
















A New Built-In Self-Repair Approach to VLSI 

Memory Yield Enhancement by Using 

Neural-Type Circuits 
Pinaki Mazumder. J'v/ellliJcr, IE!:!:. and Ylh-Shyr Jlh. Iv/cmhCl, If.!:f. 

Abs(ract-A� VLSI ('hip siH' is rapidl� increasing. more and 
more circuit components are becoming inacce".,ibl .. for .. ,tenlal 
testing. diagnosis. and repair. Memor� arra�s arc widely us"d 
in VLSI chips. and restructuring of partiall� fault� arra�., b.1 
the available spare rows and columns is a l'omputationall� in
tractable problem. Conventional softwart' nH'mnr� -repair al
gorithms cannot he readil� implemented \I ithin a VLSI chip to 
diagnQse and repair these fault� memor� arra� s. Intelligent 
hardware based on a neural-network model PI'''' ides an eH'el'
tile solution for such huilt-in self-repair (B1SR) applil'ations. 
This paper clearly demonstrate, how to represent the objectil e 
function of the memor�' repair prohlem as a neural-network 
{'nergy function. and ho\\ to exploit the neural net\\ ork 's ")lI
vergence pr()pert� for derh ing optimal repair solutions. T\\ 0 
algorithms have heen developed using a neural network. and 
their performances are compared with the repair most (RM) 
algnrithm that is ('ommonly u,cd h� mcmorl chip manufactur
ers. For randomly generated defect patterns. the proposed al
gorithm II ith a hill-climbing (HC) eal)abilit� has been found to 
be successful in repairing memor� arra), in 9S'7t case.,. as op
PQsed to R:\l's 20'1 cases. The paper also demon,trates h(",. 
hy using l'er� small silicon merhl'ad. onc can impknll'nt this 
algorithm in hardwarl' \\ithin a VLSlchip for BISR nf memor� 
arrays. The proposed auto-repair approach i" S)H)\' n to im
proH the VI.SI chip yield by a significant fat:lor. and it can 
also impnne the life span of the chip b� automatically rcstrul'
turing its memory arrays in the c\ ent of sporadic cell failure, 
during the field liSt'. 

I. hTJ{(llll'C II(), 

As THE VLSI device techn()l()�il'al feature width I" 

rapidly decrea,ing tu the range ()t hundreds uj 
nanometers. the chip yield tends to reduL'c progressively 
due to incrcased chip area. compk.\ fabrication pro
cesses. and shrinking device gcometries. In order to sal
vage partially faulty chip". redLlndant Clrl'Ult ekI1ll'llt, arl' 
incorporated in the chip". and an apprupriate rel'unhglll' 
ation scheme is employed to by pa" and replace the fault\ 
clements. In high-den,ity dynamic random-access mem-
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(lr) (DRAM) dllp'. redundant rows and column, are 
added to reconh�ure the Illellwry subarrays, where the 
rm" or Clllull1[]!' in which defective cells appear. are 
e I illllilated by using techllil)ues such as electrically pro
gramillable latche, or laser p l'lSOnaI17ation. The problem 
(If ()ptimal reconti).!uration and spare allocation has been 
\\idel) studied hy many researchers [ IJ. [91. [10[. [14]. 
[15[. [29[. A review of these algorithms for memory di
agnosis and repair can he seen In [4[. But all of these 
algorithlm cannot he readily applied to embedded arrays. 
where they arc neither l'lllltrollable by external testers. nor 

arc their re'ppns",> readily observable, Built-in ,df-test 
(BIST) cirl'ults are c()mlllonly Llsecl to comprehensively 
test ,uch emhedded arra., s and had chips are discarded 
llhcn thev lad III pass the relevant test procedures. I n  or
(lcr 1(1 ,,-dva�e thc partially tault: chips, new built-in self
I'cpair (BISR) circuits lllu.,t he developed for optimal re 
pair ()f the fault\ l1lemoryarravs 

In this papl'l'. a n()\cl self-repair scheme is proposed 
th:JI usc, a huilt-in nc:ural llc:t\\()rk to determine how to 
automatic'ally repair a faulty memory array by utilizing 
thc ,pare ro\\ s :Jnd column,,- TIVO algorithms have been 
propo,cd to illustrate Illl\\ a neural network can solve ran
dom delcc'!s. and theIr perf(lrm<lnces arc compared with 
Iltc' L'OIllClltiOll<l1 sllft\\are rcpair algorithms, such as Re
{Jair Atu.I! [2f\[. The Repair Most (RM) algorithm IS a 
grcedy algmithlll that itcrati\l'l\ a,signs a spare row (col
utlln) [() replan' the mw tl'plutlln) v.hich currently has the 
maXlmutll unco\ered cl'lls until all the cells arc covered 
pr hypassed (providing a successful solution). or all the 
'pare rows and c()lumns an: exhausted (failing to give a 
repairabk solutilln. if all fault) cell, are llot bypassed). 
whichnl'l ()n'ur, hr,t This algorithm is selected for 
comparisoTl hccau,e it i, relati\cly simple and can be im
plemcnted b� digital h'lrLiv.are, unlike other software al
gorithm,. such as ,itllulatcd annealing or approximation 
algorithm, A hardwarL' \ er,ioTl of simulated annealing 
will rc'(jllirc ;j (iallssian white noise generator to generate 
the random 1ll0\ cs and a logarithmic circuit to schedule 
the temperaturc. The llther heuristic-based algorithms 
(lik,' FLeA. LECA. and BECA [IS], and hranch-and
hOLllld [1-1-1) will rel)ulre 1llIcnll'ode-driven complex digi
tal c'm:uih fpr ,otv ing the prohlem by hardware. The per
fOrInancc of ncural algorithms has been compared with 
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RM by running these algorithms with repairable fault pat
terns and examining what percentages of these fault pat
terns can be repaired by them. The simulation studies 
made in this paper demonstrate that a neural network us
ing a hill-climbing (HC) capability provides a fast and 
good solution for a repairable array. The technique is im
plemented within the chip by an electronic neural net
work, and it promises to be a potential application area 
for neural networks. 

Historically, the memory repair problem dates back to 
the evolution of 64 Kbit DRAM's in the late 1970's [25], 
when, to improve the chip yield, two or three extra rows 
and extra columns were added to each quadrant consisting 
of 64 Kbit suharray of memory cells. Simple greedy [2], 
[28] and exhaustive search II J algorithms were developed 
to rcpair the faulty memory subarrays. Since the search 
space was very small for such problem siLes, all these 
algorithms provided high throughput in memory diagnosis 
and repair. But as the memory size has increased to sev
eral megabits over the last few years, the defect patterns 
have become sufficiently complex and the search space 
has grown extensively. The problem of memory repair has 
been shown to be NP-complete [9]. [141 by demonstrating 
that the repair problem is transformable in polynomial 
time to the Constrained Clique problem in a bipartite 
graph. A number of heuristic algorithms, such as branch
and-bound [14], approximation [14 L best-first search 
[10], and others [15], [29], recently have been proposed 
to solve the memory array repair problem. The two key 
limitations of these algorithms are a) that their worst-case 
complexities are nearly exponential and h) they are not 
readily implementable within the chip for BISR. These 
algorithms are generally written in a high-level program
ming language and are executable on general-purpose 
computers. This paper addresses two fundamental aspects 
of the memory repair problem: how to devise efficient al
gorithms so that the overall production throughput im
proves along with the chip yield, and how to generate such 
repair algorithms in hardware so that they can be applicd 
to repairing memorics, embedded within the VLSI chips. 
The contribution of this paper is to demonstrate how to 
solve the array repair problem by using neural networks. 
and how to implement a BTSR scheme in hardware. A 
neural network can produce solutions by the collective 
computing of its neuron processors with far faster speed 
than the abovementioned sequential algorithms running on 
conventional computers. Since these neural processors are 
simple threshold devices. the basic computing step of 
neural nets is comparable to the on-off switching of a 
transistor [7], [8], 122 L [24]. Another potential advantage 
of using neural networks is that they arc robust and fault
tolerant in the sense that they may compute correctly even 
if some components fail and/or the exciting signals are 
partially corrupted by noise. Thus the reliability of the 
self-repair circuit using electronic neural networks is very 
high. This has heen experimentally verified in Section VI. 

This paper has been organized as follows: Section II 
provides a brief overview of the neural network model 
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and its dynamic behavior. Section III provides a formal 
framework for the memory repair problem using the con
cepts of neural net computation. Two algorithms are de
veloped by programming the synaptic weight matrix of 
the neural net. The first algorithm is greedy, and starting 
from any random configuration (i.e., arbitrary neuron 
states), it can solve the problem by monotonically reduc
ing the energy function of the neural net. The second al
gorithm uses the HC technique to yield a near-optimum 
solution. Section IV gives the simulation results of the 
neural net algorithms. From the simulation experiments, 
it is seen that the neural net algorithms are superior to the 
RM algorithm. An electronic implementation of neural 
networks is demonstrated in Section V. The intrinsic fault
tolerant ability of a neural net is studied in Section VI. 
The yield improvement and hardware overhead caused by 
the neural-net self-repair circuitry are examined in Sec
tion VII. 

II. NELRAL NET COMPUTATION MODEL 
The earliest mathematical formalization of the human 

nervous system can he found in the work by McCulloch 
and Pitts [19], where it was modeled a, a set of neurons 
(computation elements) interconnected by synapses 
(weighted links). Each neuron in the model is capable of 
receiving impulses as input from and firing impUlses as 
output to potentially all neurons in the network. The out
put function of a neuron depends on whether the total 
amount of input excitation received exceeds its predeter
mined threshold value 0, or not. The state of neuron i is 
represented by an all-or-none binary value Sj, with Sj = 0 
being a nonfiring condition and Si = I denoting an im
pulse-firing condition. Note that one may represent a non
zero threshold by applying an external impulse bias hi to 
the neuron i with hi = 0" 

Interactions between two dift'erent neurons occur 
through a synapse serving as a duplex communication 
channel. The signals passing through the synapse in both 
directions are considered independent. Moreover, the sig
nal traveling from neuron i to neuron j is amplified by a 
weight factor WI" i.e., if the impulses fired by a neuron 
correspond to a unit influence, then a firing neuron i pro
duces Wji, amount of influence to neuronj. 

Now, let !Ii denote neuron i's next state value. From the 
above description one can represent the neural net state 
transition function as follows: [0, if 2.: w,) s) < OJ 

I 

sf = I. if 2..: W,;5j > Oi 
I 

Sf' otherwise. 

Actually, in the human nervous system or any other 
biological implementations, neural networks make smooth 
continuous transitions when the neurons change their 
states. Therefore. we assume that neurons which receive 
a larger influence in magnitude will have a faster state 
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tran�iti()n, Neuron proce"ors are expected to operalc' in 
an asy nchronous and randllm fashion , 

Following the description of the behav ior of an indivId
ual neumn. let us look at the overall n.:(work state tran
sition behavior, First. a netwmk state is dcnoted by the 
vector of ncuron statc va riablcs, Givcn a network state 
vector X = (XI. h . . .. . X\ l. X is called a/i�ed point, if 
and only if x; - x, for all i's, That i" ()r all the pllSsihk 
2\ states of a neural net. only the fixed points arc cllnsid 
ered stable. If the current network state is not onl' nf the 
fixed points. the neural net cannot maintall1 the pn;sent 
state. One imlllediate question about the network hehavior 
could concern the state conv'Crg cnce: starting with an ar
bitrary statc. will the network cventually reach a fixed 

poin t? To answer the question. an energy funct ion has 

been formulated, First. let us conside r the Glse <If an ex
citatory or plls itive input to a neuron, Al'cording to the 
neuron's functional de finition . this input will cncouragl' 
the neuron to tire impubes, If the neuron is already in the 
firing state. this input can be looked upon a, negativc en
ergy. since hy convention. a sySklll is mllrC stahle when 
the energy lev'cl is lower, Likewise. an inhibitory or ne'g 
ative input to a neuwn in the nonfiring state should abn 
be considered as ncgat i ve cnergy, On the ()ther hand. 
pos i t i ve energy is created if a firing neuron receives an 
inhibitory input nr a nlln firing neuron n:ccives an excita
tory input. since the network i, potentially destahilizL'd hv 
the input. 

If \I', = \I'" . fm all i's and j's, the tutal energy r;\ \. 
commonlv known as the Lyapunov lunction 1111. is gi\'l.:n 
by 

\ \ 1\, \' " E = - :: � L..J .,{ \\1 "', , 
\. �Ii,.I" 

Note that the change of sta te by neuron i will result in an 
absolute decrease of I:, \\'1,' S, + I (.1, ) h, in energy . where 

I(s, 1 = I if I, = O. and - I otherwlsl: T llgether with the 
fact that the total encrgy is houndcd . the net\\ urk is guar
anteed to reach a local min imal energ� fixed pll int 1121, 

III Nf-l K\J. NI',Tw()KK S()1l II()N, 

The idea of using a neural network to tackle combina
torial op timization problems was first proposed by H op
field [12]. who designed and fahricated a neural network 

for solving the classic J'ral'eling Sale,l//wll Problem 151. 
The objective (cost) function of a comhinatorial optimi
zation problem can he represented by Lvapunov' s energ) 

function of the neural network. and the netlvork's prop

erty of convergence from a random inilial state to a lclcal 
m inimal energy state can he ut ili zed to reduce the L,,,,t 
function of the comhinatorial prohkm , However. thc 
neural computing approach g iven in 1121 leads only to the 
design of a greedy gradient descent I G D) algorithm \\ hich 
stops searching at the fip,t local minimal �Lllution encoun
tered; consequently. the neural netwc)rk solution IS gen
erally of low quality, 

In ' this section \\ e studv the convergence hehavior ot 
neural networks, We denl()nstrate that more p()\l ertu l 

,carchinu str;.llCUle, can he dc\ eloped hy modifying the 
,imple e,D algl;rithlll, By programming the neura l nl't
v\ork ill �ll appropriak v\a�. vvc lind that the ncund nets 

arc capable of searching the solution by He or tunneling, 
Thus. the probab ility of ohtaining a globally optimal so
lution h) lIsing ncural net\\llfks is Icry high , 

A, Arm\' Ri'/Jilil' Pl'u/JlclII RC'{JI'i'.IC'II/u/i(i/I 
Assume a 1lll'IlH)J"\ array ()f size: ,v x N with exactly p 

spare rows and (/ spare �()lumns that can he utilized to 

replace the defectivc rows and columns, Assume an ar
hltrary fault pattern in whll'h taulty cells random l y lKcur 

on III « N) disllllL't mws and 1/ « N) d istinct columns 
of the memory arrav. such that the l'ompacted subarray of 
,izc II/ ;< /I Cl;ntain� all re!c:vant mv" and columns wh ich 
havc at least one faultv ccll, Let the matrix D = {Ii,,} of 
sire 1/1 x 1/ characteri/e the status of the memory cells. 
such that il" . which corresponds to the cell at row i and 
column j. is I if the cdl i� faulty. and Ii" = O. otherwise, 
Normally . vcr) fe\\ cel ls in the array are faulty. and the 
l'haracteristic matrix, D. l'i highly sparse. A row repair 
scheme can be represented a., a vector U of m hits. such 

that II, = 0 if mVI i " to he replaced , otherwise 11, = 1. 0 
� i � III - I h, colullln repair scheme is defined in the 

same ta,hion. and is denoted hy a vector V of 11 bits , The 
numhers of () ' s in U and V must be less than or equal to 
fI and (/. respectively, The memory is said to be repairable 
if the above c(lThtraints are satisfied . and essentially the 

repair prohlem is how to detennmc a pair of U and V. 
sLlch that U I D V = 0, 

In additi()n to the characteristic matrix D. let the overall 
statu.; PI' row i and l'lllllllln.i of the array be characterized 
by r, and /.: ,. respectively. 

I' 
it' \'0\\ I l'(lI1tains defective element;, 

otherwise 

if eolumn .i cpntains defective clements 

otherwise, 

To design a neural net f(lr the memory repair problem. 
a neural net ot SiLl: 1".1 = II/ , 1/ is used. where the states 
of the tirst III neuron, arc denoted by ,l'I,'s. lsi s III, 
and the states of the rcmalt1lllilll neurons by ,I" '". lsi 
s II, For case of interpretation . the first /1/ neuron, arc 
addrc"ed as I'ml' I/eurolls. and the remaining II neurons 
as lO/1I11111111:'1IWI/S, The physical mean ing (lfthese neuron 
states arc defined a, follows' 

if rn\\ ii, ,uggested for replacement 

if colullln .i is sugge'-led for replacement 

l)therwisc, 

I he Cllst funct ion C Ii A' of the Illemory repair problem 
should represent hoth the nonfeasible repairing and in
complete covera�c schcme's h� higher costs, These tWe) 



MAZUMDER AND YIH: VLSI MEMORY YIELD E]\HANCEMEN I 

aspects can be modeled by the following two expressions: 

so that the overall cost function is represented as an al
gebraic sum of C1 and C2. In the above expressions, the 
values of A and B are empirically decided and as shown 
in Section IV, their relative values are critical for obtain
ing the appropriate percent of successful repairs. 

The expression for CI encourages exactly p spare rows 
and q spare columns to be used in the repair scheme. For 
those nonfeasible schemes that require more than the 
available spare rows and/or columns, the cost will in
crease quadratically. If necessary, the optimum usage of 
spares can be experimentally attempted by repeating the 
search operation with successively reduced amounts of 
available spares (i.e., progressively decrementing the 
value of p and/or q in the expression for C1), until no 
successful repair scheme can be found. 

The expression for C2 monotonically decreases as more 
and more defective cells are covered by the spare rows 
and columns. If all defective elements are covered by at 
least one spare row or column, the above expression is 
then minimized to zero. Unsuccessful repairing schemes 
which fail to cover all defective clements will yicld 
positive costs. The two double summation terms in C

2 
are 

equivalent. As it will be seen later in the expression for 
the synaptic weight matrix, this duplication facilitates the 
later transformation to neural net energy functions. 

Another cost function can be defined by modifying the 
CI expression, i.e., 

C; = A/2 (� �I,)2 + A/2 ( ± S21 )
2 

,- I 1- I 

Note that Ci is actually a simplified CI with p and q set 
to zero. Without considering whether all defects will be 
covered or not, the expression for C; prefers repair 
schemes with fewer spares used. Intuitively, this way 
more efficient repair schemes may be encouraged. But the 
new C; + C2 combination has a potential danger of hav
ing a large amount of unsuccessful repair schemes with a 
small number of uncovered defects mapped to local min
ima just because they request less spares. The differences 
between the neural networks defined by these two cost 
functions will be further illustrated later in the simulation 
studies. 

B. The Gradient Descent (GD) Approach 
It may be recalled that the neural network energy func

tion is ENN 
= -1/21:; 1:jw;jS;Sj - 1:;s;b;. By rewriting 

CMR in the form of ENN, the weights of the interconnect-
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ing synapses and the intensities of the external biases to 
neurons can be detennined through simple algebraic ma
nipulations. 

But in order to keep the main diagonal of the neural 
net's synaptic weight matrix zero, all A/2 . 1:s� ternlS in 
the array repair cost expression are rewritten as A /2 . 
1:5,. Since s, E {O. I}, these two tenns are mathematically 
equivalent. However, A /2 . 1:s� corresponds to self-feed
back through a synapse of strength -A for all ncurons, 
and A /2 . Es; means a bias of -A /2 for every neuron. 
The resulting neural network is shown as follows: 

WI,.lj = -A(l - (jij) W2;.2j = -A (l - (ji}) 

b,; (p- I /2)'A+BEAj 

b2j (q - 1/2) . A + BE;d;j 
where {j;j = 0 if i ::f::. j, otherwise 1. 

In order to illustrate how to construct the synaptic 
weight matrix from these values, let us consider a path
ological defect pattern that consists of 16 faulty cells as 
shown in Fig. I. If there are only four spare rows and 
four spare columns. a greedy algorithm such as RM can
not produce a successful repair scheme [I]. The only suc
cessful allocation of spares for replacement is indicated 
in the figure by horizontal and vertical stripes. But due to 
the presence of four defects in both row 1 and column 9, 
the RM algorithm will be tempted to make the first two 
repairs on them. The algorithm will thereby fail to repair 
the memory because, in addition to the available six spare 
rows and columns, the algorithm will require two more 
columns or rows to cover all the defects along the diag
onal direction. The neural network algorithm described in 
this section can repair successfully such a defect pattern 
by finding the unique solution shown in Fig. 1. For such 
a memory fault pattern, the neural net synaptic weights 
will be estimated by adjusting A / B = 1 (the value A = 

2 has been chosen empirically and is not critical for the 
performance of the algorithm) in the above expressions. 
The resulting neural net synaptic weight matrix and the 
biases are given in Fig. 2. 

C. The Hill-Climbing (HC) Approach 
We propose here a neural net with simplified He be

havior that provides high-quality solutions similar to the 
powerful combinatorial technique, called Simulated An
nealing [13]. First, let us note that the solutions to the 
memory array repair problem are classified as success and 
failure. In fact, it is commonly known that all optimiza
tion problems can be transformed to a series of yes/no 
questions [5]. Due to this specific criterion, we do not 
consider any random move that may increase the energy 
of the system until the move is absolutely necessary, i.e., 
the search has reached an unsuccessful local energy min
imum. If the current local minimum does not yield a suc
cessful repair, moves that increase the system energy are 
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0 -, -, -, -, -, 
-, 0 -, -, 0 c 
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0 -, -, c 
-, -, -, 0 -, 

- , 
- 2 

-, - 2 -2 -2 -2 -2 -, 0 -, -2 0 -, 0 -, 
-, -, -, -, -, -, -, -, 0 -, 0 0 -2 -, 

W = -, -, _2 -, -, -, -, 0 0 0 0 0 
-, -, 0 0 0 0 0 -, -, -, -, -, -, -, -, -, 
-, 
-, - , -, 0 -, -, -, -, -, -, 
-, 0 -, -, -, -, -, -, -, -, -, -, 

-, 0 -, -, -, 0 -, -, -, -, -, 
0 -, -, -, -, -, 0 -, -, -, -, 

-, 0 2 -, -, _2 -, -2 -, 0 _2 -, -2 
0 -2 0 -, -, -, -, -, -, -, 0 -, -, 

0 -, -, 0 -, 
-, 0 

b's = 15.9,9,9.9,11.11, 1l.1I. 7.11, ll.ll, 11,9.9.9.9,15, 7. 

allowed hy providing negative synaptic: feedbad to neu
rons themselves. The hasic idea is that when the ,earch 
has reached an unsuccessful local minimum. we ca rl l'orL'l' 

the neural net to make a move hy turning on a neuron. 
whieh appears to enter a lower energ) state but. in fact. 
will increa,e the system energy due to the negative ,el f
feedback. Next. the .'>ystem is expected to rurn ()If .'>0I1\L· 

other neuron to enter a new lower energy .'>talc. tllU.'> es
caping the local minimum energy trap, Notice that with 
very low probability. it is po.'>sible for a neuron to fall inID 
a loop of alternate Of} and ott states. as it i, similarl) po,

sible for simulated an rlealing ((] Cycle th rough randllill 
moves, Consequently. network behavior i, not admissible 
in the sense that it is guaranteed to COIl\ erge to an optimal 
solution state. As in simulated annealing. which uses a 
predefined criterion to hreak the inner loop of optimi/a
tion. a suitable timeout mechanism is neces,arv 1m He 
neural nets to prevent excessively long searches, 

We being [he dcseription of the new neural net b) gll
ing the synaptic weights and biases <I' follllWS: 

WI i,I, -A: H'21.2 " -.4 

H/! .'.-:!., -B d,/: � t '-.:' I I, �B d" 

hi! P A + Br., d,;: hc' 1/ A � 81' eI,. ' �i 

To examine the neural net. let us assume that .4 '* 0 
and B = O. Thus. each row neuron will receive a positiH' 
P . A amount of bla�. and each column neuron Will reCl�i\l' 

a positive 1/ . A amount of hias. Also. due to B = O. the 
row neurons are independent of the coluilln neuron'.. i.e' . 

there arc: no ') naptic: COllIh:c'lions between the two groups. 
Suppose there are p' < fl row neurons that are in firing 

state,: then each roll neuron w ill receive a positive (p -

Ii') . •  j amount of influence. and all of them will be en
c'ouraged to fire, Similarly. if p' > p. all row neurons 
Ivill receil'e a negative Ip - p') , A amount of influence. 
and all will tend to turn otf. 

Next. let u, assume that .-1 = () and B '* O. In this case. 
the aillount 01' inlluencc reccilL'd hy row neuron i is gIven 
h\ 

I.e . . B time.' the number of defective elements in row i 
that w[)uld he cllvered exclw,lvely by a replacement . 

Those defective clements in row i that are currently cov
ered h) some column repairs will not contribute any ur
gency to foree replacement of this row, 

Consider the silLlation where all the spares have heen 
utIlI/.ed (hypothetically) 1m repair. hut there is still a sin
gle defect left uncovered hy the current repair scheme, At 
this point. the number of defects inside a row or column 
IS the only influence on neurons. For the row and column 
that contains this let unu)\'Cred defect. a positive total 
mfluenl'C of B w ill be received by the two corresponding 
neurons, After this defect is cOIered by turning on. say. 
the rnw ncuron. which causes the usc of one more spare 
row than allowed. all the row neurons will now receive 

an additional negative in tluencc ()f A due to the extra spare 
suggested, If we ChOllSC to have B > A. then the neural 



MAZUMDER AND YIH. VLSI MEMORY YIELD ENHANCEMENT 

net will be stuck at the present state, making the repair 
scheme unsuccessful. On the other hand, if we have A > 
B, a\1 the current row spares will cover only one faulty 
element exclusively will now receive a net negative influ
ence equal to I B -- A I, thus causing the network to switch 
to a new state and give up on the current scheme. 

IV. SIMULA nON STUDIES 

In this section, simulation results are provided to dem
onstrate the superiority of the proposed neural computing 
approach for the problem of automatic array repair. Six 
hundred reduced army fault patterns of size lO x 10 
(Case I )  and 20 X 20 (Case 2) randomly generated arrays 
with about 10, 15, and 20% faulty elements wcrc used in 
the experiments. As was explained in Section Ill, these 
small size arrays represent the actual defective rows and 

column, in large-size memory arrays, some as large as a 
few million bits. 

The performance of two GD neural nets GD and GD', 

defined by cost functions C, + C2 and C; + C2, respec
tively, are compared. For both 10 X 10 and 20 X 20 
arrays. the probabilities of finding a successful repair 
scheme versus the ratio B /A are depicted in Fig. 3. By 
controlling the value of B / A ,  the importance of the fault 
coverage over the spare usage can be manipulated. 

According to the figure, the effectiveness of GD' is 
largely affected by how A and B are selected. When A is 
set equal to B, no successful repair scheme can be found 
by GD' for any one of the repairable fault patterns, just 
as was expected in Section III. For 10 X 10 arrays, the 

percentage of successful repairs improves to about 50% 
as B I A increases to 5, and thereafter converges to about 
42 %. GD' behaves similarly for 20 x 20 arrays. except 
that the peak performance happen> at about BIA = 1 2. 
Now, let k be the maximum of p and q, where l' and q are 
the maximum numbers of spare rows and columns al
lowed to form a successful repair scheme, respectively. 

The B / A ratio for a peak value to occur i, found to be 
equal to k. Note that each firing row (column) neuron will 
send a - A amount of influence to disable all other row 
(column) neurons, and a row or column neuron is cn
couraged to fire by as low as a ---B amount of influence 
to cover faults in a row or column. In order to allow the 
neural net to explore wlutions using up to k spare rows 

and k spare columns, we must have B :s; kA to keep up 
to k row or column neurons firing at the same time. 

On the other hand. GD shows the advantage of its low 
sensitivity to how A and B are selected over the range of 
B I A > I. In a hardware implementation of a neural net
work chip, the ratio of B I A is likely to vary over a wide 
range because of processing parameter variations and the 
wide tolerance of resistive elements. Thus the perfor
mance of the neural network will remain uniform from 
chip to chip if GD is implemented as opposed to GD', 
whose behavior changes dramatically with different val
ues of B / A. The percentage of successful repairs obtained 

by GD appears to have a peak value of about 50% at A = 

'29 

VI 60 
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<tl 50 
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...... 
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a 

"" 0 
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B/A 
Fig. 3. Performance comparisons between GD and GD'. 

B and declines asymptotically to about 42 % as B I A In
creases. It is not surprising that the percentages of suc

cessful repairs obtained by GD' and GD are converging 
to the same value, since when B is much larger than A, 
the consideration for the spare usage i s  o f  little or n o  ef
fect, compared with the consideration for fault coverage. 

For the second experiment, the effectiveness of the RM 
algorithm is compared with GD. In order to provide an 
equal starting situation, the programmed neural net is 
started with all neuron processors in nonfiring states in
stead of other random combinations. We will use GD

zero to denote this special case of the GD convergence. 
The performances of these two algorithms are compared 
in Table 1. Random defect patterns are generated for both 
cases, and the algorithms are applied to repair the faulty 
arrays with three different sets of available spares. From 
the results it was seen that on average, GD-zero is twice 
as successful as RM when the defect pattern is not very 

large (represented by Case I) and few spare rows and col
umns are used. But GD-zero is about three to five times 

more successful when the defect pattern is large (repre
sented by Case 2) and a relatively large number of spare 
rows and columns are used. As for the number of steps 

taken to find a repair scheme. it is about the same for both 
algorithms. 

Second, tradeo1ls between the use of two neural com

puting methods arc examined, and the results are shown 
in Table II. For each defect pattern, a number of random 
trials are performed by each method. Average perfor
mance reaches consistency within one hundred random 
trials. As is expectec!, the simulation indicates that the HC 
approach is almost perfect in locating a successful repair 
scheme for repairable arrays due to its ability to perform 
global searches. The probability for the GD to reach a 
successful repair in a random trial is about 0.5. The av

erage number of steps needed by He is about two to three 
times that needed by GD. The runtime for the GD algo

rithm varies very little over a large number of experi
ments, but the HC algorithm is found to have a wide var

iance in the number of steps to execute the search 
successfully. 

The chances of getting a successful scheme achieved 
by the four methods are shown in Fig. 4 as percentages. 
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than CD where the neurum are randomly turned on at the 
initiation of the algorithm, Greedy techniques such ilS RM 
fail to cover more than 67 c;, case, on the average, �or 2() 
x 20 arrays, RM's performance deteriorates, and on a\
erage in more than 80'7c of the case" it fails tn repair the 
memory, 

To ,ummari/,e the simulation result" it may be pOITltL'd 
out that CD is faq in rcaching a spare allocation, and has 
small variance in the number of search ,tcp', On the other 
hand. the number of search ,teps used by the He can var" 
widel". depending on the initial random starting states and 
how difficult the problem instances are. But on average, 
the number of search steps needed hy He does not e,ca
late exponentially, �()r four out of six types of seltings. 
the average number of search steps for He is limited to 
about twice the number for GD, For the other two types 
of ,eltings, the ratios of the average lluillher of search 
steps are no worse than four. In fact. if we compare the 
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the GD approach to attain the ,ame level of success as the 
He approach docs within I '7c , the He approach is found 
\0 be more ellicient, The actual numbers can be seen in 
Tabk [IJ, 

Y, EL I CTR():\IC IMPLlMENTATION 
In this section, we Llenllll1strate how to implement an 

electronic neural network that can repair a faulty memory 

by us ing the He searching strategy, Electronic neural nets 
can be built by both analog and digital techniques, Mur
ray and Smith have discussed their tradeofi's and devel-
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oped a digital neural net representing the interactions by 
pulse stream of different rates [22]. Even though the dig
ital network has better noise immunity. it requires large 

silicon area for its pulse generators and digital multi
pliers. Analog neural n ets using current summing princi
plcs wcrc developed by Graf et al. [7J and Sivilotti et af. 
[24J. Carver Mead's book on analog VLSI presents the 
design strategies for several types of analog ncural sys
tems [20]. These analog neural net, require smail area and 

their intrinsic robustness and ability to compute correctly 
even in the presence of component failures, are particu
larly useful features for large-scalc VLSI implementation. 

In this design, a neuron is realized as a difference am
plifier which produces binary output voltages. The firing 
neuron state is represented by the high voltage output, and 
the nonfiring state by the low voltage output. The synaptic 
influences between neurons, as well as the biases to neu
rons, are represented by electrical currents. Thus, an ex
citatory influence propagated to a n euron can be realized 
by injecting current to the corresponding amplifier input. 
Similarly, an inhibitory influence propagated to a ncuron 

can be realized by sinking current from thc corresponding 
amplifier input. As for the synaptic amplification, it is 
simulatcd by the branch resistance regulating the amount 
of current that passes through. 

Note that for the array repair sparc allocation problem 
discussed here. all the synaptic weights of the intercon

nection matrix are negative. Moreover. between two con
nected neurons, the synaptic weight of the connecting link 
can only be one of two different values, -A or - B. If we 

assume that there are equal numbers of row and column 
neurons, an example electronic neural net with eight neu
rons can be implemented, as shown in Fig. 5. 

According to Fig. 5, a n euron fires a negative influence 
to another neuron by turning on a transistor which sinks 
current from the target neuron's amplifier input. The 
amount of current involved is controlled by the size of the 
transistor. Note that owing to the assumption that equal 
numbers of neurons are reserved for row and column re
pairs, we are able to divide the interconnection matrix into 
four equal parts. It is not hard to find that only the first 
and third quadrants, as indicated in Fig. 5, need to be 
programmed based on the variable memory array defect 
pattern. For each programmable link, an additional tran
sistor controlled by a memory cell is added to the PLIll
down transistor. A programmable link can be discon
nected (connected) by storing a 0 (I) in the memory cell. 

Fig. 6 show, the essential steps in programming the 
neural net's interconnection network. Let the memory ar
ray defect pattern be given in Fig. 6(a), with faulty cells 
represented by black dots. l'iext, by deleting fault-free 
rows and columns, a compressed defect pattern is ob
tained in Fig. 6(b), with a faulty cell denoted by a 1. Then 
the compressed defect pattern is used to program the first 
quadrant of the neural net interconnection matrix, and the 
third quadrant is programmed by the transposed com
pressed defect pattern, as is shown in Fig. 6(c). 

Finally, the possibility of huilding the neural network 

131 

Fig . .5. An example electronic nCLIral net for memory repair 

alongside an embedded memory to achieve this self-repair 
purpose is demonstrated by the schematic diagram shown 
in Fig. 7. 

The design to be discussed assumes that a built-in tester 
is available to provide fault diagnosis information. First 

of all. the status of each memory row and column is de
termined after the testing is donc, and this information is 
stored in the faulty-row-indicator shift-register (FRISR) 
and faulty-column-indicator shift-register (FCISR), with 
a faulty row or column indicated by a 1. Then, to com
press the memory array defect pattern, the detailed defect 
pattern of each faulty row is provided to the row-defect
pattern shift-register (RDPSR) one row at a time. As men
tioned in Section III, the characteristic matrix D is highly 

sparse, and the fault pattern can be stored in the form of 
a compressed matrix each row and column of which will 
contain at least one faulty element. This is obtained by 
shifting those bits of RDPSR that correspond to the n on
zero bits of FCISR, into the compressed-row-defect-pat
tern shift-register (CRDPSR). The content of CRDPSR is 
then used to program a row (column) in the first (third) 
quadrant of the neural net" s interconnection network. The 
row (column) address of the quadrant is obtained by 

counting the nonzcro bits in the FRISR. The stimulating 
biases to the row and column neuron inputs arc generated 
by counting the total number of faults in each row (col
umn) in the row (column) fault-count shift-registers. After 
a repair scheme is obtained by reading the outputs of the 
neuron amplifiers, the information is expanded in reverse 
order to the compression of defect patterns, and passed on 
to control logic of actual reconfiguration circuits. Nor
mally, laser zapping [23], (3), focused ion-beam [21], or 
electron beam [6] techniques are used to restructure a 
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faulty memory array where the l aser or charged beams arc 
llsed for b l ll w i ng nut the rmgrammable fuses to discon
nect the faul ty  rows and col u m n s .  These schemes cannot 
be emp loyed in  automatic restructuri ng . Two viable tech
niques for s e l f- restructuring arc i )  e lectronical ly  rro
grammable amorphous s i l icon fuses.  which can be pr(l
g ra m med by applying a 20-V pulse [27]: and i i i  

programmable electroni c  recontigurat ion s\� itche s .  which 
usually i m pose a smal l amount of penalt i e s  on c i rl'u i t  

speed and are a .  
r h e  c i rc u it behavi o r  w a s  ver ified throu,;h SPI C E  s i m 

u l at ions . S i m ul at ion output for a compressed 4 x 4 dekct 
pattern w i th eight defect i ve memory cel ls  i s  shown in  F i g .  

S as an e xample . T h e  defects arc represented b y  shaded 

squares . The i n i t i a l  state of the neural  net was L e m . i . e . 
there was no a l l ocation of spares for any faulty rows n r  
columns . S i nce every neuron represents e i ther a fau l ty ro w  
or a faulty c o l u m n  i n  t h e  compressed defect patte rn .  to 
cover the defects al l  neurons i n i t i a l ly began t ransit ioll tn
ward the fi r i n g  slate . A ft e r  3 ns. the neurons representing 

mw 2 and column 4 were successful in competi t ion and 
remained in the tiring stat e .  Th i s  can be expla ined by the 
fact that row 2 and column 4 each hay e t h ree d e fects to 
give t he correspo n d i ng neuron the l argest pll', i t i v e  bias t ( )
ward the fir ing state . A l l  other neurons started to turn olf. 
due to the mutual  d i scouragement propagated t hrough the 
negat i ve synapse s .  W hen the remaining neuro n s  were be
comi ng low i n  act iv i ty . the mutual d iscouragement faetor 
was also weakening,  and the neurons started to move to-
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ward the fi r ing s tate agai n .  This t ime the neurons repre
sent i n g  row 4 and column I w e re successfu l .  The other 
four neurons then cont i n ued to the off state . s ince there 
was no remaining defect to cOYc'r and the spares were a l l  
w ,cd up 

VI.  '1 f, l ' !Vd N !  r B HI.\ v !O!< ! �  FAULT CONDIT!ONS 
One unavoidable problem I II add i n g  extra hardware for 

B I S R  is that the e x t r'a hardware i tsel f may be subject to 

component fa i l u res . I n  t h i s  sec t i o n .  we demonstrate the 
i ntrinsic faul t-t(l lerant capabi l i t y  of neural  networks as  a 
reconliguration control u n i t  in the memory repa i r  c ircu i t .  

Three types o f  L'CllllpllIlcnt fai l ure ,>  have been iden t i ti ed 
i n  neural network s .  namely sy napse-stuck faul t s ,  bias 

ti uct uat ions.  and neuron-,wck faults to serve as the fault  
mode l .  For cach faulty s ynapse . ei ther of the synapt ic 
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Fig 9 .  Neural net performance:.. in fault conditions 

weights wi} or I1Ji can be assumed to be stuck-at-x, where 
x is a positive number in the range of synaptic strength 
values, due to transistor-stuck faults or defective memory 
cell s  that control the programmable synapse s .  Faulty hias 
generators are modeled to fluctuate within one unit of the 
predetermined biases, and faulty neurons will have stuck
at-firing or stuck-at-nonfiring states. 

Rather than rendering the entire neural network useless, 
these faults will only reshape the energy (cost) distrihu
tion over the set o f  spare al location schemes .  A llocation 
schemes,  which correspond to complete covers of al l  de
fective memory cel l s ,  may no longer be mapped to ac
ceptable local energy minima, thus prolonging the search 
for an acceptable solution.  On the other hand, incomplete 
allocation schemes may be mapped to fal se acceptable lo
cal energy minima, causing the neural net to stop search
ing without success . 

Identical memory defect patterns prepared in Section 
IV are used here . Random faults are incrementally in
j ected into a He type of neural net to examine the achiev
able percentages of repairs for repairable defect patterns . 
To distinguish the degrees of seriousness among different 
types of faults , we inject only faults of the same type. The 
simulation results are shown in Fig. 9 .  

The results indicate that a smal l number o f  synapse-

stuck faults,  up to five in the 20-neuron network and ten 
in the 40-neuron network, have almost no effect on the 
average performance . But the bias fl uctuation faults and 
the neuron-stuck faults cause the average percentage of 
repairs out of repairable defect patterns to decrease stead
i ly to zero when over one - fourth of total neurons are af
fected. The difference between a bias fluctuation fault  and 
a neuron-stuck fault is in the amount of influence given 
to a particular faulty row or column for repair .  While a 
bias fluctuation fault wil l  encourage or discourage the cor
responding row or column substitution sl ightly by one unit 
of influenc e ,  a neuron-stuck fault wil l  actually insist the 
substitution be made. 

VII . YI U.D AN ALY SIS 

In this section , a quantitative analysis of yield enhance
ment due to neural network ' s  self-repair capabil ity is 
done . Faults are injected into memory arrays ,  spares,  and 
neural networks to compute the resulting y ield. The 
overhead of the self-repair logic is  also estimated. 

A well - known yield formula due to Stapper 1 251 . [26] 
is  used here to calculate the original y ield,  Yo, without the 
neural-net-controlled sel f-repair, 

Yo = ( l  + Ao/a)-o 
where 0 is the defect density , A is the memory array area, 
and a is some elustering factor of the defects . Let P, be 
the probabi lity function for a defect pattern to he repair
able with respect to the remaining fault-free spares and 
the fault condit ion of the self-repair circuitry , and B be 
the area of overhead. Then , the yield,  YN, with neural
net-controlled self-repair can be calculated as fol lows:  

YA = Y() + ( I - Yo ) P" 

where 

to 

Yi, = [ I  + (A + B)o / a] -r> .  
B y  minor algebraic manipulation, i t  can be seen that 

Yil = 
0 

( Y. )" I + BoYIi /a 
I f  a I then , the new yield formula can be s implified 

( l  - P,.) Yo 
Y v = P, + 

I + BoYo . 
We used 256 x 256 (64-Kbit) memory arrays for sim

ulation with a = I and Ao = 0. 2 5 ,  0 . 5 ,  I ,  2 ,  3, 4, so 
that Yo = 80 % , 66. 7 % .  50 % ,  33. 3 % , 25 % ,  and 20 % ,  
respectivel y .  S i x  hundred memory arrays, each with at 
l east nne defect, arc generated accordingly . For each set 
of memory arrays ,  up to four spare rows and four spare 
columns were provided to examine the neural net repair
ability w ith respect to the number of available spares. The 
spares and the neural net components are all  subject to the 
same degree of defect density as the memory array. The 
resulting function values of P, are shown in Fig. 1 0 .  Fi
nal ly ,  the corresponding calculated y ields are given i n  Fig . 
I I . 
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Accord ing to the  ,chemati c  d iagram ,hown i n  F i g  7 
e xcept for the FC/ R I S R  �nd the  R O PS R .  w h ich arc pro
p0!1ionai  to the d i mc ns ion of the memory array . thc l'O I l 1 -

p lex i ty of thc rema i n i ng se l f-repa i r  I ( )g ic  has i ca l ly de
pends on the d i rnenslons of the com pressed d c'fect 
pattern s .  For insta n c e .  an IJl x 11 compn.:s\cd defec t pal  
tern w i l l  requ i rc a neural net o f  / / I  + 11 ne u ron s . S ince the 
mean and variance o f  the n u m  bcr o f  faul ty  column, ( n)ws ) 
can he ca l cu la ted ;Jccord ing to the fau l t  d istrihution I 'unc
t i on . ; In cst imate on the req u i red nc ur;J 1 net size can he 
ea\i I y made t t )  accommodate nearl \ ;J I I  poss i h l e COlll 
pressed defect pattern s .  For the ca,e 0 1 2 5 6  x 256 ( 6-l- K )  
memory array s  with A o  a s  high a\ -l- .  i t  i ,  a ncar-ce n a i lllY 
that the compressed a rray w i l l not be l arge r than I () >< I ( )  
Given an N x N O R A \1 .  l e t  the s iZe: of the max i mu lll 
compre" ed memory defect pat tern he I'� A n  i tcm ized ac
count of the dy nam ic memory array and ,d l-repa i r hard
ware based on transis tor  cou nt is g ive n in Tablc I V .  and 

the perccntages of overhead are l i ,ted in Tahle V for \iH
iou� l I Iemory and neu ra l net size" As i nd icated hy t he 

res u l t s .  the overhead is i ns ign i fica n t .  compared with  the 
y i eld i mprovement . and th e overhead can he even smaller 

if  static R A\1 · s .  with  6Nc tran s istors in  the lIlemory ar
ray . are considere d .  Here the overh ead of the B I ST c i rc u it 
is not included . Typ ica l l y this  overhead is very low ( ahoul 
28  fl ip- flop s and ten gates for a 256-K R A M ) .  a:, shown 
i n  Mazu rnder' s earl icr papers [ 16 ] .  [17 ] .  
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V I II Fl.'"-\ I  R I \lARKS 
The hiolog ica l nervo u s  sy stem's abil i ty to so l ve pe r

ceptua l llpt imiLatinn proh l em s is i m itated here to tackle 
the VLSI array rcpai l p ro h l em In contrast to the cu rre nt 
seq ue nt ial repa i r  a l gori t h m s .  v.. h ich ru n slow l y on the 
c'o nv ent iona l d ig iu l computers , the n eura l network ' s  col 
lect i v e  computational propcrty prov id es very fast sul l! 
t i t l m .  Methods to t ra nsfo rm the prob l em i nstance i nto 
neura l  network computat ion model are demonstrated i n 
dcta i l . Of t he t wo ty pe s  of neural nets studied i n  this  pa
per. the GD neura l  network has been found to be tw o  to 
four t imes hetter than the RM a lgorit hm i n  obtai n ing suc
cess ful repair schemes . ThO' G O  m i ni mize s  t h e  energy 
funl' l i o n  of thc network only  in the loca l ity of the stan i ng 
energy v a l u e ,  rhe performance of t he neural network is  

funher i m p roved hy i n trod uc i ng an H C  tech n ique t hat al
lows the ,earch to escape the traps of local  m in ima . By 
generat i ng random defect patterns and experimenting with 
a l arge n u m her of arrays .  it is seen t ha t the HC al gori th m  
finds a s o l u t ion in  a rcpairable memory array w i t h  near 
certa i n ty ( w ith a proh<l b i l ity of 0 . 9 8  or more ) .  For the  
same fau l t  pattern s , simp le cummerc ial algorithm s .  l ike 
1< \1 ,  can y ield fcas ib l e  solutions for only 20% of the pat 
tern s .  On the averagc . about t wice as many search steps 
a re used hy the H C  as opposed (0 CD. 

Both the HC and GO n eura l networks can be imple
mented i n hard ware u s ing very SITw l 1  overhead. typical ly 
Ie ",  than 3 '1c  if the mcmory size is 256 Kbit or more .  The 
pay utf t)f t h is R I S R  a pproac h is ve ry h i g h :  the V LSI ch i p 
! icld can i n c rease from I U 'k  w i thout the BISR circui t  to 
ahout I OO 'i; h) u s i ng the proposed neural net s .  The paper 
a i s o  pr()\ �s  th at the ncu ra l networh a re mllch morc robust 
and fau l t - to l e ra n l  than the co nvent ional  log ic c i rcui ts .  and 
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thereby are ideally suited for self-repair circuits. The pro
posed designs of neural networks can operate correctly 
even in the presence of multiple faulty synaptic circuit 
elements , and as more numbers of neurons become per
manently stuck to a firing or a nonfiring state, the net
works gracefully degrade in their abilities to repair fau lty 
arrays .  

The paper shows how to solve a vertex -cover problem 
of graph theory , generally known to be an intractable 
problem, hy using neural networks. A large number of 
problems in other domains, which can be modeled in sim
ilar graph-theoretic terms, can also be solved hy the 
neural-nctwork designs discussed in thi s  paper. In the 
memory repair problem, an entire row or column is re
placed to eliminate a defective cell. Such an approach is 
easy to implement and is cost-effcctive in redundant mem
ory designs because the cells are very small in size. But 
a largc class of array networks in systolic and arithmetic 
logic circuits employ a different strategy where a defec
tive cell is exactly replaced by a spare or redundant cell . 
An appropriate graph model for such an array repair prob
lem will be to construct a maximum matching of pairs 
between the vertices of a hipartite graph representing the 
set of faulty cells and the set of available spare cell s .  The 
technique described in this papcr can be extended to solve 
the maximum matching algorithm by neural networks 
[18J . 

The overall goal of the proposed BISR circuits is to 
improve the chip yield by reconfiguring thc faulty com
ponents at the time of chip fabrication, and also to extend 
the lifc span of the chip by automatical l y  testing and re
pairing it whenever a failure is detected during the chip's 
normal operation. In space, avionics ,  and oceanic appli
cations where manual maintenance, namely fIeld testing 
and replacement, is not feasible, such an auto-repair tech
nique will be very useful in improving the reliability and 
survivability of computer and communication equipment . 
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