired to generate 
vertex covers which are minimal with respect to the set of vertices 
consisting of vertex 1 and vertex 6. The graph's connection matrix, 
shown in Fig. 4b, is used to determine each c , ~  in the network en- 
ergy functions of Fig. 4c. Function €, results from the mapping 

technique described above. Function E,, the product of an alterna- 
tive mapping process, gives rise to identical stable states and 
serves to demonstrate that the mapping from a given instance of 
the GVC problem to a network of threshold devices is not gener- 
d y  unique. 

5 ALGQRITHMS FOR NETWQRK CONVERGENCE 

Given any instance of the GVC problem, it is now possible to con- 
struct a network of laterally connected threshold devices whose 
stable states represent potentidy optimal solutions. Nevertheless, 
fhe applicability of such a network to spare allocation is limited 
without some means to ensure that stable states are encountered 
within a reasonable length of time. This section describes thresh- 
old device clocking procedures which, for networks that fulfill the 
requirements of Theorem 1, guarantee convergence to a stable 
state in a maximum number of steps. 

Theorem 2 describes a procedure which can be preset, in the 
sense that an inflexible sequence can be established in which de- 
vices are to be clocked. It is presented below without proof. 

THEOREM 2. Let H be a network of laterally connected threshold devices 
whichj@$lls the requirements of Theorem 1, let U denote the union 
of all sets L, of threshold devices for which B, > 0, and let S be any 
initial siate. IJeach threshold device in H is clocked exactly once in 
any arbitrary ordw, aJter which each threshold device in the set U is 
again clocked exactly once in any arbitra y order, then the resulting 
state S'of H will be stable. 

It should be noted that a similar scheme was derived in [13] for a 
less general class of networks. 

One drawback to the procedure of Theorem 2 is that it disre- 
gards information present in the current state of the network 
which can be used to inform the choice of which network state to 
select next. Theom 3 describes an alternative procedure which 
makes use of this information. 

' i R E O m 3 .  k t  H be a network ofsize N whichfulfills the requirements of 
Theorem 1, and whose constants obey the inequality 

A > B, (2 I L, I - 1) for 1 I i I K. 
Define U in the usual manner, and for each threshold device i in H, 
d e j k  afunction G, such that 

F,(S) if F,(S) > 0 and s, = 0 
GJS) = -F,(S) if F,(S) <: 0 and s, = 1 

0 otherwise. 1 
Suppose a clocking procedure is established under which 

k s h o l d  device i in H is clocked iff G, is greater than or equal to 
G, for all other j # i, with ties broken in some arbitrary manner. 
Then, convergence to a stable state is guaranteed in no more than 
N+ IUI -1steps. 

Intuitively, the function G, quantifies the encourage- 
ment received by a threshold device i to switch its state. 
It is easily shown that the procedure of Theorem 3 effec- 
tively leads a threshold device network along the path of 
gradient descent in €Mvc 

6 ON-CHIP SPARE ALLOCATION IN EMBEDDED 
MEMORIES: A SAMPLE APPLICATION 

Section 2 established that the problem of spare row/column allo- 
cation can be modeled as a special case of the generalized vertex 
cover problem. Theorem 1 went on to demonstrate that, given any 
instance of the GVC problem, a network of laterally connected 
threshold devices exists which possesses a unique stable state rep- 
resenting each minimal solution to the instance at hand. Further- 
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more, given a specified network architecture, it is clear that differ- 
ent problem instances can be accommodated by simply modifymg 
the connection matrix upon which the network's energy function 
is based. It follows from these results that a programmable net- 
work of an appropriate size could provide the basis for an optimi- 
zation system capable of devising spare allocation schemes for any 
pattem of faults likely to occur in a given array This section dem- 
onstrates how Theorems 2 and 3, when applied to appropriate 
network architectures, can offer a high probability of encountering 
stable states which represent feasible spare allocation schemes. 
Electronic implementations of the resulting systems, though ex- 
tremely simple, nevertheless offer a high rate of success in solving 
the computationally intractable spare allocation problem. 

- 2 B i ( l - S i ~ ) i f i S m i a n d j S m i  
( - 2 A  cu) if i S mi  a n d j >  ml 
(-2 A e(,) if i > mi  and j S mi 

-1 B z  (1 - all) i f i  > m i  i n d j r m i  

B i  (1 mi - 1) i f f  S ntl 

B z  (1 mz - 1) if i > mi  

Fig. 5. An implementation of network H, for m, = m, = 4. 

1 

7 

Employing the technique described in Section 4 to map an in- 
stance of the GVC problem onto a network of threshold devices, 
the spare allocation problem can be represented as follows. With 
faults expected to occur in m, or fewer distinct rows and m2 or 
fewer distinct columns, construct a network H, of size N, where 
N = m,+ m2, and choose subsets L, and L2 of cardinality m, and m2, 
respectively Let the threshold devices of set L, be numbered from 
1 to m,, let those of L2 be numbered from m, + 1 to N, and establish 
a correspondence between device i and row i of the fault pattem 
for 1 I i S m,, and between device i and column i - m, for (m, + 1) 
I i I N. Finally, let connection matrix elements be determined by a 
graph associated with the specific pattem of faults to be repaired. 
The energy function thus created is 

N N  r M. -12 r 

By expanding squared terms and relating the result to the general 
energy function of Section 3, values can be derived for network 
interconnection weights and bias terms. These values, along with 
an electronic implementation of the resulting network, are illus- 
trated in Fig. 5. 

If the initial state of H,  is fixed to the N-vector consisting en- 
tirely of Is, then the gradient descent procedure of Theorem 3 allo- 
cates spare rows and columns according to what, in effect, is a 
simple heuristic algorithm. Gradient descent allocates the first 
spare to cover some row or column containing the maximum 
number of faults. Spares are assigned thereafter in the same man- 
ner, with ties between any row and column broken in favor of that 
set from which fewer spares have already been allocated. The ten- 
dency to eliminate the maximum number of faults with each allo- 
cation may even be overridden if the number of spares allocated 
from one set greatly exceeds that of the other. Intuitively, the sys- 
tem will tend to preserve a balance between the number of spare 
rows and spare columns assigned, thereby preferring stable states 
which represent feasible spare allocation schemes. 

Theorem 2 can be used as the basis for an even less complex 
alternative system. Since the preset updating procedure is unable 
to exploit any heuristic qualities present in a given energy func- 
tion, however, it is worthwhile to construct a new energy function 
whose implied network H ,  is as simple as possible. Let us modify 
network HI by establishing N threshold device subsets, L, through 
LN, rather than the original L, and L,. The resulting energy function 

gives rise to the interconnection weights and bias terms detailed 
in Fig. 6 .  An electronic implementation of network H2, also 
shown in Fig. 6,  is easily constructed using strictly digital com- 
ponents. Approximating the silicon layout area of an integrated 
circuit by the number of transistors it comprises, and given an 
expected maximum fault pattern size of 32 by 32 elements, a 
network of this kind would require only 0.29 percent of the total 
area of a 1 MBit DRAM. 

Oif i S m j  a n d j i m j  
(-2 A el)) i f ;  5 mj  and j > mj 

(-2 A c,]) if i > m i  and j S m j  

0 if i > m j  and / > m i  

and b'=B' Wcj = 

Fig. 6. An implementation of network H, for rn, = m, = 4. 

Consideration must now be given to a means of generating ini- 
tial states for network H,, and to a strategy for clocking its thresh- 
old devices. In order to ensure that neither row nor column re- 
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placements are preferred, and to increase the likelihood of devis- 
ing feasible spare allocation schemes, it is reasonable to establish 
an updating protocol which alternates between threshold devices 
corresponding to rows and devices corresponding to columns. 
Initial states may be chosen in a random fashion to allow for thor- 
ough exploration of the search space, and repeated iterations per- 
formed until the network converges to a state representing a fea- 
sible spare allocation scheme. 

Fig. 7 illustrates a paradigm for using a threshold device net- 
work to provide for on-chip spare allocation in embedded mem- 
ory arrays. Faulty cells are located by BIST hardware, and the re- 
sulting pattern of faults is used to configure the interconnection 
weight matrix of an appropriate network. (It is important to note 
that, typically, fault distributions within large memories can be 
represented by compacted patterns which are many orders of 
magnitude smaller.) With programming completed, control hard- 
ware resets the threshold devices to some initial state, and begins 
an updating procedure which brings the network to convergence. 
The resulting stable state is evaluated to determine whether it 
represents a feasible solution to the problem instance at hand. If 
so, a signal is generated which directs reconfiguration hardware to 
repair the memory as per the suggested spare allocation scheme. 

to Memory Army 

A 
to Recontigdon Hardware 

A A  

Fig. 7. Application of a threshold device network to spare allocation in 
embedded memories. 

Tables 1 and 2 summarize the performance of the heuristic and 
iterative approaches, respectively under variations of fault pattem 
size, number of available spare rows and columns, and average 
number of faulty elements per pattern. Fault pattems were gener- 
ated randomly through a process which guarantees repairability. 
Table 3 summarizes the performance of Repair Most [lo], the most 
viable alternative algorithm for on-chip spare allocation, when 
applied to the same sets of test instances. Tables 4 and 5 detail 
performance of the iterative approach as a function of the number 
of iterations completed. Here, ”rate of success” refers to the per- 
centage of problem instances for which the algorithm under test 
was capable of devising a feasible solution. It is assumed that the 
spare allocation systems under test are themselves fault free. 

TABLE 1 
PERFORMANCE OF THE HEURISTIC APPROACH, 

SHOWING THE RATE OF SUCCESS FOR EACH CASE 

TABLE 2 
PERFORMANCE OF THE ITERATNE APPROACH, 

SHOWING THE RATE OF SUCCESS FOR EACH CASE 

TABLE 3 
PERFORMANCE OF REPAIR MOST, 

SHOWING THE RATE OF SUCCESS FOR EACH CASE 

TABLE 4 

TO 16-BY-16 FAULT PATTERNS, SHOWING RATE OF SUCCESS 
PEWORMANCE OF THE ITERATNE APPROACH WHEN APPLIED 

AS A FUNCTION OF NUMBER OF ITERATIONS 

TABLE 5 

TO 32-BY-32 FAULT PATTERNS, SHOWING RATE OF SUCCESS 
!?ERFOF&fANCE OF THE ITERATIVE APPROACH WHEN APPLIED 

AS A FUNCTION OF NUMBER OF ITERATIoNS 

7 CONCLUSION 
This paper lays foundations for an approach to on-chip spare allo- 
cation in rectangular VLSI arrays, demonstrating how properly 
designed networks of simple threshold devices can be used as the 
basis for optimization systems which are simple and effective. It 
should be emphasized that the proposed hardware systems are MOL 
as powerful as some existing software-based spare allocation 
techniques. Such existing techniques, however, were developed 
for utilization by external repair equipment, and the algorithms 
employed typically require the full resources of a general-purpose 
digital computer. Hardware implementations would incur far too 
much area overhead to be considered viable for the purpose of 
built-in self-repair. In contrast, the systems developed in this pa- 
per achieve near perfect success in devising spare allocation 
schemes, using hardware whose complexity is negligible when 
compared with a VLSI array of any substantial size. 

Earlier research along these lines [14] succeeded in developing 
threshold device networks which, intuitively, seemed applicable to 
the spare allocation problem, but which occasionally failed to 
yield valid spare allocation schemes in practice. While they do 
build upon these earlier results, the systems described in this pa- 
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per include a number of major refinements which make their ac- 
tual implementation for the purpose of built-in self-repair an im- 
mediate practical possibility. First and most importantly, the gen- 
eral network architectures developed are proven to possess stable 
states which represent only valid spare allocation schemes. Sec- 
ond, certain special instances of these networks can be imple- 
mented in a straightforward manner using strictly digital compo- 
nents. It deserves mention also that Theorem 1, as derived herein, 
is easily extended to the case of threshold device networks which 
operate in the analog domain [15], raising the possibility of alter- 
native optimization system designs that offer much greater speed 
of operation than those described here. 
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Hyperneural Network-An Efficient Model 
for Test Generation in Digital Circuits 

Suresh Rai and Weian Deng 

Abstract-This paper considers the problem of applying neural 
network for logic circuit testing and proposes an efficient method 
based on hyperneural network (HNN). The HNN uses an energy 
function that not only considers binary relations but also captures all 
higher order relations among N neurons. We illustrate the hyperneural 
concept using two formulations. First, a constraint engery function is 
defined and the gate model is obtained. Second, the Hopfield network 
is reformulated to generate the gate level hyperneural model. The gate 
level HNNs are used to give a mathematical form to the digital circuit 
that, in turn, requires optimization techniques to solve the test 
generation problem. We have used ISCAS’85 benchmark circuits to 
illustrate the method. Results are compared with those obtained from 
PODEM, MODEM, and FAN. 

Index Terms-Hyperneural model, logic circuit testing. neural network, 
NP-completeness optimization, pseudo-Boolean programming, 
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1 INTRODUCTION 
A Boolean difference (BD) approach defines a complete set of tests 
for a given fault and, thus, offers a unique advantage over path 
sensitization techniques [4], [9], [lo]. It was disfavored because of 
the difficulty in the manipulation of algebraic forms using com- 
puters. Currently, reformulating BD between the unfaulted and 
faulted circuits using pseudo-Boolean programming [ 11, [SI, Boo- 
lean satisfiability and implication graph [ll],  and neural network 
131, [8] has renewed interest in it. They also help make the BD 
problem machine computable. 

This paper extends the concept of neural networks (NN) model- 
ing of digital circuits for test generation. The NN are interconnec- 
tions of neurons that are simple computing elements and are charac- 
terized by a pseudo-Boolean quadratic function, called the energy 
function [3], [6]. “kradhar et aI.[3] and Fujiwara [8] use Hopfield 
network and the basis NN set for two input gates. Hopfield network 
of N neurons describes only binary relations between neurons. Gates 
with more than two inputs need hidden neurons. Even two inputs 
XOR and XNOR gates require four neurons. Inclusion of an addi- 
tional neuron doubles the search space. Finding a valid test set is, 
therefore, either increasingly hard or the network converges to an 
invalid solution. We propose here a new model, henceforth called 
hyperneural network 0, to overcome the difficulties with existing 
NN modeling techniques of logic gates. The proposed technique 
captures all (including binary) relations among N neurons. Recently, 
Ortega et al. [13] have independently defined a similar function, 
known as generalized Hopfield network (GHN). They use GHN and 
spectral coefficients in the design of the extra modules of a concur- 
rent testable circuit. 

The lay out of the paper is as follows: Section 2 provides the 
background needed in later sections. We discuss two formulations 
to present the concept of HNN in Section 3. Section 4 describes the 
technique. Section 5 provides experimental results for some typi- 
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