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ABSTRACT A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through
it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of
complementary metal-oxide semiconductor neurons and memristor synapses can support important synaptic functions such as
spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity
and high density required for efficient computing.
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The sequential processing of fetch, decode, and execu-
tion of instructions through the classical von Neu-
mann bottleneck of conventional digital computers

has resulted in less efficient machines as their eco-systems
have grown to be increasingly complex. Though the current
digital computers can now possess the computing speed and
complexity to emulate the brain functionality of animals like
a spider, mouse, and cat,1-4 the associated energy dissipa-
tion in the system grows exponentially along the hierarchy
of animal intelligence. For example, to perform certain
cortical simulations at the cat scale even at 83 times slower
firing rate, the IBM team in ref 2 has to employ Blue Gene/P
(BG/P), a super computer equipped with 147 456 CPUs and
144 TB of main memory. On the other hand, brains of
biological creatures are configured dramatically differently
from the von Neumann digital architecture. The key to the
high efficiency of biological systems is the large connectivity
(∼104 in a mammalian cortex) between neurons that offers
highly parallel processing power.5 The synaptic weight
between two neurons can be precisely adjusted by the ionic
flow through them and it is widely believed that the adapta-
tion of synaptic weights enables the biological systems to
learn and function.1,4,6-9

A synapse is essentially a two-terminal device and bears
striking resemblance to an electrical device termed mem-
ristor10,11 (memory + resistor). Similar to a biological syn-
apse, the conductance of a memristor can be incrementally
modified by controlling charge or flux through it. In this
study we demonstrate the experimental implementation of
synaptic functions in nanoscale silicon-based memristors.
In particular we verify that STDP, an important synaptic
modification rule for competitive Hebbian learning,6-8 can
be achieved in a hybrid synapse/neuron circuit composed

of complementary metal-oxide semiconductor (CMOS)
neurons and nanoscale memristor synapses (Figure 1a).
These demonstrations provide the direct experimental sup-
port for the recently proposed memristor-based neuromor-
phic systems.12,13 For example, in a crossbar hardware
structure schematically shown in Figure 1b, a two-terminal
memristor synapse is formed at each crosspoint and con-
nects CMOS-based pre- and postsynaptic neurons. The
hybrid memristor/CMOS circuits discussed here can be
fabricated using similar techniques developed recently for
memristor-based memory and logic.14 The crossbar synapse
network can potentially offer connectivity and function
density comparable to those of biological systems and
operate in a way analogous to biological systems rather than
digital computers.12,15 In this case, every CMOS neuron in
the “pre-neuron” layer of the crossbar configuration is
directly connected to every neuron in “post-neuron” layer
with unique synaptic weights. A high synaptic density of
1010/cm2 can also be potentially obtained for crossbar
networks with 100 nm pitch, a feature size readily achiev-
able with advanced lithography approaches.16,17

The memristor in our setup consists of a layered device
structure including a cosputtered Ag and Si active layer with
a properly designed Ag/Si mixture ratio gradient that leads
to the formation of a Ag-rich (high conductivity) region and
a Ag-poor (low conductivity) region (Figure 1a, inset) (Sup-
porting Information). Typically, resistance switching devices
regardless of switching material being used require an
electroforming process during which metal ions or particles
are injected into and cause semipermanent structural modi-
fications inside the otherwise insulating storage medium.
The forming process creates localized conducting paths
(filaments) whose motion results in discrete, abrupt resis-
tance switching characteristics.18-23 By cosputtering Ag and
Si, nanoscale Ag particles are incorporated into the Si
medium during device fabrication and a uniform conduction
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front between the Ag-rich and Ag-poor regions can be
formed. As a result, the forming process can be eliminated.
In addition, under applied bias the continuous motion of
the conduction front in the cosputtered memristor device
replaces discrete, localized conducting filament forma-
tion22 and results in reliable “analog” switching behaviors
(Figure 1c).

Figure 1c shows the measured device current i(t) (blue
lines) as a function of the applied voltage across the mem-
ristor v(t) for five consecutive positive voltage sweeps and
five consecutive negative voltage sweeps. Distinct from
devices that show abrupt conductance jumps,18-23 here the
conductance continuously increases (decreases) during the
positive (negative) voltage sweeps, and the I-V slope of each
subsequent sweep picks up where the last sweep left off. In
fact, the device I-V can be well fitted by a simple memristor
circuit model11 (orange lines, Figure 1c)

Here w(t) stands for the normalized position of the
conduction front between the Ag-rich and Ag-poor regions

within the active device layer and has the value between 0
and 1. Upon the application of a positive voltage bias, Ag
ions move from the Ag-rich region to the Ag-poor region and
increases w, and vice versa. As w(t) approaches to 0(1), the
device reaches the lowest (highest) conductance state with
resistance of ROFF (RON). In this model we further assumed
the position w(t) is a linear function of the flux-linkage �(t)
) ∫v(t)dt through the device. Equation 1 can then be
rewritten as

This is the equation for a flux-controlled memristor10 and
G(�(t)) is the so-called memductance. In addition, for the
devices studied here bias voltages with amplitude < VT ) 2.2
V are not sufficient to drive the Ag ions inside the a-Si matrix
and have negligible effect on the memristor resistance. The
threshold effect and the value of the threshold voltage VT

have been consistently obtained in all the devices tested in
this study.

The calculated current values during the voltage sweeps
based on the memristor model discussed above were shown
as orange lines in Figure 1c together with the measured
current (blue lines). The inset to Figure 1c shows the values

FIGURE 1. Nanoscale memristor characteristics and its application as a synapse. (a) Schematic illustration of the concept of using memristors
as synapses between neurons. The insets show the schematics of the two-terminal device geometry and the layered structure of the memristor.
(b) Schematic of a neuromorphic with CMOS neurons and memristor synapses in a crossbar configuration. (c) Measured (blue lines) and
calculated (orange lines) I-V characteristics of the memristor. Inset: calculated (orange lines) and extracted (blue lines) values of the normalized
Ag front position w during positive DC sweeps. (d) The current and voltage data versus time for the device in (c) highlighting the change in
current in sequential voltage sweeps.

i(t) ) 1
RONw(t) + ROFF(1 - w(t))

v(t) (1)

i(t) ) G(�(t))v(t) (2)
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of w(t) (orange lines) used to calculate the current during the
five consecutive positive voltage sweeps by assuming w(t)
to be a linear function of the flux-linkage �. In addition, the
values of w(t) can also be directly extracted from the data
using eq 1 and are shown in the inset to Figure 1c as the
blue lines. The relative good agreements between the cal-
culated and the measured values in i(t) and w(t) verify that
the device characteristics above the threshold voltage can
indeed be explained by the memristor-model using eqs 1
and 2, where the front position is roughly a linear function
of the flux-linkage �(t) ) ∫v(t)dt. However, strictly speaking
the device is not a true memristor due to the threshold effect
but falls in the more broadly defined memristive device
category.24 On the other hand, the threshold effect makes
it possible to perform nondisturbing read of the device state
by using read pulses with Vread < VT and can in fact be
beneficial in practical applications.

The flux-controlled memristor model suggests that the
device conductance (memductance) can be incrementally
adjusted by tuning the duration and sequence of the applied
programming voltage. Figure 2a shows the results when the
device was programmed by a series of 100 identical positive
(3.2 V, 300 µs) pulses followed by a series of 100 identical
negative voltage pulses (-2.8 V, 300 µs). The device con-
ductance (represented by the measured current at a small
read voltage of 1 V) was measured after each programming
pulse. As expected from the DC characteristics of the device,
the application of positive potentiating voltage pulses (P)
incrementally increases the memristor conductance, and the
application of negative depressing voltage pulses (D) incre-
mentally decreases the memristor conductance. We note
that unlike results from devices with abrupt switching
characteristics where the programming signals control the
final device state,22 here the flux-linkage �(t) during each
programming pulse controls the relative change of the
memristor conductance. This effect was further demon-
strated in Figure 2b. Here mixed positive (P) and negative
(D) voltage pulses with constant pulse height but different
pulse widths were applied to the device and the change in
memristor conductance ∆G were measured and recorded
after each P/D pulse. A clear correlation between ∆G and
the pulse width of the applied P/D signals was observed; the
application of a longer positive (negative) pulse resulted in
a larger increase (decrease) of memristor conductance, and
vice versa.

These results suggest the memristor devices are capable
to emulate the biological synapses with properly designed
CMOS neuron components to provide local programming
voltages with controlled pulse width and height. For ex-
ample, to demonstrate advanced synaptic functions such as
STDP, an important synaptic adaptation rule for competitive
Hebbian learning that demands the change of synaptic
weight to be a strong function of the timing of the pre/
postneuron spikes,6-8 we have implemented a CMOS neu-
ron circuit to convert the relative timing information of the

neuron spikes into pulse width information seen by the
memristor synapse (Supporting Information). Briefly, the
neuron circuit consists of two CMOS based integrate-and-
fire neurons25 connected by a nanoscale memristor with
active device area of 100 nm × 100 nm. The neuron circuit
involves a mixed analog-digital design and employs a time
division multiplexing (TDM) approach with globally synchro-
nized time frames to convert the timing information into a
pulse width.12 Specifically, the neuron circuit generates a
potentiating (depressing) pulse across the memristor syn-
apse when the presynaptic neuron spikes before (after) the
postsynaptic neuron, with the pulse width being an expo-
nentially decaying function of the relative neuron spike
timing ∆t ) tpre - tpost, where tpre (tpost) is the time when the
presynaptic neuron (postsynaptic neuron) spikes (Supporting
Information).

Figure 3a shows the measured change of the memristor
synaptic weight after each neuron spiking event obtained
in the hybrid CMOS-neuron/memristor-synapse circuit. When

FIGURE 2. Memristor response to programming pulses. (a) The
device conductance can be incrementally increased or decreased
by consecutive potentiating or depressing pulses. The conductance
was measured at 1 V after each pulse and the read current is plotted.
P, 3.2 V, 300 µs; D, -2.8 V, 300 µs. (b) (Top) Mixed potentiating and
depressing pulses with different pulse widths that are used to
program the memristor. (Bottom) Measured change of the memristor
conductance after the application of each pulse. The conductance
change was normalized to the maximum memristor conductance.
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the preneuron spikes before (after) the postneuron, the
memristor synaptic weight increases (decreases). In addi-
tion, the change in the synaptic weight versus the spike
timing difference ∆t can be well fitted with exponential
decay functions, verifying that STDP characteristics similar
to that of biological synaptic systems (e.g., Figure 3b) can
indeed be obtained in memristor synapses.7,8

Finally, in Figure 4 we plot P/D response of the device
after continuous applications of the potentiation and depres-
sion pulses. As shown in Figure 4b, up to 1.5 × 108 times of
P/D conductance modulation can be achieved before the
device shows significant degradation. Assuming the syn-
apses are updated at a rate of 1 Hz,27,28 this endurance
corresponds to ∼5 years of continuous synaptic operation.
These demonstrations together with the large connectivity

and density offered by the two-terminal memristor synapses
in the crossbar configuration (e.g., Figure 1b) make the
hybrid CMOS-neuron/memristor-synapse approach promis-
ing for hardware implementation of biology-inspired neu-
romorphic systems.

Acknowledgment. This work was supported in part by
the National Science Foundation (CCF-0621823) and
DARPA. The authors thank Dr. Narayan Srinivisa and Dr.
Paul Hasler for helpful discussions and suggestions. This
work used the Lurie Nanofabrication Facility at the Univer-
sity of Michigan, a member of the National Nanotechnology
Infrastructure Network (NNIN) funded by the NSF.

Supporting Information Available. Fabrication of the
memristor devices. Design and characterization of the neu-
ron circuit. Device response after 5.0 × 105 and 1.0 × 106

P/D pulses. This material is available free of charge via the
Internet at http://pubs.acs.org.

REFERENCES AND NOTES
(1) Smith, L. S. Handbook of Nature-Inspired and Innovative Computing:

Integrating Classical Models with Emerging Technologies; Springer:
New York, 2006; pp 433-475.

FIGURE 3. Demonstration of STDP in the memristor synapse. (a) The
measured change of the memristor synaptic weight vs the relative
timing ∆t of the neuron spikes. The synaptic change was normalized
to the maximum synaptic weight. Inset: scanning-electron micro-
scope image of a fabricated memristor crossbar array. Scale bar: 300
nm. (b) The measured change in excitatory postsynaptic current
(EPSC) of rat hippocampal neurons after repetitive correlated spiking
(60 pulses at 1 Hz) vs relative spike timing. The figure was recon-
structed with permission from ref 8. Inset: A phase contrast image
of a hippocampal neuron. Scale bar: 50 µm. The image was adapted
with permission from ref 26.

FIGURE 4. Response of the memristor device after repeated poten-
tiating (P) and depressing (D) pulses. (a) After 1.0 × 107 P/D pulses.
(b) After 1.5 × 108 P/D pulses. In each test, 3.1 V, 800 µs potentiating
pulses, -2.9 V, 800 µs depressing pulses, and 1 V, 2 ms read pulses
were used. After each programming pulse, the device conductance
was measured by a read pulse and recorded.

© 2010 American Chemical Society 1300 DOI: 10.1021/nl904092h | Nano Lett. 2010, 10, 1297-–1301



(2) Ananthanarayanan, R.; Esser, S. K.; Simon, H. D.; Modha, D. S.
Proceedings of 2009 IEEE/ACM Conference High Performance
Networking Computing; Portland, OR, November, 2009.

(3) Izhikevich, E. M.; Edelman, G. M. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 3593–3598.

(4) Indiveri, G.; Chicca, E.; Douglas, R. IEEE Trans. Neural Networks
2006, 17, 211–221.

(5) Tang, Y.; Nyengaard, J. R.; De Groot, D. M. G.; Gundersen, H. J. G.
Synapse 2001, 41, 258–273.

(6) Hebb, D. O. The organization of behavior. A neuropsychological
theory; John Wiley and Sons, Inc.: New York, 1949.

(7) Song, S.; Miller, K. D.; Abbott, L. F. Nature Neurosci. 2000, 3, 919–
926.

(8) Bi, G. Q.; Poo, M. M. J. Neurosci. 1998, 18, 10464–10472.
(9) Douglas, R.; Mahowald, M.; Mead, C. Annu. Rev. Neurosci. 1995,

18, 255–281.
(10) Chua, L. O. IEEE Trans. Circuit Theory 1971, 18, 507–519.
(11) Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. Nature

2008, 453, 80–83.
(12) Snider, G. S. IEEE/ACM International Symposium on Nanoscale

Architectures; Anaheim, CA, June, 2008; 85-92.
(13) Pershin, Y. V.; La Fontaine, S.; Di Ventra, M. Phys. Rev. E 2009,

80, No. 021926.
(14) Borghetti, J.; Li, Z.; Straznicky, J.; Li, X.; Ohlberg, D. A. A.; Wu,

W.; Stewart, D. R.; Williams, R. S. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 1699–1703.

(15) Lu, W.; Lieber, C. M. Nat. Mater. 2007, 6, 841–850.

(16) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-
Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.;
Tseng, H. R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414–
417.

(17) Jung, G. Y.; Johnston-Halperin, E.; Wu, W.; Yu, Z. N.; Wang, S. Y.;
Tong, W. M.; Li, Z. Y.; Green, J. E.; Sheriff, B. A.; Boukai, A.;
Bunimovich, Y.; Heath, J. R.; Williams, R. S. Nano Lett. 2006, 6,
351–354.

(18) Kund, M.; Beitel, G.; Pinnow, C. U.; Rohr, T.; Schumann, J.;
Symanczyk, R.; Ufert, K. D.; Muller, G. 2005 IEEE International
Electron Devices Meeting; Technical Digest: Washington, DC,
December, 2005; pp 773-776.

(19) Waser, R.; Aono, M. Nat. Mater. 2007, 6, 833–840.
(20) Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart,

D. R.; Williams, R. S. Nat. Nanotechnol. 2008, 3, 429–433.
(21) Jo, S. H.; Lu, W. Nano Lett. 2008, 8, 392–397.
(22) Jo, S. H.; Kim, K. H.; Lu, W. Nano Lett. 2009, 9, 496–500.
(23) Liu, M.; Abid, Z.; Wang, W.; He, X. L.; Liu, Q.; Guan, W. H. Appl.

Phys. Lett. 2009, 94, 233106.
(24) Chua, L. O.; Kang, S. M. Proc. IEEE 1976, 64, 209–223.
(25) Brette, R.; Gerstner, W. J. Neurophysiol. 2005, 94, 3637–3642.
(26) Kaech, S.; Banker, G. Nat Protoc. 2006, 1, 2406–2415.
(27) Lev-Ram, V.; Wong, S. T.; Storm, D. R.; Tsien, R. Y. Proc. Natl.

Acad. Sci. U.S.A. 2002, 99, 8389–8393.
(28) Bear, M. F. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13453–

13459.

© 2010 American Chemical Society 1301 DOI: 10.1021/nl904092h | Nano Lett. 2010, 10, 1297-–1301


