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1. Introduction

The unique electron properties of graphene sparked a 
 significant interest in applications of graphene and, more 
generally, 2D systems supporting massless electron excita
tions, Dirac electrons. The main challenge in such applica
tions has appeared to stem from the same unique properties. 
In order to control the electron flow, it is necessary to be 
able to restrict its motion in a desired way and the effect 
of Klein tunneling (KT) [1, 2] makes this very difficult: a 
simple scalar potential is not sufficient for keeping the elec
tron from escaping. This circumstance made researchers 
consider more general potentials and it was found that Dirac 
massless electrons can be confined with the help of magn
etic barriers [3–5]. This resulted in the significant atten
tion to the problem of propagation of Dirac electrons in the 

presence of barriers created by both electric and magnetic 
fields [6–12]. Experimentally, the vector potential barrier 
can be implemented with the help of ferromagnetic stripes 
with the opposite orientations of magnetization [13–15] as 
is illustrated in figure 1(a).

Even in the case of piecewise constant vector and scalar 
components of the potential, the scattering problem on such 
a barrier turned out to be unexpectedly cumbersome due to 
the number of parameters characterizing and determining the 
electron motion and inapplicability of the intuition built by the 
standard problem of a particle described by the Schrödinger 
equation scattering on a barrier. As a result, the main analysis 
of the scattering of Dirac electrons on magnetoelectric bar
riers is done for barriers with specific parameters. This makes 
it difficult to draw a general conclusion about the effect of 
such barriers on the electron motion.
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We consider the problem of the electron propagation in the 
presence of a rectangular matrix potential barrier and approach 
it using the developed formalism of spinor transfer matrices. 
This technique proves to be efficient and allows us to provide 
the general description of the effect of the barrier. We were 
able to derive compact expressions relating to the reflection 
and transmission coefficient to the geometry of spinor eigen
states. They show that in the absence of a mismatch of the elec
tron mass inside and outside the barrier, the barrier may admit 
the KT at oblique directions. Moreover, in the case when the 
barrier is created by the ferromagnetic gate on the surface of a 
topological insulator, the Zeeman interaction may lead to the 
appearance of two distinct directions corresp onding to the KT.

We apply the formalism of spinor transfer matrices to a 
detailed analysis of waveguiding properties of the matrix 
potential barrier. This problem considered for the case of com
bined magneticelectrostatic barriers on graphene and other 
2D materials was the object of consideration of many publi
cations [11, 16–26] with the most attention, however, paid to 
the bulk states, when the electron states are extended across 
the barrier. The edge states, with the electron localized near 
the boundaries of the barrier, appeared only in the context 
of the mass mismatch [11]. Here we show that waveguiding 
modes, based on both edge and bulk states, can be approached 
equally. The dispersion equation governing the waveguiding 
modes can be easily derived using the formalism of the spinor 
transfer matrices. We analyze the obtained transcendental 
equations in order to describe the dependence of general prop
erties of the waveguiding modes on parameters of the barrier. 
In particular, we show that in order to support waveguiding 
based on edge states the mass mismatch is not required.

The rest of the paper is organized as follows: in section 2 
we introduce spin coherent states in a spatially homogeneous 
matrix potential, in section  3 we develop the formalism of 
spinor transfer matrices and apply it for studying scattering on 
the rectangular barrier, in section 4 we consider waveguiding 
properties of the barrier, and in section 5 we consider the case 
when the magnetic field at the boundaries of the barrier affects 
the electron motion due to the Zeeman term in the Hamiltonian.

2. Electron states in the presence of the barrier

The equation of motion of the Dirac electron with energy ε in 
the presence of rectangular matrix potential barrier ( )�U x  has 
the form

[ ( )] ( ) ( )σ ψ ψ⋅ + =� εp r rv U x , (1)

where v is the Fermi velocity. In order to shorten formulas, it 
is convenient to exclude v by redefining either spatial →r r v/  
or energy →ε εv  scales. Thus, in what follows we take v  =  1.

In equation (1) e e ex x y y z zσ σ σ σ= + +  is the usual vector 
of Pauli matrices and σ σ σ⋅ ≡ +p p px x y y. Employing the 

fact that any ×2 2 matrix can be expanded over {ˆ }σ σ σ1, , ,x y z , 
where 1̂ is the identity matrix, we present

UU x V x x1 .( ) ( )ˆ ( ) σ= + ⋅� (2)

Both V(x) and ( )U x  are assumed to be nonzero only inside 
the barrier, ⩽ ⩽x x xL R, where V(x)  =  V and ( ) =U Ux , as 
illustrated in figure  1(b). It should be noted, however, that 
arbitrary Ux(x) can be accounted for by the gauge transforma

tion { }( ) → ( ) ( )∫ψ ψ ′ ′r r x U xexp i d
x

x
x

L
. Thus, the effect of this 

comp onent of the matrix potential reduces to simply acquiring 
the phase factor and, therefore, without the loss of generality 
one can assume that ( )≡U x 0x .

The scattering of the Dirac electron on such a barrier can 
be analyzed in the usual way considering the appropriate 
solutions in regions I, II, III and imposing the condition of 
continuity of ( )ψ r  at the boundaries of the barrier. Within the 
regions with constant U and V the solutions are sought in the 
form of plane waves ( )ψ ψ= ⋅r k; ek k ri . The spinor ψk satisfies

( )σ ψ ψ⋅ = �εh k U, ,k k (3)

where = −�ε ε V  and the effective field h is defined as

( ) = +h k U k U, . (4)

Equation (3) has the form of the equation for stationary states 
of spin 1/2 in the magnetic field h. The energies of the states 

are hε =±| |±� , where h h h hx y z
2 2 2| | = + + . Taking for defi

niteness >ε V  we obtain

( )= + + +�ε k k U U .x y y z
2 2 2 (5)

Thus inside regions I, II and III the general solution 
of equation  (1) is presented as a superposition of ( )ψ r k;  
corresp onding to the same energy ε. The invariance with 
respect to translations along the yaxis implies that ky is a 
good quantum number and therefore scattered states can 
be characterized by ε and ky. Thus for the given barrier and 
energy the effective field h has definite | |h , hy and hz. On 
the other hand, the barrier breaks the translational symmetry 
along the xaxis and for given ε and ky we have two possible 
values for kx corresp onding to different signs of hx keeping 
| |h  intact,

( )= =±h k q,x x
1,2 (6)

where = − −�εq h hy z
2 2 2 2. Considering the scattering of a par

ticle incident on the left boundary of the barrier, the comp
onents with ( )kx

1  and ( )kx
2  correspond to the incoming and 

reflected state, respectively.

Figure 1. (a) The ferromagnetic gate creating approximately the 
rectangular barrier ( ) ( ) ( )θ θ= − −�U x y U x x x x, y L R , where ( )θ x  is the 
Heaviside step function. (b) The schematic depiction of the situation 
under consideration. The rectangular matrix barrier occupies the 
region < <x x xL R, while outside of this region the electron is 
considered to be free, so that ( ) ( ) ( )θ θ= − −� �U x y U x x x x, L R .

J. Phys.: Condens. Matter 28 (2016) 115501
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This consideration shows that the representation in terms 
of the superposition of plane waves is not trouble free. When 
q  =  0 it provides only one solution, while equation  (1) for 
fixed ky is essentially the second order ODE and should have 
two linearly independent solutions. Since q  =  0 is rather an 
exceptional case we postpone its detailed discussion to the 
next section, while for now we assume that ≠q 0 and that, 
indeed, plane wave expansion covers all solutions.

Once the effective fields, ( )( ) ( )=h h k U,1,2 1,2 , are found, 
we can use equation (3) to describe the respective spin states. 
They are conveniently presented in terms of spin coherent 
states [27, 28]. To vector n with Cartesian coordinates 
( ( ) ( ) ( ) ( ) ( ))θ φ θ φ θsin cos , sin sin , cos , where θ is the polar angle 
and φ is the azimuthal angle, we assign the state

n mexp i /2 ,〉 [ ] 〉σ θ= − ⋅ + (7)

where ( ( ) ( ) )φ φ= −m sin , cos , 0  is a unit vector in the xy
plane perpendicular to n and ez. In terms of amplitudes with 
respect to the quantization axis along ez the state n  is

〉
( )

( )
θ
θ

= φ

⎛
⎝
⎜

⎞
⎠
⎟n

cos /2

e sin /2
.

i (8)

The overlap of two coherent states can be presented in a 
‘covariant’ form [27]

| = + ⋅′ ′ ′
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥n n n n n nA

1

2
1 exp

i

2
, ,

1/2

〈 〉 ( ) ( ) (9)

where ( ) ( )=′ ′n n n n eA A, , , z  is the oriented area of the spher
ical triangle with vertices at n, ′n  and ez.

When all components of h are real numbers (i.e. when 

q2  >  0), solutions of equation (3) have the simple form: ( )n 1,2  
with ( ) ( )= | |�εn h /1,2 1,2 . It should be noted that the condition 
q2  >  0 holds only when | | >�ε 0, thus the direction of the spin 
coherent state in this case is always welldefined.

The situation is more complex when q2  <  0. In this case 
h has an imaginary xcomponent and the orientation of the 
coherent state should be found directly from equation  (3). 
First, we assume that hy  >  0 and Uz  =  0 and then extend the 
consideration to the general case. Let κ=h ix , then equa
tion (3) can be written as

( )
( )
ψ κ ψ
κ ψ ψ

− − − =
+ − =

�
�

ε

ε

h

h

i 0,

i 0.
y

y

1 2

1 2
 

(10)

Taking into account that κ= −�ε hy
2 2 2 (notice that κ < hy

2 2) we 
find

( )
ψ
ψ

κ
κ

=
+

−
�ε

h

h
i sign .

y

y

2

1

 (11)

Comparing with equation  (8) we can see that equation  (11) 
describes a state n〉 with n lying in the yzplane. The polar 
angle of n can be presented as θ π θ= +∆/2 , where θ∆  is the 
angle of deviation from the yaxis and is found to be

( )θ κ
∆ =

�ε
tan . (12)

The azimuthal angle is φ π= /2 when >ε V  and φ π= − /2 
otherwise. The second solution, corresponding to κ= −h ix  
is found by simply reversing the sign of κ. Thus, it is charac
terized by the same azimuthal angle but is deviated from the 
yaxis down.

The case with the arbitrary sign of hy and ≠U 0z  can be 
studied using the same approach. For this we rotate the 
coordinate system for equation  (3) around the xaxis in 
such a way that the transformed yaxis is oriented along 
the projection of h on the yzplane, that is along the vector 

( )=h h h0, ,yz y z . In these coordinates equation (3) takes the 

same form as (10) with +h hy z
2 2  instead of hy. The polar 

angle of n is presented then as θ θ θ= +∆0 , where θ0 is the 

polar angle of hyz and θ∆  is determined by equation (12). 
The azimuthal angle, in turn, depends on the sign of hy: 
if hy  >  0, then φ is determined by the same rule as above: 

( )φ π= �εsign /2; if, however, hy  <  0, then the rule is reversed 
( )φ π= − �εsign /2.

Thus, roughly speaking, when hx is imaginary its magni
tude determines the deviation of the spinor from the direction 
of vector hyz in the yzplane (see figure 2).

As we can see, when q2  <  0, for a given energy ε we as 
well have two states characterized by ( ) =± | |k qix

1,2  and spins 
oriented along ( )n 1,2 . We enumerate the solutions in such a 
way that ( )kx

1  corresponds to an exponentially decaying state 
by increasing the penetration depth, while ( )kx

2  corresponds to 
the exponentially growing one.

An important symmetry of vectors ( )n 1  and ( )n 2  repre
senting spinor states should be noted. For both cases, q2  >  0 
and q2  <  0, vectors ( )n 1 , ( )n 2  and hyz lie in the same plane, and 

( )n 1  and ( )n 2  are related through reflection about hyz in this 
plane. This symmetry will be extensively used below.

In order to formally manifest the symmetry it is convenient 
to present eigenstates of equation (3) using dilation operators. 
For the case q2  >  0, we have

( )( ) ( ) σ= ⋅ ±n h eK bexp /2 ,yz x
1,2 1,2 (13)

Figure 2. Directions of spins corresponding to >h 0x
2  (spins are 

in the xyplane) and <h 0x
2  (spins are in the yzplane) for the case 

Uz  =  0. When ≠U 0z  one should substitute hyz, the projection of the 
effective field on the yzplane, in place of the yaxis.

J. Phys.: Condens. Matter 28 (2016) 115501



M Erementchouk et al

4

where ( ) = | |φ± �εK qe /1,2 i /2 , ( ) =| |�εbh qcosh /yz , bhsinh yz( ) =  
( )ε� h qsign /yz . When q2  <  0, so that κ=q i  with κ> 0, we 

obtain

n h lC bexp /2 ,yz
1,2 1,2 ( ) 〉( ) ( ) σ= ⋅ ± (14)

where = ×l h e h/yz x yz, ( ) κ=C h/ yz
1 , C hi / yz

2( ) κ= , 
( ) κ=bh hcosh /yz yz , ( ) κ= �εbhsinh /yz .

3. Transfer matrix approach for spinors

The analysis above shows that equation (3) can be regarded 
as defining two distributions of directions ( )( )n x1  and ( )( )n x1 , 
corresponding to forward and backward propagating modes. 
The spatial inhomogeneity of ( )U x  and V(x) together with the 
continuity condition couple these distributions leading to scat
tering, which is conveniently described by the formalism of 
transfermatrices.

Inside regions I, II and III we have

( ) ( ) ( ) ( )

∑ψ α=
=
� nx ei

j
i

j
i

j k x

1

2
i i x

j
; (15)

where i runs over { }I, II, III , ( )α�i
j  are some complex amplitudes 

and we have omitted the common factor k yexp i y( ).
First, let us consider two points xa and xb arranged as 
⩽ <x x xa b L. One can see that ( )ψ xb  differs from ( )ψ xa  by 

phase factors acquired by amplitudes ( )α�I
1,2 . We present the 

relation in the form

( )
( )

( )

( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α

α

α

α
= −��

�

�

�
T x x ,

x

b a

x

I
1

I
2 I,I

I
1

I
2

b a

 (16)

which defines the transfer matrix within region I

( )
( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=�T x e 0

0 e
.

k x

k x
I,I

i

i

x

x

I;
1

I;
2 (17)

In a similar way the transfer matrix ( )�T xII,II  within region II 
can be defined. It has the same form as ( )�T xI,I  but with ( )k xI;

1,2  
replaced by ( )k xII;

1,2 . In order to simplify notations we denote 
( ) =±k qxII;
1,2  with = − −�εq h hy z

2 2
II;
2

II;
2 . Thus, the transfer 

matrix within the barrier has the form

( )
⎛
⎝
⎜

⎞
⎠
⎟=

−
�T x e 0

0 e
.

qx

qxII,II

i

i (18)

The form of the transfer matrices inside the regions allows 
us to incorporate phases at the boundaries of the barrier into 

the amplitudes and define ( ) ( ) ( )
α α= � ej j k x

I I
i x

j
I; 1, α α= � ej j k x

II II
i x

j
II; 1( ) ( ) ( )

 

and α α= � ej j k x
III III

i x
j

III; 2( ) ( ) ( )
. In other words, except for ( )α j

I  we have 
included into amplitudes their phases at the outmost left points 
of the discontinuity of the potential.

In terms of such amplitudes the continuity condition at the 
left boundary of the barrier takes a simple form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )α α α α+ = +n n n nI
1

I
1

I
2

I
2

II
1

II
1

II
2

II
2

 (19)

and can be presented as

( )

( )

( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α

α

α

α
= �T ,II

1

II
2 II,I

I
1

I
2 (20)

where �TII,I is the transfer matrix through the interface between 
the free space and the barrier. This shows the distinctive fea
ture of the formalism of spinor transfer matrices compared 
with usually employed transfer matrices for amplitudes of 
the waves propagating to the left and to the right. The latter 
relates the spinor amplitudes in the chosen basis, which hides 
the structure of the eigenstates under the relation between up 
and downcomponents in the chosen basis, while, of course, 
formally representing the same electron wavefunction. The 
spinor transfer matrices, in turn, relate the amplitudes of the 
local eigenstates thus describing the propagation of the elec
tron in ‘covariant’ terms. As will be demonstrated below, this 
simplifies significantly the analysis of the scattering on the 
barrier.

If ( )≠�Tdet 0II,I , that is ( )nII
1  and ( )nII

2  do not coincide (the 
meaning of this condition will be discussed in details below), 
one can easily check the relation

( )

( )

( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

α

α

α

α
= �T ,III

1

III
2 tot

I
1

I
2 (21)

with ( )=
−� � � �T T T d Ttot II,I

1
II,II II,I, where = −d x x2 1 is the width of 

the barrier.
This consideration can be generalized straightforwardly 

with the case of multiple barriers: for each interface between 
regions with constant potential and magnetic field one finds 
the respective transfer matrix from an equation similar to equa
tion  (19), while propagation inside the regions is described 
by diagonal matrices similar to �TII,II. It should be noted that 
matrix �TII,II takes the same form also in the case with exponen
tially decaying and growing solutions.

Finally, once the total transfer matrix is known one can 
find the reflection and transmission amplitudes for incidence 
from the left by solving the equation ( ) ( )= �t T r, 0 1,T T

tot  and 

for incidence from the right from ( ) ( )=′ ′�r T t, 1 0,T T
tot . The 

structure of the total transfer matrix imposes some general 
limitations on the reflection and transmission amplitudes. In 
particular, it can be shown that the reflection and transmission 
amplitudes in the direct and reverse directions may differ at 
most by a phase factor.

Now we turn to solving equation (19) and finding the transfer 
matrix through the boundary of the barrier. We would like to 
note that equation (19) has the form of presenting the same 
spinor in bases defined by pairs ( )nI

1,2  and ( )nII
1,2 . Thus, �TII,I has 

the meaning of a matrix describing the transformation between 

different, not necessarily orthogonal, bases. The transfer matrix 

is found by employing the dual basis. We define ( )ni
j  in such 

way that ( ) ( ) δ=n ni
j

i
l

jl. Thus ( ) ( ) ( ) ( )= − −
−

n n n ni i i i
1 2 1 1 2  

and n n n ni i i i
2 1 2 1 1( ) ( ) ( ) ( )= − −

−
. Using these definitions the  

interface transfer matrix is found to be

J. Phys.: Condens. Matter 28 (2016) 115501
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⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

n n n n

n n n n
T .II,I

II
1

I
1

II
1

II
2

II
2

I
1

II
2

I
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
=� (22)

Due to the mutual arrangement of ( )ni
j  the form of �TII,I is far 

from arbitrary. When q2  >  0, we have

⎛
⎝
⎜

⎞
⎠
⎟=

α β

β α

−

−
�T a b

b a
e e
e e

,II,I

i i

i i (23)

and when q2  <  0

⎛
⎝
⎜

⎞
⎠
⎟=

α α

β β

−

−
�T a a

b b
e e
e e

,II,I

i i

i i (24)

where

n n
n n

n n

n n
n n

n n

a

b

1

1
,

1

1

II
1

I
1 II

2
I
1

II
2

II
1

II
2

I
1 II

1
I
1

II
2

II
1

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

= =
− ⋅

− ⋅

= =
− ⋅

− ⋅

 

(25)

and

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

α

β

= − − −

= − + −

n n n n

n n n n

A A

A A

1

2
,

1

2
, ,

1

2
,

1

2
, .

II
2

I
1

II
2

II
1

II
1

I
1

II
2

II
1

 
(26)

When there are no propagating modes either inside and 

outside of the barrier, i.e. when ( )( ) <k 0xI;
1,2 2

 and q2  <  0, �TII,I has 

form (24) with α β= = 0.
Taking into account the general form of the transfer 

matrices we find for the case q2  >  0

( )

( )

( )=

= −

α β+r
i

D
ab qd

t
D

a b

2
e sin ,

1
,

i

2 2
 

(27)

where = −−D a be eqd qd2 i 2 i . In order to analyze the reflection 
and transmission properties closer it is convenient to employ 
the general property | | + | | =r t 12 2  and to consider

( )( )

[ ( )]
( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

ε

=
− ⋅ − ⋅

⋅ −

=
+ +

n n n n

n n n

r

t
qd

U Vk U k

k q
qd

1 1
sin

4
sin .

y y z x

x

2
II
2

I
1

II
1

I
1

I
2

II
1

II
2 2

2

2 2
I;
2

I;
2 2

2

 
(28)

Here we have taken into account that ( ) ( ) ( ) ( ) εε⋅ = ⋅ �n n h h /II
1,2

I
1

II
1,2

I
1  

and, therefore, equation (28) is valid for an arbitrary relation 
between ε and V.

Equations (27) and (28) clearly distinguish between the 
effects of the mismatch of directions of the effective fields inside 
and outside the barrier and the effect of interference due to scat
tering from the front and back sides of the barrier. In particular, 
one can see that the reflection coefficient vanishes when either

( ) =qdsin 0, (29)

or when

( ) ( )⋅ =n n 1.II
1

I
1 (30)

The first condition is responsible for the periodic variation of 
the reflection coefficient with the width of the barrier due to 
the interference effect. The second condition is satisfied when 
directions of the spins inside and outside the barrier coincide. 
In this case the reflection coefficient is zero regardless of the 
width of the barrier and thus is associated with the KT.

Obviously, condition (30) cannot be satisfied when ≠U 0z . 
Thus the respective barriers (often called mass barriers) com
pletely suppress the KT. The effect of V and Uy on the KT is 
less straightforward. It follows from equation (28) that in the 
case Uz  =  0 the KT takes place when

= −
ε

k
U

V
.y

y
 (31)

Thus, when the barrier contains both V and Uy, the KT is not 
necessarily suppressed but may appear for an obliquely inci
dent Dirac electron as is illustrated in figure 3.

With increasing Uy the Klein direction deviates more from 
normal until it becomes parallel to the boundary of the barrier. 
Further increase of Uy will lead to the suppression of the KT. 
Thus, in order for KT to exist, Uy and V in the barrier must satisfy

| | < | |U V .y 
(32)

We would like to remark that if the KT condition is satis
fied for an electron incident with ≠k 0y  from the left, then the 
condition is not fulfilled for the electron with time reversed 
trajectory. In the latter case ky has the opposite sign and equa
tion  (31) no longer holds. In order to recover the KT the 
full time reversal transformation must be performed, which 
includes reversing U.

Figure 3. The angular dependence of the transmission coefficient 
through the barrier with =εU / 1y , =εV / 3 for two different widths: 
(dashed line) =εd 1 and (solid line) =εd 10 in the units adopted 
in the main text. For the magnetic barrier with B  =  0.5 T the 
spectra correspond to =ε 19 meV, V  =  57 meV and d  =  37 nm and 
d  =  370 nm, respectively. The KT takes place at oblique incidence 
with ( )θ = − ≈− °V Uarcsin / 20y .
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This analysis directly applies to an electron in graphene in 
the presence of a scalar and vector potential barrier. In this case 
V(x) has the meaning of the scalar potential and Ux and Uy are 
the respective components of the vector potential, which cre
ates the magnetic field ( ) [ ( ) ( )]δ δ= − − − −B ex Bl x x x xB z L R , 
where = �l eB/B , =B l U e/B y0  and e is the magnitude of the 
electron charge. The effect of such a magnetic barrier on the 
KT was studied in [6, 10]. In [6] the KT at oblique directions 
was observed numerically, while in [10] it was concluded that 
the addition of the magnetic barrier to the scalar potential 
barrier suppresses the KT. Our consideration above resolves 
unambigously this controversy. The magnetic barrier alone, 
indeed, does not demonstrate the KT. However, when it is 
accompanied with the scalar potential such that condition (32) 
is fulfilled, the KT restores at oblique incidence.

It should be emphasized that the KT takes place when the 
direction of the eigenspinors is uniform across the system. 
In the nonattenuated regime, i.e. when q2  >  0, this is equiva
lent to a uniform distribution of the directions of the effective 
field, ( ) ( ) ( )= =�εh nx x x/ const. Thus the oblique KT is the 
local property of the matrix potential governing the motion 
of the Dirac electron and, therefore, it holds for barriers with 
more complex spatial variation of the potentials. Evidently, if 
Uy(x)/V(x)  =  c  <  1 is a constant across the barrier, then such 
a barrier is reflectionless for electrons incident at the angle 

( )χ = − carcsin  counted from the normal to the boundary. 
Conversely, this shows that in the barriers with a general 
spatial variation of the scalar and vector components the KT 
condition is, generally speaking, broken. For example, in anti
parallel ferromagnetic gates of finite width, ∆x, the vector 
potential varies continuously and, except when the scalar 
potential is carefully chosen to satisfy Uy(x)/V(x)  =  c  <  1, the 
condition ( ) =n x const does not hold.

A detailed analysis of a general coordinatedependent 
matrix potential goes beyond the scope of the present paper. 
We limit ourselves to a qualitative discussion of the case of thin 
gates, such that ( ) ⋅ ∆ ��ε ε xmax , 1. The effect of the gradual 
variation of the matrix potential at, say, the left boundary of 
the barrier is taken into account by replacing �TII,I in the expres
sion for �Ttot by � �T TII,I i, where �Ti is the transfer matrix through the 
barrier described by ( ) ( ) ( )∆ = −

∼� �U x U x U x , where ( )∼
U x  is the 

full potential and ( )�U x  is its approximation by the rectangular 
barrier near its left boundary. Thus, ( )∆�U x  differs from zero 
only inside the gate. Then it can be seen that along the direction 
corresponding to the KT for the rectangular barrier, the reflec
tion coefficient does not vanish identically but is an oscillating 
function of the width of the barrier ( )| | = | |r r qd4 sin2

i
2 2 , where 

ri is the reflection coefficient of the single barrier described by 
( )∆�U x  or, equivalently, of the single gate at the KT direction. 

Here we have taken �Ti in the first nonvanishing order of ∆x

^ ( )∫= +� �T xQ x1 i d ,i (33)

where [ ( )] ( )( ) ( )σ= ∆� �n nQ x U xj l
j

x
l

, I I , so that ( )∫= =r xQ xdi 2,1   

∆O x( ) and is small for thin gates.

In the case when q2  <  0, denoting κ=q i  the reflection and 
transmission amplitudes are found to be

( )
[ ( )]

( )
[ ( )]

( )κ
κ α β
α β

κ α β

= −
− −

= −
−

− −

α β+
r

d

d

t
d

sinh e

sinh i
,

i sin

sinh i
.

i

 
(34)

The reflection coefficient monotonously increases to 1 with 
the thickness of the barrier, while the transmission decreases 
asymptotically exponentially to zero.

The transition between forms (23) and (24) occurs through 
the point q  =  0, where ( ) ( )=n nII

1
II
2  and, as a result, ( ) =�Tdet 0II,I . 

As has been discussed above, the reason for the singularity is 
that the plane wave representation of solutions of (1) does not 
exhaust all of them. In order to recover the missing state and 
to derive the correct form for the transfer matrix we need to 
analyze closer equation (1) in the case when = +�ε h hy z

2 2 2.
Equation (1) can be rewritten as

εσ ψ ψ= � �p P2 ,x x (35)

where ( ) ( )σ= − ⋅� �� ε εhP / 2yz  and ( )=h h h0, ,yz y zII; II; .
We notice that ( ) =� �εP qdet 2 2 and, moreover, when q  =  0, 

one has =� �P P
2

, thus �P  is a projector. The components of hyz 

are real and therefore the eigenstates of �P  are ±nyz , where 

= �εn h /yz yz  and therefore = − −� n nP yz yz . Taking into 
account that �P  can be diagonalized by rotating the coordinate 
system around the xaxis, we obtain the general solution of 
equation (35) for the case q  =  0:

〉 〉 〉 〈 〉εψ ψ ψ= − −� n nx2 ,yz yz0 0 (36)

where ψ0  is an arbitrary spin state. The second term in this 
expression is of secular form and is missed in the representa
tion in terms of plane waves.

Enforcing the continuity at the boundaries of the barrier 
we find that the transfer matrix through the barrier in the case 
q  =  0 has the form

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n n n n

T M1 2 d
0 0

,
yz yz

tot
1

I
1

I
2ˆ ( ) ( )ε= − − −

−
� �� (37)

where

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

n n n n

n n n n
M .

yz yz

yz yz

I
1

I
2

I
1

I
2

( ) ( )

( ) ( )
=

− −
� (38)

Employing the symmetry of involved vectors we obtain

ˆ= + − − ϕ

ϕ

−

−
� ⎛

⎝
⎜

⎞
⎠
⎟T

d

d
1 i 1 e

e 1
,

c
tot

i

i (39)

where ( )( )ϕ = −n nA ,yz I
1  and

( )
( )

( ) γ=
+ ⋅

− ⋅
=

� �ε ε

n n

n n
d

1 1

1

1
tan /2 ,c

yz

yz

I
1

I
1 (40)
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where γ is the angle between nyz and ( )nI
1 . Using Equation (39) 

we find

= −
−

=
+

ϕ−
r

d d

t
d d

e

1 i /
,

1

1 i /
.

c

c

i

 
(41)

Thus the transition from the overbarrier regime (q2  >  0) 
to canonical tunneling, characterized by exponential decay 
with the width of the barrier (q2  <  0), occurs through the 
Lorentzian decay with the characteristic length scale dc.

4. Matrix potential barriers as waveguides

We apply the developed technique to the analysis of the wave
guiding properties of the barrier, or, equivalently, of states 
localized on the barrier. In general the barrier supports two 
kinds of such states differing by the structure of the fermion 
state inside the barrier. These are either propagating states, 

which we will call bulk states, so that ( ) =±k qxII;
1,2  with q2  >  0, 

or edge states with ( ) κ=±k ixII;
1,2

II and κ > 0II
2 .

All localized states are characterized by exponential decay 
of the wave function away from the barrier with the rate 

κ = − εkyI
2 2. This implies that at <x xL the fermion state 

is given by ( )nI
2 , while at >x xR the state is ( )nI

1 . In order to 

support such localized states the transfer matrix through the 
barrier should satisfy

( ) ( ) =�n nT 0.I
2

tot I
2

 (42)

Using equations (18) and (22) this condition can be written as

n n n n

n n n n
e .qd2i

II
1

I
2

II
2

I
1

II
1

I
1

II
2

I
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
= (43)

This expression is valid in both cases, q2  >  0 and q2  <  0. When 
q2  >  0 it suggests an interesting interpretation: the phase 
variation inside the barrier should match the geometric phase 
spanned by the spin states inside and outside: γ γ π− = mB G  
with integer m, where γ = qdB  and ( )( ) ( ) ( )γ = − −n n nA , ,G II

1
I
1

I
2 . 

As we will show, such interpretation in some generalized form 
is valid also in the case of edge states.

In order to present equation (43) in terms of the parameters 
of the system it is more convenient to use an alternative repre
sentation of the transfer matrix using dilation operators.

First, we consider the case q2  >  0. The diagonal form of 
the transfer matrix inside the regions with the constant poten
tial implies the ‘spectral’ representation

= + −� n n n nT e eqd qd
tot II

1
II
1 i

II
2

II
2 i( ) ( ) ( ) ( ) (44)

with the matrix elements n nT Ti j
i j

tot , I tot I( ) ( ) ( )=� � . Taking into 

account equation (13) and the definition of the dual basis, �Ttot 
can be presented as

( )= σ σσ⋅ − ⋅� �εT e e e ,h hb qd b
tot

i signyz x yzII II (45)

where ε=| |�b h qcosh /yzII( )  and ε= �b h h qsinh sign /yz yzII( ) ( ) .  
In particular, the zero of reflectivity corresponds to 

( ) ( ) =�n nT 0I
2

tot I
1  and, hence,

− =σ σ− �e eTe e 0,x
b b

x
/2

tot
/2y yI I (46)

where ( ) ( )= εb kcosh / xI I;
1  and ( ) ( )=b k ksinh /y xI I;

1 . It can be seen 
that equation (46) holds when the width of the barrier satisfies 

π=qd n with integer n or for an arbitrary width of the barrier 
when ⋅ =h e 0yz z  and at the same time = ⋅h eb b yz yI II . These 
conditions are, of course, identical to those discussed above.

For the case κ=q i II we have

= σ σ σκ⋅ − ⋅ − ⋅�T e e e ,h l hb b
tot

/2 d /2yz yzII II II (47)

where = ×l h e h/yz x yz, ( ) κ= �εb hsinh /yzII II, ( ) =b hcosh yzII   
κh /yz II.

The convenience of representations (45) and (47) is that 
in both cases q2  >  0 and q2  <  0 the transfer matrix takes the 
same form

= σσ − ⋅� �εT e ,lh
tot

id dx yz (48)

which allows one to treat bulk and edge states on the same 
footing.

In order to support the localized state the transfer matrix 
through the barrier should correspond to rotating vector ( )nI

2  
so that it is directed along ( )nI

1 . In the case q2  >  0 according 
to equation  (45) this is eventually achieved by the conven
tional rotation around the xaxis, which yields the geometric 
interpretation mentioned above. In the case of edge states the 
corresponding rotation is hyperbolic as is illustrated by equa
tions (13) and (14). Thus the waveguiding modes supported 
by the bulk states may occupy multiple bands, while the edge 
states may support only the single band.

First, we analyze equation (42) for the case of edge states, 
i.e. when κ > 0II . Presenting equation (42) as

=σ σ− �e eTe e 0,z
b b

z
/2

tot
/2y yI I (49)

where ( ) κ= εbsinh /I I and ( ) κ=b kcosh /yI I, and expanding 
�Ttot we obtain the condition of localization in the form

γ γ= ,G B (50)

where γ κ= dB II , and

( )γ κ κ
=

D
tanh G

I II
 (51)

with ( )= − +�εεD k k Uy y y .
The general structure of the spectrum of edge states is 

determined by the overlap of intervals, where ky may reside in 
order to have positive κI, κII and D, as is illustrated in figure 4. 
The general form of the spectrum is determined by simple 
relations between V and Uy. It can be seen that solutions of 
equation  (50) with ky  >  0 and ky  <  0 may exist only when 
V  <  −Uy and V  <  Uy, respectively. Thus, for sufficiently deep 
attracting barriers, V  <  0 and | | > | |V Uy , equation  (50) may 
support for the same energy solutions with both ky  >  0 and 
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ky  <  0. When V increases so that | | < | |V Uy , for a particular 
energy there may be only one solution and ky and Uy must 
be of opposite signs. With a further increase of V, in suffi
ciently strong repulsive potentials > | |V Uy  no solutions of 
equation (50) exist.

We would like to emphasize that the condition of existence 
of waveguiding modes supported by the edge states, < | |V Uy , 
does not require the scalar potential to be attractive nor the 
presence of the mass gap (i.e. when ≠U 0z ).

In order to avoid overly cumbersome expressions we dis
cuss details of the spectrum in the case when V  =  0 and we 
take for definiteness Uy  <  0, so that only solutions with ky  >  0 
may exist. As can be seen from figure 4 the maximal energy 
of the edge states cannot exceed the value determined by the 
intersection of the curve ( )κ =εk , 0yII  with either ( ) =εD k , 0y  
(if | | <U U/ 3y z ) or with ( )κ =εk , 0yI  (if | | >U U/ 3y z ):

( )( )< = − +ε ε U U U U U Umax /2, / .y z z y z ymax
2 2 2 2 (52)

In order to find the actual width of the band of edge 
states we consider the condition of the existence of solu
tions of equation  (50) within the intervals shown in 
figure  4. Depending on whether <d dc or >d dc, where 

⎡
⎣⎢

⎤
⎦⎥= −d U U URe /y z zc

2 2 2 , the condition has the form  

( ) ( ) ( )γ γ <′ ′
= −k k/ 1y y k kB G y

 or ( ) ( ) ( )γ γ >′ ′
= +k k/ 1y y k kB G y

, respec

tively. Here

( ) = − ± −± �εk U Uy z
2 2 (53)

are zeros of ( )κ kyII  for | | > | |�ε Uz  (this expression is valid in the 
case ≠V 0 as well). Thus we find that the width of the band 
of edge states is

δ∆ = +U ,zE
2

E
2 (54)

where

( )( )δ = − + + −
U

U U d
d U U

1
1 1 .z

y y
y zE

2

2
2 2 2 (55)

The characteristic form of ( )εky  is linear in the low energy 
limit = εv kyE , where

( )( )
= +

+
+−v

U

U U
d U U1

2
tanh .

y

y z
y zE

1
2

2 2
2 2 2 (56)

Thus the edge states are massless excitations.
Now we turn to the analysis of bulk states, i.e. states local

ized inside the barrier and characterized by q2  >  0, whose 
spectrum has a much richer structure. In this case the condi
tion of localization (49) takes the form

γ γ π− = n,B G (57)

where γ = qdB  and

( )
( )

γ
κ

=
− +�εε

q

k k U
tan .

y y y
G

I
 (58)

Figure 4. Characteristic curves on ( )∆εk ,y plane, where ∆ = −�ε ε Uz
2 2, determining the structure of the spectrum of edge states: 

( )( ) ∆± εk  or ( )κ ∆ =εk , 0yII  (solid line), ( )∆ =εD k , 0y  (dashed line) and ( )κ ∆ =εk , 0yI  (dotted line) plotted for the case Uy  <  0 and 
intermediate V. The edge states may exist only in shaded areas. In the case V U Uz y+ | | < | | (a), the edge state can be either in the upper 
region, > | |k Uy y , or the lower region depending on the relation between d and dc (see the main text). When V U Uz y+ | | > | | (b) the band edge 

is determined by ( )γ γ >′ ′
= +/ 1

k kB G y
.
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In contrast to the previous case, the phases should match up to 
multiples of π. According to equation (45), this corresponds to 
different numbers of full rotations of the incoming spin state 
inside the barrier. States corresponding to n  =  0 constitute the 
fundamental band and those with n  >  0 form higher bands.

The dependence of the spectrum of localized states on the 
relation between V and Uy is more complex than in the pre
vious case. Let us assume for concreteness that Uy  <  0. An 
analysis of conditions q2  >  0 and κ > 0I

2  (see figure 5) shows 
that there are three possibilities:

 (i) < | |V Uy . There are no solutions with ky  <  0, while states 
with ky  >  0 occupy an infinite band possibly with a gap 
(see figure 5(a)).

 (ii) | | <U Vy . The infinite band disappears. A finite band of 
states with ky  >  0 may exist if additionally > | |V Uz  (see 
figure 5(b)). Thus, if | | < < | |U V Uy z , there are no localized 
states, either bulk or edge.

 (iii) + <U U Vy z
2 2 . If there are solutions, they exist for both 

ky  >  0 and ky  <  0 occupying bands of finite size (see 
figure 5(c)).

Whether there exists a solution of equation (57) at a chosen 
energy depends on details of the variation of ( )γ kyB  and ( )γ kyG . 

The latter, in turn, depends on the position of the pole of equa
tion  (58), depicted by dotted lines in figure 5. This leads to 
a cumbersome system of conditions and, therefore, we limit 
ourselves to the case Uz  = 0 noticing that the main effect of 
≠U 0z  is separating regions, where q2  >  0 as is demonstrated 

by figure 5(a).
In the case V  <  Uy the existence of solutions is determined 

by the condition ( ) ( ) ( )γ γ >′ ′
= −k k/ 1y y k kB G y

, where k(−) is given 

by equation (53). This condition is satisfied, when

( )
> = +

−| |

+ + −
ε ε V

V U

d U V1 1

y

y

U
2 2 2 (59)

and

( )
< < = −

+| |

+ + −
ε ε V

V U

d U V
0

1 1
.

y

y

D
2 2 2 (60)

These inequalities define two bands formed by bulk states. 
One band extends to infinity, while another, existing when 
V  >  1/d, is finite.

The infinite band consists of an overlapping fundamental 
band and higher bands. The dispersion law of the fundamental 
near εU is linear, thus the respective excitations are massless. 

Figure 5. The structure of the spectrum of localized states propagating across the barrier (bulk modes). In all three panels the localized 
states may exist only within the shaded regions, dotted lines correspond to ( )κ =ε k, 0yI , i.e. kyε = | |, the solid lines show ( ) =εq k, 0y , 

i.e. ( )= ± + +ε V k U Uy y z
2 2 for Uz  <  0. The dashed lines show ( ) =εD k, 0y , where γ π= /2G . Its position allows one to estimate the 

variation of the geometric phase along the line connecting the opposite sides of a shaded region at fixed energy and to formulate the 
condition of the existence of a solution of equation (57). (a) < | |V Uy . The case > | |V Uz  is shown (more specifically, U U/ 0.4z y| | =  and  
V U/ 0.4y| | = ), when the finite band may exist in sufficiently wide barriers. (b) When < | |V Uy  the infinite band disappears, while the 

finite band may exist if < | |V Uz . The case | | =U U/ 0.4z y  and | |=V U/ 1.04y  is shown. (c) When > +V U Uy z
2 2 there may be finite bands 

corresponding to ky of both signs. The barrier looses the property of unidirectionality. The case U U/ 0.4z y| | =  and V U/ 1.8y| | =  is shown.
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The spectrum of higher bands, however, shows an interesting 
feature. Let us consider the nth band with n  >  1. The form 
of solutions of equation (57) essentially depends on whether 
>ε εM or <ε εM, where U V /2yM ( )ε = | | +  is the minimal 

energy such that ( )> −ε k . In the general case the region of 

massive bands is given by U U V U V/2y z yM
2 2 2( ) ( )ε = + − | |− . 

If <ε εM, the position of the bottom of the nth band, ( )ε n
U , can 

be estimated as

( ) ( )≈ +∆ε V ,n n
U (61)

where ( ) π∆ = n d/n . The dispersion law of the nth band near 
( )ε n
U  has the form

( )
( )

( )

µ
−| |

= −ε ε
k U

2
,

y y

n
n

2

U (62)

where ( )( )µ π= + | |m U d1/2 /n
y . Thus, only higher bands with 

numbers ⩽ [( ) ]π= | |−n n U V d /2yM , where [ ]…  denotes taking 
the integer part, are massive.

The finite band occupying < <ε ε0 D is also formed by 
overlapping the fundamental band with a finite number (pos
sibly zero) of higher bands. The position of the top of the nth 
band is ( ) ( )= −∆ε Vn n

D . Thus the number of higher bands con
tained in the lowenergy finite band is [ ]π=N Vd / .

The interesting feature of the finite band is that excitations 
near the top of all higher bands bands are massive and their 
masses match masses of the respective excitations in the infi
nite band but are negative. The dispersion laws are of the form 
( ) ( ) ( )µ−| | = −ε εk U /2y y

n n2
D .

Only when > +V U Uy z
2 2, the barrier may admit localized 

bulk states with ky of the same sign as Uy. The bands occupied 
by states with ky  <  0 and ky  <  0 are, however, of different size, 
but contain approximately the same number of bands. For a 
given energy ε states with positive and negative ky are inside 
intervals ( )( )+ε k,  and ( )( ) −− εk , , respectively, where ( )±k  are 
given by equation (53). In order to estimate the position of the 
nth band, with = …n 0, 1, , we approximate γ π≈G , which is a 

good approximation when V significantly exceeds +U Uy z
2 2 

and ε is not too close to zero. Thus for ky  <  0 we find

( ) ( )
( )

( ) ⎜ ⎟
⎛
⎝

⎞
⎠

π
= −| | −

+
+| |−ε V U

n

d V U

1

2

1 1

2
.n

y
y

2

 (63)

Within the adopted approximation for γG the dispersion laws 
of the bands are approximately linear, implying massless exci
tations. This approximation, however, breaks in the immediate 
vicinity of the top points of the bands.

The same approximation can be used for studying states 
with positive ky yielding for the top of the nth band

( ) ( )
( )

( )ε
π

= + | | −
+

−| |+ ⎜ ⎟
⎛
⎝

⎞
⎠V U

n

d V U

1

2

1 1

2
.n

y
y

2

 (64)

It should be noted that equations (63) and (64) predict the 
same number of bands with positive and negative ky. While 
this result is obtained using a crude approximation γ π≈G , it 
breaks only in barriers with carefully chosen parameters, in 
which states with negative ky may have one band less than 

the states with ky  >  0. Equations (63) and (64) also correctly 
predict that not all barriers with strong V may support local
ized states. More accurate estimates for parameters of the bar
rier allowing at least a fundamental band can be obtained as 

( )γ π= = >ε k0, 0 /2yB  yielding ( )π− − >V U U d/2y z
2 2 2 2.

5. Application for topological insulators

The results of the previous sections can be directly applied for 
a description of electrons moving along the surface of a topo
logical insulator. In order to do this, two important circum
stances should be taken into account. First, the Hamiltonian 
of a free electron in this case is usually taken in the Rashba 
form ( )σ= ⋅ ×e pH v zR , which is different from the electron 
Hamiltonian in graphene: σ= ⋅ pH vW . Hamiltonians HR and 
HW, however, are equivalent up to different choices of the σ
matrices, generators of the su(2) algebra. Second, a consistent 
treatment of the matrix potential requires taking into account 
the following circumstance. If, for instance, the matrix poten
tial is implemented by a vector potential, there is a strong 
magnetic field at the points of strong variation of the vector 
potential. The Zeeman interaction of the electron spin with 
this magnetic field cannot be neglected and has to be taken 
into account.

In order to keep the general character of the consideration 
and to distinguish the effect of the Zeeman interaction, we 
formally distinguish the contribution of the matrix and vector 
potentials and, thus, consider the equation of motion of the 
form

e p Ae U ,z[ ( ( )) ] εσ ψ ψ⋅ × − + =� (65)

where A is the vector potential. The matrix potential �U  can be 
presented in terms of σx y z, ,

ˆ σ= + ⋅′� UU V1 (66)

with = +′U U Bg , = ∇×B A is the magnetic field and g is the 
gyromagnetic ratio. In order to show the equivalence of equa
tion (65) and (1) we introduce σ σ= −�x y and σ σ=�y x, which cor
respond to the representation ( )σ σ σ σ+ = × +� �e e e e ex x y y z x x y y . 
It can be easily checked that σ�x, σ�y and σz satisfy the same com
mutation relations as σx, σy and σz. In terms of ( )σ σ σ σ=∼ � �, ,x y z  
equation (65) is written as

( ) ( )εσ ψ ψ⋅ + = −∼ ∼
p U V , (67)

where = − + +
∼ ∼

⊥U A U ee Uz z and = ×
∼

′⊥U e Uz . Equation (67) 
has the same form as equation (1) but with vectors and spin 
states rotated by π /2 around the zaxis. Thus the consider
ation of section 2 can be simply repeated in the present case. 
In order to restore the directions of the effective fields and 
spin states for the electron in a topological insulator one only 
needs to perform the inverse rotation, i.e. rotate the respective 
vectors by π− /2 around the zaxis. Having this relation estab
lished we will ommit tilde while writing the components of 
the effective matrix potential.

In order to obtain the transfer matrix, however, it is neces
sary to account for the effect of the Zeeman term. We introduce 

( ) ( ) ( )θ θ= − −f x x x x xL R , where ( )θ x  is the Heaviside step 
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function, and denote ( ) ( )=A Ax f x , so that ( ) = ∇ ×B Ax f . 
In the immediate vicinity of the boundary of the barrier one 
can neglect nonsingular contributions in equation  (67) thus 
obtaining

( )σ
ψ

σ σ ψ−
∂
∂
+
∂
∂

+ =� �
x

g
f

x
A Ai 0.x z y x z (68)

The solution of this equation can be written as

x g A A f x f x xexp i .y y z2 2 1 1( ) { ( )[ ( ) ( )]} ( )ψ σ ψ= − −� (69)

It is seen that at x  =  xL and xR the spin experiences discon
tinuity described by the dilation operators σ�eg Ay y and σ− �e g Ay y, 
respectively. These jumps are conveniently accounted for in 
the representation of the transfer matrix through the barrier, 
�Ttot, in terms of dilation operators:

T e e e .lg A h g A
tot

id dy y x yz y yε= σσ σ σ− − ⋅� �� � � (70)

Comparing with expressions for matrix elements of �Ttot, see 
e.g. equations (46) and (49), it can be seen that the effect of 
the spin jump reduces to a straightforward modification of 
the dilation operator determining the incoming spin state: 

→ = +�b b b gA2 yI I I . This allows us to apply directly the 
results of the previous sections.

First we consider the modification of the KT condition. It 
has the same form as equation (46), which results in

( ) [ ( )] ( ) [ ]− + − + =�εε εgA k k U gA k V Usinh 2 cosh 2 0.y y y y y y y
 

(71)

This equation determines the dependence of the direction of 
zero reflectivity for arbitrary barrier width on parameters of 
the barrier:

( ( ) )

( ( )) ( ( ) )

= − +

± + − − �ε ε

k V gA U

U V gA U gA

1

2
coth 2

coth 2 4 coth .

y y y

y y y y
2

 (72)

We briefly analyze this result assuming for concreteness that 
Ay  >  0.

In the case <ε V  the effect of the spin discontinuity is a 
modification of the dependence of the KT direction on the 
relation between Uy and V as is illustrated in figure  6(a). 
Additionally the KT direction becomes energy dependent (see 
figure 6(b)). At the same time the condition for the KT to exist 
remains the same as in the case of continuous spin distribu
tion, | | <U Vy .

When >ε V , however, new features appear. First of all, 
when | | >U Vy  the KT is no longer suppressed but rather 
appears at high energies,

( ( ))
( )

> + + −ε V U gA
gA

U V
1

2
coth 2

1

2 sinh 2
.y y

y
y
2 2

 (73)

Moreover, if ( )> − −ε V / 1 e gA4 y  there are two distinct KT 
directions.

In a similar way the effect of the spin discontinuity on local
ized modes can be studied. Using equation (70) in localization 

Figure 6. The direction corresponding to the Klein tunneling, i.e. zero reflectance for an arbitrary width of the barrier. (a) The dependence 
on the relation between V and Uy for Ay  >  0 (solid line), Ay  =  0 (dotted line) and Ay  <  0 (dashed line). (b) The dependence on energy. If 
the spin distribution is continuous, Ay  =  0, the KT direction exists when > | |V Uy  and is energy independent (dotted line). In the case when 
> | |V Uy  and ≠A 0y  the KT direction demonstrates nontrivial dependence on energy (dashed line). If < | |V Uy  the KT direction is present 

only when ≠A 0y  (solid line).
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condition (49) we find that the spin jump leads to modification 
of the geometric phase only

( )γ κ κ
=

D
tanh ,G

I II

T
 (74)

where

[ ( ) ( )]
( ) [ ( ) ( )]

= +
− + +
�ε ε

ε

D gA k gA

k U k gA gA

cosh 2 sinh 2

cosh 2 sinh 2 .
y y y

y y y y y

T
 

(75)

The equation for localized states ( ) ( )γ γ=tanh tanhB G  can be 
analyzed using the same approach as in the previous section. 
The effect of the spin discontinuity can be seen to be less sig
nificant than for the KT. The main conditions for the existence 
of localized states and the boundary between massive and 
massless modes remain the same as in the case of continuous 
spin. The exact positions of the band edges and masses are 
modified. The explicit expressions, however, are too cumber
some and we do not provide them here.

6. Conclusion

We present a detailed consideration of the propagation of a 2D 
Dirac electron in the presence of a rectangular matrix potential 
barrier. We describe scattering with the help of spinor transfer 
matrices, which relate the orientation of the electron spin state 
at different points of the system given in terms of superpo
sition of eigen spin coherent states. We show that the Klein 
tunneling is suppressed in the presence of the mass term, σ∝ z. 
In the absence of such contribution, the Klein tunneling is not 
suppressed but is observed at an oblique direction with the 
angle of incidence determined by the ratio between the scalar 
and vector components of the matrix potential.

The analysis of scattering is applied for studying wave
guiding properties of the matrix potential barrier. Depending 
on the electron energy and parameters of the barrier, it may 
support states localized near the boundaries (edge states) or 
penetrating the interior (bulk states). We describe the general 
properties of the waveguiding modes, determine the widths of 
the bands and obtain the dispersion laws of the lowenergy exci
tations. We show that both kinds of waveguiding modes, sup
ported by edge and bulk states, may demonstrate the property 
of unidirectionality when the barrier admits only waveguiding 
modes with <k U 0y y . We obtain general conditions governing 
the general form of the spectrum of waveguiding modes. In 
particular, we show that in barriers with sufficiently strong 
attractive scalar potential, the waveguiding modes supported 
by the bulk states may demonstrate a gapped spectrum in wide 
barriers. When the scalar potential increases, the bottom of the 
infinite band raises and in sufficiently strong repulsive scalar 
potential only the finite band remains, which serves as the pre
cursor to loosing the unidirectionality property.

While the waveguiding modes supported by the edge states 
are massless, those supported by the bulk states have both 
massive and massless bands. We find the energy region, where 
the massive bands are located, and find their number.

In addition to the case when the electron is characterized 
by the pseudospin, we consider the case where the spin is real 

and thus is sensitive due to the Zeeman effect to the magnetic 
field at the boundaries of the barrier. Its most significant mani
festation is the appearance at sufficiently high energies of two 
distinct directions corresponding to the Klein tunneling.
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