
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009 487
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Abstract—The resonant tunneling diode (RTD) has found nu-
merous applications in high-speed digital and analog circuits due
to the key advantages associated with its folded back negative
differential resistance (NDR) current-voltage (I-V) characteristics
as well as its extremely small switching capacitance. Recently,
the RTD has also been employed to implement high-speed and
compact cellular neural/nonlinear networks (CNNs) by exploiting
its quantum tunneling induced nonlinearity and symmetrical I-V
characteristics for both positive and negative voltages applied
across the anode and cathode terminals of the RTD. This paper
proposes an RTD-based CNN architecture and investigates its
operation through driving-point-plot analysis, stability and set-
tling time study, and circuit simulation. Full-array simulation of a
128 128 RTD-based CNN for several image processing functions
is performed using the Quantum Spice simulator designed at
the University of Michigan, where the RTD is represented in
SPICE simulator by a physics based model derived by solving
Schrödinger’s and Poisson’s equations self-consistently. A com-
parative study between different CNN implementations reveals
that the RTD-based CNN can be designed superior to conventional
CMOS technologies in terms of integration density, operating
speed, and functionality.

Index Terms—Resonant tunneling diode (RTD), cellular neural/
nonlinear network (CNN), full array simulation, settling time
analysis.

I. INTRODUCTION

S INCE its invention by Chua and Yang in 1988 [1], [2], the
cellular neural/nonlinear network (CNN) has been much

acclaimed as a powerful back-end analog array processor,
capable of accelerating various computation-intensive tasks in
image processing, pattern formation and recognition, motion
detection, robotics, and various other real-time problem solving
that requires complex computation [3]. In such real-world
applications, massively parallel computation of spatial data
over a 2-D surface is needed to process data in real-time, albeit
computational functions are rather simple algebraic operations
and each array element concurrently performs identical opera-
tion. The features of CNN that make it an easily implementable
parallel computing architecture relative to fully connected
neural networks are mentioned in [4] but reiterated here:

Manuscript received January 30, 2008; revised August 28, 2008. Current ver-
sion published March 18, 2009. This work was supported in part by an ONR
Grant to study applications of RTDs.

P. Mazumder and I. E. Ebong are with the Department of Electrical Engi-
neering and Computer Science, University of Michigan, Ann Arbor, MI 48109
USA (e-mail: mazum@eecs.umich.edu).

S. R. Li was with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2014771

1) local interconnection between nodal components, with each
node component called a cell or processing element; 2) regular
placement of all cells in space; 3) identical cell configuration
as well as space invariant interconnection; 4) real-time signal
processing capability due to continuous-time dynamics and
concurrent operation of cells; and 5) huge amount of tem-
plates to be exploited for various image processing algorithms.
Numerous CNN implementations with versatile embedded
applications have been developed using CMOS technology due
to its low cost and high integration capability [5]–[8]. However,
during the last two decades, CMOS technology has advanced
by leaps and bounds so much so that it will encounter phys-
ical and manufacturing limitations, thereby ending the era of
scaling down the transistor. To sustain the exponential growth
of the integrated circuits as espoused by Moore’s Law, several
meso- and nano-scale technologies have been investigated to
overcome the limitations of CMOS technology. Among several
proposed nano-electronics devices, the resonant tunneling diode
(RTD) has been explored for sometime due to its relatively easy
fabrication process along with its unique folded-back negative
differential resistance (NDR) current-voltage (I-V) characteris-
tics [9]–[11]. The RTD has found several applications in both
digital and analog circuits [12], [13].

Another advantage of RTD’s include the possibility of coin-
tegration with InP [14] or GaAs [15] three terminal devices
such as HFETs, HEMTs, and HBTs that have one or two or-
ders of higher electron mobility than CMOS. Previous work has
shown that circuits implemented with RTDs have very fast oper-
ating speed, compact integration density, and rich functionality
[12], [16]. These promising advantages the RTD possesses have
spurred interest in its development for massively parallel archi-
tectures such as the CNN.

A compact bistable CNN architecture comprising the
well-known monostable-bistable logic element (MOBILE)
circuit models, first proposed by Maezawa et al. [16], were
studied by Hanggi et al. [17]. Their preliminary study of
RTD-based CNN array with 10 or more cells can be integrated
in a standard CMOS chip. Dogaru et al. further extended the
previous work by proposing an RTD based CNN cell configura-
tion capable of performing various types of Boolean functions
[18]–[20]. The operation principle of the RTD-based cell was
clearly explained by them; however, no full-array simulation
of a 2-D CNN array was presented in that work, and no image
processing algorithms were simulated on a full array. Although
subsequently Itoh et al. reported a full-array simulation for
RTD-based CNNs [21], a simplistic piecewise linear model
was used to represent the tunneling I-V characteristic of the
RTD, thereby failing to precisely estimate the dynamics of the
CNN in the real case.
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Fig. 1. Circuit model for the conventional CNN.

This paper extends previous works by presenting a compre-
hensive study of an RTD-based CNN architecture’s operation.
Section II deals with the study of the operation principle of a
practical CNN. Section III discusses the stability and settling
time issues of this architecture, and Section IV demonstrates
full array simulation results utilizing a physics-based RTD
model. Several image processing functions are demonstrated
on both 12 12 and 128 128 CNN arrays by using an aug-
mented SPICE simulator, Q-SPICE, developed at the University
of Michigan.

Finally, it must be noted that though in this paper the NDR
devices are realized with the intraband double barrier RTD, the
CNN architecture proposed can be constructed with a host of
other NDR devices [22], [23].

II. CNN OPERATION PRINCIPLE

A. CNN Based on Chua and Yang’s Model

The cell model for the conventional CNN proposed by Chua
and Yang (see Fig. 1) consists of one linear resistor, one linear
capacitor, several linear voltage controlled current sources rep-
resenting the feedback and feed-forward currents supplied by
the neighboring cells, one independent current source, and one
nonlinear voltage controlled voltage source.

According to this model, every cell acts as a nonlinear dy-
namic system, with its transient behavior governed by the fol-
lowing nonlinear ordinary differential equation:

(1)

(2)

where represents the neighborhood of cell in an
CNN array; , and are state, input, and

output variables of cell , respectively. and are
the space invariant feedback and feed-forward parameters, pro-
viding the weighting for the feedback and feed-forward currents
from cell to cell . The number of elements in the set
formed by feedback parameters and in the set formed by
feed-forward parameters depends on how far a central cell,
cell , is connected to its adjacent cells, which is usually for-
mulated as , where is an integer starting from 1. For
example, if is equal to 1, there are 9 elements in each of the
feedback and feed-forward parameter set: each cell communi-
cates with its nearest 8 neighboring cells through feedback and
feed-forward branches whereas it also contains a self-feedback
loop and a self-feed-forward branch. Due to the space invariant

Fig. 2. Sigmoid state-to-output transfer function.

Fig. 3. Circuit model for the RTD-based CNN.

connection between cells in the CNNs, and are usu-
ally denoted by a pair of matrices of synaptic elements (e.g.,
3 3 matrix for ; 5 5 matrix for ), called feed-
back template, , and feed-forward template, , respectively.
In this work, we consider only the case where since it
generates the simplest structure. When the CNN is employed in
image processing applications, its templates and merely
act as image filters in order to map the input image into the de-
sired output image. As a result, by designing templates of dif-
ferent matrix coefficients, the wide gamut of image processing
algorithms can be executed by running an ordered sequence of
different and matrices.

In conventional CNNs, the input and state variables are con-
tinuous values (analog signal) whereas the output variable is a
binary value at steady state, either or , according to the
state-to-output transfer function . Fig. 2 graphically de-
picts this function as a piecewise linear function that saturates
at either or when the state variable is greater than
or less than . The last component in the model presented in
Fig. 1 is the independent current bias I; it is associated with each
node as externally injected current which provides design flex-
ibility for the CNN design.

B. CNN Equations Based on RTD’s Model

The RTD is a symmetric two-terminal meso-scale device with
non-monotonic I-V characteristics and extremely small intrinsic
capacitance, which render its suitability in compact and high-
speed CNN implementations. The RTD-based CNN cell model
described in this paper is illustrated in Fig. 3, where one RTD
replaces the linear resistor in the conventional CNN cell model.

Contrasting Figs. 1 and 3, the RTD introduces a nonlinearity
that the resistor did not have. With the CNN in Fig. 1, the sig-
moid representation in Fig. 2 is necessary for correct operation
in representing the relationship between the input and output
states, while with the RTD representation, the Fig. 2 transfer
function is no longer necessary. The RTD would guarantee sat-
uration due to its nonlinearity. This simplifies the relationship
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Fig. 4. Driving-point plots for (a) � � 20 �A/V, � � 100 �A, 50 �A,
0 �A, �50 �A �100 �A; (b) � � 100 �A, � � 400 �A/V, 200 �A/V,
0 �A/V, 200 �A/V, 400 �A/V.

Fig. 5. Simplified circuit model for: (a) the conventional CNN; (b) the RTD-
based CNN; and (c) the two-diode-based CNN.

between the state variable and output variable, making them
equivalent to each other. Equation (1) is then modified to

(3)

represents the RTD’s I-V characteristics. An accurate
physics model developed by Schulman et al. [24] is used to
model

(4)

Equation (4) is current per unit area, and the parameters
, and depend on the physical model of

the RTD. Equation (3) states that the current flowing into the
capacitor is equal to the sum of the currents flowing out of the
RTD, the feedback branches, the feed-forward branches, and
the constant current bias. Referring to Fig. 3, this would be a
Kirchhoff’s Current Law (KCL) at the node denoted by the
current state.

The RTD-based CNN’s ability to perform the same func-
tions as the conventional cell without the sigmoid function is ex-
plained through driving point plots in Fig. 4. The plots in Fig. 4
were generated for uncoupled CNNs— for .
The -axis indicates the state variable presented as a voltage
while the -axis indicates the derivative of the state variable with
respect to time, which can be regarded as the normalized current
flowing through the capacitor in Fig. 3.

A parameter introduced in Fig. 4, , is defined as

(5)

This definition along with the uncoupling assumption thereby
lets us write (3) as

(6)

Fig. 4(a) shows the plots for different —multiple combina-
tions of input variables , feed-forward parameter , and
constant bias —with a fixed self-feedback parameter .
Fig. 4(b) shows how the I-V relationship changes with different

while other parameters stay the same.
The intersection points of the driving-point curves and

the -axis are the equilibrium states of the cell. The stable
equilibrium states—marked with open circles—are distributed
in three domains separated by the NDR regions of the RTD.
Therefore the steady state of each cell can be assigned to three
levels— , or —by an analog-to-digital converter. Such
conversion can be done using RTD-based quantizers whose
threshold voltages are designed in the NDR regions [25].

With an RTD-based CNN, a need for a quantizer may not
be necessary. From Fig. 4(a), when 50 A, we only have
two equilibrium points. With proper design, a binary output (two
stable points) can be obtained without the need of a quantizer.

C. Comparison Between Different CNN Models

To demonstrate the superior advantages of the RTD-based
CNN cell, a comparison is made with a two diode model as well
as conventional cell based on CMOS technology. Fig. 5 shows
the three circuit models used in the comparison.

The two-diode model is introduced because the antiparallel
configuration of the diodes— and in Fig. 5(c)—provides
a similar saturating effect on the state variable as the RTD does.
The assumptions for comparison are as follows.

• The circuit implementation for the RTD and the two
diodes is the same for these three models in terms of de-
vice counts, area, power consumption, and the capacitance
being driven.

• The total injected current from the feedback, the feed-for-
ward, and the constant current bias is the same—repre-
sented as in Fig. 5.

Table I lists the comparison of circuit performance based
on the simulation results, where the resistor, sigmoid circuits,
and diodes are designed using 250-nm CMOS technology. In
the conventional CNN cell, the sigmoid circuit would occupy
a large amount of area to compensate for device mismatch
issues. With continual CMOS scaling, the device mismatch
issue is worsened since small atomic displacements render the
operation of identical devices different. On the other hand,
although the two-diode model holds similar nonlinearity as the
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TABLE I
COMPARISON BETWEEN THE THREE CNN MODELS

RTD-based model, the intrinsic capacitance of the diodes is
much larger than that of the RTD, resulting in slower operating
speed. Moreover, the RTD-based model is the only one to
have three output states due to its NDR property. This char-
acteristic provides richer design flexibility than the other two
methods. Table I summarizes the RTD-based model possesses
the smallest area, smallest settling time, and gives the most
design flexibility.

III. CIRCUIT ANALYSIS

The stability criteria and settling time analysis are two im-
portant factors regarding the design of a CNN architecture. Due
to the complex interaction existing between cells, CNNs can
be classified according to the feedback connection conditions:
coupled CNNs and uncoupled CNNs ( for ).
For uncoupled CNNs, the dynamic equation of one cell is rep-
resented as (6); this will enable our analysis henceforth.

A. Stability

Circuit stability analyses tend to use two methods, namely,
Lyapunov theorem and graphing methods. According to the
Lyapunov theorem, the energy function of the RTD-based CNN
can be defined as [1]

(7)

If a feedback template is symmetric , the
derivative of the energy function with respect to time is

(8)

(9)

(10)

Equation (10) shows that the energy function is monoton-
ically decreasing .
Also, the energy function is bounded with certain con-
straints— , and are constants. As a result, the state
variable will also be bounded; dc output is always generated in
the RTD-based CNN.

The graphical representation in Fig. 4 of the driving plots
supports this conclusion. In Fig. 4(a), when was changed,
the plots shifted vertically, but each plot crossed the -axis at
least once. In Fig. 4(b), when was changed, the shape
of the plots changed, but there is always an intersection with
the -axis. There exists at least one stable equilibrium state for
every cell in the RTD-based CNN. Design flexibility comes into
play because based on the number of equilibriums to design for,
the method prescribed in [26] can be used to obtain a unary, bi-
nary, or ternary output.

B. Settling Time

CNNs prevail over sequential signal processors due to their
real-time functional characteristics. Consequently, the operating
speed is considered a critical performance index in CNN system
design. To determine the operational speed of a dynamic system,
the concept of settling time is introduced. of a cell is
defined as the time required to reach a steady state (e.g., a stable
equilibrium point) from the initial condition. The settling time of
a CNN system is determined by the settling time of the slowest
cell. The value of the settling time for a cell depends on several
factors, such as initial condition, input, output, feedback, and
feed-forward templates, constant bias, capacitance, and the size
of the RTD (i.e., the current magnitude). Hence, analyzing the
dependence of on circuit parameters is the first step to design
a high-speed CNN processor.
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Fig. 6. Simulated settling time for various � of RTD with � for five
different �.

In this section, the settling time of one RTD-based CNN cell is
investigated through SPICE simulation and mathematical mod-
eling. Since the dynamics is very difficult to predict for propa-
gated type CNN, this work focuses on the uncoupled RTD-based
CNN. Without loss of generality, zero initial condition is as-
sumed in our analysis.

1) Simulation Results: From (6), the settling time is depen-
dent on , and the area of the RTD, which govern the peak
current of the RTD. Three cases are simulated to explore the re-
lationship between the settling time and these three parameters.
For the first case, we will investigate the dependence of settling
time on the size of the RTD for five values, 180, 270, 360,
540, and 900 A, with . From the conclusion drawn
in [26], we want the absolute value of to be greater than the
RTDs peak current (e.g., 178 A for area 1 m ) for
binary output. The simulation results illustrated in Fig. 6 show
the settling time results for the first case.

In Fig. 6, the settling time has a weak dependence on peak
current for the other cases except for when 180 A. For
this case, there is a drastic increase in settling time as peak cur-
rent increases. This phenomenon may result from a very small
current experienced by the capacitor during the trek from the
initial state to the stable equilibrium state due to the small dif-
ference between the values of and . Here we will define

as the ratio of . When , the settling time
greatly depends on . On the other hand, the settling time
has a weak dependence on when . From Fig. 6, cells
with larger take shorter time to achieve steady state.

In the second case, the settling time is simulated for various
for the same five values with an RTD area of 1 m

( 178 A). The results are illustrated in Fig. 7.
From Fig. 7, when , settling time decreases greatly

as increases from 0 to 0.8 ms whereas the decreasing rate
is not drastic when . Note that as increases, the shape
of the driving point plot changes, which increases the minimum
current experienced by the capacitor, thus reducing the settling
time.

The last case investigates the dependence of the settling time
on the values of . Different RTD sizes are used to modulate
the peak current; the results are shown in Fig. 9.

From Fig. 8, the settling time seems to saturate when
540 A no matter what and are. Moreover, the set-

Fig. 7. Simulated settling time for various � with � of ��� �

178 �A for five different �.

Fig. 8. Simulated settling time for various � with different combinations of
� and � .

Fig. 9. Physical model and piecewise linear model of the I-V curve of the RTD.

TABLE II
PARAMETERS FOR THE PWL MODELING

tling time is reduced if gamma increases (from the black curve to
the blue one) or increases (from the black curve to the vi-
olet one). This observation agrees with the previous experiments
due to the same reason that and have better control on
the settling time as the effect of the RTD decreases. might
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Fig. 10. Simulation results of 12� 12 RTD based CNN arra with the input and output image patterns for: (a) horizontal line detection; (b) horizontal physical
model and piecewise linear model of the I-V curve of the RTD; (c) edge extraction.

not be controllable but since depends on the constant current
source , we have more design control over this than feedback/
feedforward parameters.

2) Mathematical Modeling: Since the dynamic behavior of
a single RTD-based CNN is determined by a nonlinear differ-
ential equation, it is very difficult to find an analytic solution
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for the transient response of the state variable. Even though a
complex analytic solution can be determined, it may not make
any sense to us since we may not be familiar with the complex
function. Hence, this work simplifies the settling time analysis
by using a piecewise linear model for the I-V curve of the RTD
as illustrated in Fig. 9. This method can provide an intuitive un-
derstanding for the transient response of a cell from the initial
condition to the steady state as well as determine which param-
eters significantly affect the settling time.

From Fig. 9, the physical model of the RTD used in the sim-
ulation has a peak around 0.25 V and a valley current starting at
0.5 V followed by a wide valley region. In addition, the diode-
like current activates at around 1.25 V. Therefore, the I-V curve
of the RTD is modeled with a piecewise linear (PWL) function,
with each section following:

(11)
The fitting parameters for (11) are summarized in Table II.

The nonlinear differential equation describing the dynamics of
one cell, thus, is decomposed into four linear ordinary differ-
ential equations (ODE), with each representing some period of
the trek from the zero initial state to the steady state. Therefore,
the settling time can be solved sequentially from one ODE to
another ODE to obtain four solutions to (6) depending on ini-
tial and final conditions. The results of each of the four sections
were combined linearly to get an overall approximation of set-
tling time as depicted in (12)

(12)

As can be seen from (12), the settling time depends on
the self-feedback parameter, steady state target, ,
and the size of the RTD (related to the parameters

. The settling time is propor-
tional to the capacitance but is inversely proportional to

, and . Another
interesting phenomenon is that the impact of is reduced due
to the likely cancellation (if dominates) of the numerator
and denominator together with the log function. This result in
conjunction with the results from Figs. 7 and 8 show that when

is large enough (greater than the peak current), additional
increases in does not affect the settling time tremendously.

Fig. 11. Simulation results for 128� 128 RTD-based CNN array. (a) Input
image. (b) Output image for EE. (c) Output image for HF. (d) Output image for
shadowing.

IV. SIMULATION RESULTS

In this work, a method of quantifying the effects of param-
eters that influence stability and settling time were presented.
A simplification to uncouple the effects of neighboring cells
were made with knowledge this method will introduce a per-
centage error between the values obtained during design and
those acquired from simulation. A small 12 12 RTD-based
CNN was designed in order to verify and quantify the errors
associated with the assumptions made during analysis. The ex-
pression in (12) was used to appropriately design settling times
in the nanosecond range. The calculated results were on the
same order as what was observed during simulation. The results
are shown in Fig. 10.

Fig. 10 was obtained through simulation results performed
through SPICE simulation tools, where RTD’s are represented
by current sources describing the physics-based models and
the feedback and feed-forward branches are modeled as ideal
voltage controlled current sources. The boundary condition for
the cells at the edge is zero, i.e., no feedback and feed-forward
loops from outside of the array. In Fig. 11, the input voltages of
black and white cells are 1 and 1 V, respectively, where as
the output of each cell converges to values between 1.5 and

1.8 V or 1.5 and 1.8 V, representing 1 (black) or 1
(white) after A/D conversion.

The dynamics of the state variable of each cell in a full row
[e.g., the fifth row for Fig. 10(a); the third row for Fig. 10(b); the
fifth row for Fig. 10(c)] is demonstrated in the waveform. As can
be seen, for the uncoupled image processing functions (e.g., the
horizontal line detection and the edge extraction), the settling
time is around a few nanoseconds with 1 pF capacitance. On the
other hand, for the propagated type algorithm such as the hori-
zontal connected component detection, the interaction between
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Fig. 12. Simulation results for 128� 128 RTD-based CNN array for EE.

Fig. 13. Simulation results for 128� 128 RTD-based CNN array for averaging.

neighboring cells can be obviously observed from the transient
responses of state variables, which contributes to a much longer
settling time.

For image processing on a grander scale, a full array for
a 128 128 RTD-based CNN with grayscale input images
was simulated. Fig. 11 demonstrates the results of different
functions—edge extraction (EE), hole filling (HF), and shad-
owing—on the same input image.

In addition to the input image in Fig. 11, another image shown
in Figs. 12 and 13 is used to show the intermediate process be-
tween the input and output images. These are different snapshot
images at different timestamps of the transient response of the
full array simulation.

V. CONCLUSION

Several image processing functions—EE, HF, shadowing,
HLD, HCCD—are successfully demonstrated for a 12 12 and
a 128 128 RTD-based CNN array using the QSPICE simu-
lator developed at the University of Michigan. The RTD-based
CNN is proven to always be stable if the feedback template is
symmetric. A method and expression for approximating settling
time of RTD-based CNN cells for binary outputs is presented.
The settling time analysis shows that when the ratio of the total
injected or extracted current in a cell to the RTD’s peak current
approaches 1, settling time increases exponentially. Simulation
results on the comparison of the RTD-based CNN with the
conventional CNN and the two-diode implementation show
that the RTD presents unique design advantages in terms of
compactness, speed, and design flexibility.
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