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Abstract— Cellular nonlinear/neural network (CNN) has been
recognized as a powerful massively parallel architecture capable
of solving complex engineering problems by performing trillions
of analog operations per second. The memristor was theoret-
ically predicted in the late seventies, but it garnered nascent
research interest due to the recent much-acclaimed discovery
of nanocrossbar memories by engineers at the Hewlett-Packard
Laboratory. The memristor is expected to be co-integrated with
nanoscale CMOS technology to revolutionize conventional von
Neumann as well as neuromorphic computing. In this paper, a
compact CNN model based on memristors is presented along
with its performance analysis and applications. In the new CNN
design, the memristor bridge circuit acts as the synaptic circuit
element and substitutes the complex multiplication circuit used
in traditional CNN architectures. In addition, the negative differ-
ential resistance and nonlinear current–voltage characteristics of
the memristor have been leveraged to replace the linear resistor
in conventional CNNs. The proposed CNN design has several
merits, for example, high density, nonvolatility, and programma-
bility of synaptic weights. The proposed memristor-based CNN
design operations for implementing several image processing
functions are illustrated through simulation and contrasted with
conventional CNNs. Monte-Carlo simulation has been used to
demonstrate the behavior of the proposed CNN due to the
variations in memristor synaptic weights.

Index Terms— Cellular neural/nonlinear network (CNN), fault
tolerance, image processing, memristor, stability.

I. INTRODUCTION

CELLULAR nonlinear/neural network (CNN) was
proposed in [1] and [2] by demonstrating how the
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regularity of cellular automata and local computation of
neural networks can be melded together to accelerate
numerous real-world computational tasks. Many artificial,
physical, chemical, as well as biological systems have been
represented using the CNN model [3]. Its continuous-time
analog operation allows real-time signal processing at high
precision, while its local interaction between the constituent
processing elements (PEs) obviate the need of global buses
and long interconnects, leading to several digital and analog
implementations of CNN architectures in the form of very
large scale integrated (VLSI) chips. In [4]–[9], several
powerful applications of CNNs were reported including
pattern and image analysis such as vertical line detection, noise
reduction, edge detection, feature detection, and character
recognition.

However, to improve the resolution in static and dynamic
image analysis, the size of PEs and the connectivity between
the PEs describing the control (feedforward) and feedback
templates that are used as programming artifacts in the CNN
model of computation [5], [6], must be significantly reduced.
The current version of CNN arrays in a CMOS VLSI chip
is typically limited to 16-K PEs. Emerging technologies such
as resonant tunneling diode [7] and quantum dots [8] have
been attempted recently to implement PEs more compactly to
improve the resolution of CNN computation. However, lack
of programmability associated with fixed connecting elements
between the PEs as well as wide variability of tunneling
currents in RTDs and quantum dots are the major limitations
of these emerging technologies.

The recent advent of memristors [10], [11] has opened
the possibility of significantly enhancing the resolution of
on-chip CNN model of computation. The memristor was
introduced [12] as a fundamental circuit element and recently
nanofabrication technology has shown its superior device
properties such as nonvolatility, binary as well as multiple
memory states, and nanometer geometries that can be shrunk
to the ultimate physical dimensions [13]–[16]. These versatile
features of memristors have been exploited in showing their
applications in nonvolatile memory [17], [18], artificial neural
networks [19]–[23], composite circuits [24], [25], and so on.
Because its conductance can change in response to the applied
voltage or current like a biological synapse, the memristor has
been demonstrated an artificial synapse for biological signal
processing. Recently, Kim et al. [21] and [22] presented a
compact memristor bridge synapse in which both weighting
and weight programming can be performed at different time
slots.
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Fig. 1. Physical model of Simmons tunnel barrier memristor [13].

In this paper, a novel type of memristor-based CNN
(M-CNN) is addressed. Specifically, the memristor bridge
circuit is employed to realize the interactions between the
neighboring cells. Different from the memristor circuit in [21]
and [22], the memristor used here is a more practical model
based on the experimental data. Moreover, since the memristor
exhibits nonlinear current–voltage (I–V ) characteristic with
locally negative differential resistance, the memristor is also
considered to replace the original linear resistor in a traditional
CNN cell. Thus, an M-CNN, equipped with nonvolatile and
programmable synapse circuits, is more versatile and compact
and saves the traditional complex output function realization
circuits.

In Section II, the basics of the memristor are briefly
introduced. Then, the topology and dynamics of the proposed
M-CNN are described in Section III. To guarantee the feasibil-
ity of implementation scheme, the stability and fault tolerance
analysis are investigated in Section IV. Section V presents the
numerical simulations of the uncoupled and coupled M-CNNs
in image processing, including image inversion, horizontal line
detection (HLD), edge extraction, noise removal, as well as
a variation analysis based on Monte-Carlo methods. Finally,
conclusion and discussion are presented in Section VI.

II. MEMRISTOR BASICS

The memristor is a nonlinear passive device with variable
resistance states. It is mathematically defined by its constitu-
tive relationship of the charge q and the flux ϕ

dϕ

dt
= dϕ(q)

dq
· dq

dt
. (1)

Based on the basic circuit law, (1) leads to

v(t) = dϕ(q)

dq
i(t) = M(q)i(t) (2)

where M(q) is defined as the resistance of a memristor called
memristance and it is a function of the internal current i and
the state variable x .

The Simmons tunnel barrier model is the most accurate
physical model of TiO2/TiO2−x memristor, reported by the
Hewlett-Packard Lab [13]. As shown in Fig. 1, the memristor
is made up of two TiO2 and TiO2−x components sandwiched

between the two platinum electrodes. The memristance mag-
nitude is determined by the electron tunnel barrier, in series
with a resistor. In this case, the state variable x is the width of
the Simmons tunnel barrier and its dynamics are represented
by [13]
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(3)

where cOFF, cON, iOFF, iON, aOFF, aON, wc, and b are the fitting
parameters, in which the parameters cOFF and cON influence
the change in magnitude of x , the parameters iOFF and ion
reflect the current thresholds, and aOFF and aon are the upper
and the lower bounds of x , respectively. Equation (3) is also
interpreted as the velocity of the oxygen vacancy drift in
TiO2−x material. About this accurate model, two problems
have been discussed [15]: 1) there is no explicit relationship
between the current and the voltage of the memristive device
and 2) it is too complicated to be used in numerical and mathe-
matical analysis. Afterward, an alternative model with simpler
expressions, which can reflect the same physical behavior, is
proposed [15]. In this simplified model, the derivation of the
state variable x is given by

dx(t)

dt
=

⎧
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(4)

where kOFF is a positive constant and kON is a negative constant,
aOFF and aON are fitting parameters, and iOFF and iON are the
current thresholds. Correspondingly, there are two window
functions fON(x) amd fOFF(x) to represent the dependence
of the derivation on the state variable x and guarantee the
effective range of x , i.e., x ∈ [xON, xOFF]

fOFF(x) = exp

[

− exp

(
x − aOFF

wc

)]

(5a)

fON(x) = exp

[

− exp

(
x − aON

wc

)]

. (5b)

The relationship between the current through and the volt-
age across the memristor can be written as

v(t) =
[

RON + ROFF − RON

xOFF − xON

(x − xON)

]

· i(t) (6)

where M(x) = RON + (ROFF − RON/xOFF − xON)(x − xON) is
the memristance, in which RON and ROFF, respectively, denote
the low and high resistances of the memristor. Note that
positive voltage or current can increase the undoped region
width x , and thus increase the memristance; while negative
excitation leads to memristance decrease.

A few fundamental simulations have been done to observe
the behavior of the memristor subjected to an applied
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Fig. 2. Characteristic curves of the memristor under v = sin(2π f ).
(a) Window functions fOFF(x) (red solid line) and fON(x) (blue dashed
line). (b) Voltage and current relationship. (c) Change of the state variable x .
(d) Relationship between memristance and the current through the device.

sine voltage v = sin(2π f ) with results shown in Fig. 2.
Fig. 2(a)–(d) shows the window functions fON(x) and
fOFF(x), the I–V relationship with current presented in
logarithm coordinate, the change of the state variable x ,
and the memristance change versus the current, respectively.
In this simulation, the memristor model parameters are set as:
ROFF = 1 k�, Ron = 50 �, iOFF = 115 μA, iON = 8.9 μA,
aOFF = 1.2 nm, aON = 1.8 nm, and wc = 107 pm.

III. M-CNN

A. Description of the M-CNN

An M-CNN is constituted of an M × N rectangular array
of cells c(i , j) located at site (i , j), i = 1, 2, 3, . . . , M;
j = 1, 2, 3, . . . , N , as shown in Fig. 3. A cell has (2r + 1)2

neighboring cells, where r ∈ [1, 2, 3, . . .] is the radius of the
neighborhood. It only communicates with its closest neigh-
bors, which is the defined local interconnection of CNNs.
In this paper, we consider the most commonly used case r = 1
for our study, i.e., one cell only transmits information among
its eight closest neighbors.

Like in a standard CNN [1], all cells have identical circuit
structure and parameter values. Fig. 4 shows a schematic
implementation of the proposed M-CNN cell containing a
capacitor, a memristor state resistor, and two variable-gain
voltage-controlled current sources (VCCSs). Memristor bridge
circuits were to used implement the VCCSs for weight setting
as well as the weighting operation. Besides, a memristor (M)
is employed to replace the linear state resistor. Therefore, the
original state-output conversion part is removed.

Fig. 3. Topology of an M-CNN, in which the squares represent cells with
identical structure.

Fig. 4. Schematic diagram of an M-CNN cell.

In a CNN, each cell c(i , j) at i th row and j th column can
receive eight input currents from a set of neighboring cells c
(k ′, l ′) located at k ′th row and l ′th column of the array, where
(k ′, l ′) ∈ {(i − 1, j − 1), (i − 1, j), (i − 1, j + 1), (i, j − 1),
(i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}. These
inputs are represented by solid dots in Fig. 4. Specially, each
solid dot represents an input current that is a summation of
two VCCSs of the corresponding neighboring cells, as given
in the dashed square. Likewise, each cell c(i , j) also provides
eight output currents to its eight neighboring cells.

Note that the total input current of each cell contains not
only the currents from its eight neighbors, but also from itself
and an independent current source. Therefore, as a matter of
simplicity, a cell itself is also considered as a neighbor cell
included in its neighborhood in CNNs [1].

The dynamics of a cell c(i, j) usually depends on: a set of
18 weights called template elements, an independent current
source denoted by I , an independent voltage source denoted
by ui j , as well as its own state xi j . The template elements
make up a 3 × 3 feedback template labeled by A, and a
3 × 3 control template labeled by B . They determine the
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gains of the interconnections between the neighboring cells.
The independent current offers an offset current and the
independent voltage source continuously provides the input for
the network. In addition, because of the usage of the memristor
bridge circuits and the memristor state resistor, the state xi j

can achieve stability itself and thus as the output directly, i.e.,
yi j = xi j (detailed description is given later).

Based on the above descriptions and Kirchhoff’s current
law, the dynamics of each cell can be governed by

C
dxi j (t)

dt
= −m(xi j (t))+

∑

c(k,l)

(ai j,kl xkl(t)+bi j,kl ukl ) + I (7)

where c(k, l) ∈ Nr (i, j) denotes the r -neighborhood of c(i, j)
and here r = 1. As described above, for the cell c(i , j), its
neighboring cells c(k, l) contain all the neighbors (k ′, l ′) and
itself.

The term m(·) is the current flowing through the memristor
(M) in the form of

m(xi j (t)) = vM

M(t)
= xi j (t)

M(t)
(8)

where M(t) is the memristance of the memristor state resistor.
In the following section, the analog implementation scheme
of the M-CNN based on the mathematical model (8) will be
presented.

B. Implementation of Synaptic Connections
With Memristor Bridge Circuits

The template elements (weights) play a crucial role in signal
and image processing applications of the CNN. To execute
different functions, the templates should be updated corre-
spondingly. In traditional circuit implementation of CNNs, the
weights and the weighting operation are achieved through a
number of amplifiers and multipliers [7]. For an amplifier, the
amplifying gain is fixed once the circuit is built, thereby not
being easy to alter. Moreover, the multipliers are implemented
with at least eight CMOS transistors that operate in a nonlinear
way and hence consume significant power. Therefore, serious
nonlinearity is unavoidable in the multiplication processing
(weighting operation) [21].

Memristor bridge circuit was recently reported as a can-
didate of artificial synapse to replace the amplifiers and
multipliers to implement weight programming and weighting
operation [21], [22]. Such a circuit, consisting of four identical
memristors (M1, M2, M3, and M4), is capable of performing
zero, positive and negative synaptic weights, as shown in
Fig. 5. When a pulse Vin (positive or negative) is applied at
the input port, the memristance of each memristor changes
correspondingly depending on its polarity. The output voltage
between the positive and the negative terminals is governed by

VW = V+ − V− =
(

M2

M1 + M2
− M4

M3 + M4

)

Vin. (9)

In the form of the relationship between the synaptic weight
ω and the synaptic input signal Vin, (9) can be rewritten as

VW = ωVin (10)

Fig. 5. Memristor bridge circuit [21].

Fig. 6. Change of the memristors in the bridge circuit.

where the synaptic weight ω represents M2/(M1 + M2) −
M4/(M3 + M4) within the range [−0.9, 0.9]. If M2/M1 >
M4/M3, the synaptic weight is positive; if M2/M1 < M4/M3,
it is negative; otherwise, it is zero and called balanced state.
Fig. 6 shows the change of memristors along with the varying
programming time in the bridge structure and indicates the
three regions of the weights. In the simulation, M1 and M4
were initially set as ROFF, while M2 and M3 were RON. The
amplitude of the programming voltage is 1 V.

In the bridge circuit, the input port is shared by the weight
programming signal Vp and the synaptic input signal Vin for
weighting operation at different time slots. The unintended
change of the memristance during the weighting operation is
negligible as long as the weighting signal amplitude is smaller
than the thresholds [13]–[16] or the pulse is very narrow
[21], [22]. Therefore, the weighting factor ω is a constant and
thus the relationship between the synaptic input and synaptic
output is linear, which has been discussed in [21] and [22].

The differential amplifier on the right of Fig. 5 performs the
conversion of voltage to current with a transconductance para-
meter gm . The currents at the positive and negative terminals
are given by

{
Io+ = − 1

2 gm VM = − 1
2 gmωVin

Io− = 1
2 gmVM = 1

2 gmωVin.
(11)
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Fig. 7. Synaptic weight processing via the bridge circuit.

Fig. 7 shows the weighting operation of the bridge circuits.
Four lines represent four levels of the synaptic weights as
examples. In general, the synaptic inputs are voltage, which
eases the intrachip distribution of multiplication factors (tem-
plate coefficients) and the intrachip distribution of the state
variable to all the neuron synapses. However, the synaptic
output is usually in the form of current, which facilitates the
summation at the state nodes [5]. The transconductance gain of
the differential amplifier, gm , can be set by the bias current and
the transistor size of the amplifier according to the required
template coefficients.

C. Implementation of M-CNN Cells

As described above, a cell c(i , j) may receive 18 synaptic
inputs from its neighboring cells including itself. These synap-
tic inputs are the weighted input bi j,kl ukl and the weighted
state ai j,kl xkl , and they are summed up and injected into
the center cell c(i , j) through the state node, namely, the
memristor (M) shown in Fig. 4.

Fig. 8 shows an analog implementation schematic dia-
gram of the proposed M-CNN cell. The weighted signals
(I01, . . . , I0k) from k memristor bridge circuits input into the
center cell from the ports at the lower right corner. The circuit
located at the right bottom is a bias circuit that provides the
direct current I . The synaptic currents and the bias current
are aggregated by connecting all the output terminals together
through a differential circuit at the left top. The total current is
fed into the memristor and through an integrator at the right
top, and then converted into the cell state variable xi j also
the cell output yi j , which is finally transmitted to neighboring
cells.

The total current Itotal is given by

Itotal = I01 + I02 + I03 + · · · · +I0k︸ ︷︷ ︸
I0

+I (12)

where I0i = I0i− − I0i+ is the output current of the differ-
ential amplifier connected with i th memristor bridge circuit.
Thus, I0 that denotes the sum of the synaptic currents can

Fig. 8. Schematic diagram of an analog implementation of the M-CNN cell.
The bottom left indicates synaptic inputs from the neighboring cells. The
bottom right is a bias circuit offering an offset current. These currents are
summed up through the active load in the top left. The top right realizes the
current-to-voltage conversion and integration.

be rewritten as

I0 = gm(ω1Vin1 + ω2Vin2 + ω3Vin3 + · · · · ωk Vink)

=
∑

k

gmωk Vink. (13)

Therefore, the memristor bridge circuits can implement the
accumulation terms in (7) in a more compact and simpler form.
Note that, if both of the feedback and the control templates
are nonzero, then k = 18; if one template is zero, then k = 9,
which is a simple implementation method. Another choice is
that if the memristor bridge synapses are time-multiplexed,
then the 18 weighted values associated with the two templates
are implemented using only nine of these synapse circuits.
For instance, the control term

∑
bi j,kl ukl is first calculated

in each computation cycle with the result stored in an analog
current-mode memory. After that, the nine synapses are used to
calculate the feedback term

∑
ai j,kl xkl and the result is added

to the former result, finally realizing the two accumulation
terms.

The total current flows through the state memristor and the
output voltage corresponds to the derivation of the cell state,
i.e., dxi j /dt. Then, through an integrator, the cell state x can
be obtained

V x = Cx · M

( ∑

k

gmωk Vink + I

)

. (14)

Note that, besides performing the summation function, the
active load part also plays the role of restricting the range of
the state memristor voltage as [22]

V x =

⎧
⎪⎨

⎪⎩

Cx · (Vdd − 2Vth), Itotal ≥ Vdd−2Vth
Rout

Cx · M · Itotal,
−Vss+2Vth

Rout
≤ Itotal ≤ Vdd−2Vth

Rout

Cx · (−Vss + 2Vth), Itotal ≤ −Vss+2Vth
Rout

.

(15)
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The original output function is no longer necessary, because
the state can achieve stability (bounded) and support the binary
output, which leads to the further reduction of the CNN circuit.

IV. MATHEMATICAL ANALYSIS

A. Stability

By definition, a CNN is stable if it has a steady output
as time goes to infinity [9]. In circuit analysis, a continuous-
time autonomous network is stable if its solution is bounded
and its energy function is damped. Since the state variable
(solution) of a CNN (a specific network) is limited by the
circuit parameters, it is easy to guarantee its boundness. Then,
in general, the energy degradation is considered as the key
point to prove the stability of a CNN [9]. According to
the Lyapunov stability theorem, the energy function of the
M-CNN is chosen as

E(t) =
∑

(i, j )

xi j∫

0

m(s)ds − 1

2

∑

(i, j )

∑

(k,l)

ai j,kl xkl(t)xi j (t)

−
∑

(i, j )

∑

(k,l)

bi j,kl ukl (t)xi j (t) −
∑

(i, j )

I xi j (t). (16)

Theorem 1: The function E(t) is bounded by

max |E(t)| ≤ Emax (17)

where
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= 1

2
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∣
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+M N
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∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣

)

(18)

for an M × N CNN.
Proof: By the definition of E(t), one can obtain

|E(t)| ≤ 1

2
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∣
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∣
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∣
∣
∣
∣
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0
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∣
∣
∣
∣

≤ 1

2

∑

(i, j )

∑
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∣
∣ai j,kl xkl(t)xi j (t)

∣
∣

+
∑
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∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣

+
∑

(i, j )

|I | · |xi j (t)| +
∑

(i, j )

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
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≤ 1

2

∑

(i, j )

∑

(k,l)

∣
∣ai j,kl xkl(t)xi j (t)

∣
∣

+
∑
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+M N(|I |) + M N
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∣
∣

+
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= Emax. (19)

It follows from (18) and (19) that E(t) is bounded as
claimed in (17). It is worth noting that the output volt-
age of a cell is constrained between the two boundaries
in circuit implementation [as described in (15)]. Like in
most of the CNN applications, the two limitations are used
to represent its binary outputs, i.e., 1 and −1 in image
processing, respectively. Thus, in the mathematical model
of an M-CNN, the range of the state xi j is guaranteed
within [−1, 1].

Theorem 2: The function E(t) is monotonically decreasing,
namely

d E(t)

dt
≤ 0. (20)

Proof: If the feedback template is symmetric, i.e.,
ai j,kl = akl,i j , the derivative of the energy function with
respect to time t is given by

d E(t)

dt
= −

∑

(i, j )

∑

(k,l)

ai j,kl xkl(t)
dxi j (t)

dt

−
∑

(i, j )

∑

(k,l)

bi j,kl ukl (t)
dxi j (t)

dt
−

∑

(i, j )

I
dxi j (t)

dt

+
∑

(i, j )

dxi j (t)

dt

d

dxi j (t)

∫ xi j

0
m(s)ds. (21)

According to the definition of the CNNs, one has

ai j,kl = 0, bi j,kl = 0 for c(k, l) /∈ Nr (i, j). (22)

Afterward

d E(t)

dt
= −

∑

(i, j )

dxi j (t)

dt

⎧
⎨

⎩

∑

(k,l)

ai j,kl xkl(t) +
∑

(k,l)

bi j,kl ukl (t)

+I − d

dxi j (t)

∫ xi j

0
m(s)ds

⎫
⎬

⎭

= −
∑

(i, j )

dxi j (t)

dt

⎧
⎨

⎩

∑

(k,l)

(ai j,kl xkl(t) + bi j,kl ukl (t))

+I − m(xi j (t))

⎫
⎬

⎭
. (23)

Substituting (7) into (23), and recalling C > 0, one can
obtain

d E(t)

dt
= −

∑

(i, j )

C

(
dxi j (t)

dt

)2

≤ 0 (24)

which means the energy function is monotonic decreasing.
Meanwhile, since the energy function is bounded under certain
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constraints (in Theorem 1), the state variable in the M-CNN is
bounded. Thus, such a network always generates a dc output,
in other words, the M-CNN is stable.

B. Fault Tolerance

In practice, some faulty cells may exist in a CNN because
of device fault or other reasons. In general, a CNN is expected
to work normally even with the presence of faulty cells,
namely, being capable of fault tolerance. Theoretically, a CNN
is considered to possess fault tolerance if it is still stable when
some cells do not work. In this paper, the fault tolerance for
the M-CNN is verified.

Definition: The stuck-at-α fault is defined that state of faulty
cell is not changeable along with the inputs and outputs of
other cells, where α is a constant with |α| ≤ 1 [26].

In image processing, the normalized binary output of a CNN
processor (cell) can be 1 and −1 (or 0), which denote the
white and the black pixels, respectively. A stuck-at-α faulty
cell always keeps its state variable unchanged, and therefore,
the corresponding pixel value is constant depending on the
value of α.

Then, the dynamics of an M-CNN cell with a single stuck-
at-α fault can be given by

C
dxi j (t)

dt
= −m(xi j (t)) +

∑

c(k,l)

(āi j,kl xkl(t) + bi j,kl ukl)

+ I + a f α (25)

where a f and ā denote the faulty and the rest templates,
respectively.

An energy function V (t) for the M-CNN with single
stuck-at-α fault is chosen as

V (t) =
∑

(i, j )

∫ xi j

0
m(s)ds − 1

2

∑

(i, j )

∑

(k,l)

āi j,kl xkl(t)xi j (t)

−
∑

(i, j )

∑

(k,l)

bi j,kl ukl(t)xi j (t) −
∑

(i, j )

I xi j (t)

−
∑

(i, j )

a f αxi j (t). (26)

Theorem 3: The energy function V (t) for an M × N
M-CNN is bounded by

max |V (t)| ≤ Vmax (27)

where

Vmax=1

2

∑

(i, j )

∑

(k,l)

∣
∣āi j,kl xkl(t)xi j (t)

∣
∣+

∑

(i, j )

∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣

+M N

(

|I | + max
i, j

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣ + |a f α|

)

. (28)

Proof: Based on the definition of V (t) in (26), one has

|V (t)| ≤ 1

2

∑

(i, j )

∑

(k,l)

∣
∣āi j,kl xkl(t)xi j (t)

∣
∣

+
∑

(i, j )

∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣ +

∑

(i, j )

|I xi j (t)|

+
∑

(i, j )

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣ +

∑

(i, j )

|a f α · xi j (t)|

≤ 1

2

∑

(i, j )

∑

(k,l)

∣
∣āi j,kl xkl(t)xi j (t)

∣
∣

+
∑

(i, j )

∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣ +

∑

(i, j )

|I | · |xi j (t)|

+
∑

(i, j )

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣ +

∑

(i, j )

∣
∣a f α

∣
∣ · |xi j (t)|

≤ 1

2

∑

(i, j )

∑

(k,l)

∣
∣āi j,kl xkl(t)xi j (t)

∣
∣

+
∑

(i, j )

∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣ + M N(|I |)

+M N

(

max
i, j

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣

)

+ M N(|a f α|)

≤ 1

2

∑

(i, j )

∑

(k,l)

∣
∣āi j,kl xkl(t)xi j (t)

∣
∣

+
∑

(i, j )

∑

(k,l)

∣
∣bi j,kl ukl (t)xi j (t)

∣
∣

+M N

(

|I | + max
i, j

∣
∣
∣
∣

∫ xi j

0
m(s)ds

∣
∣
∣
∣ + |a f α|

)

= Vmax. (29)
Therefore, V (t) is bounded as declared in (27).
Theorem 4: The energy function V (t) is monotonic

decreasing, namely

dV (t)

dt
≤ 0. (30)

Proof: With the same assumption for the feedback tem-
plate as in Theorem 2, the derivative of V (t) with respect to
time t is given by

dV (t)

dt
= −

∑

(i, j )

∑

(k,l)

āi j,kl xkl(t)
dxi j (t)

dt

−
∑

(i, j )

∑

(k,l)

bi j,kl ukl(t)
dxi j (t)

dt
−

∑

(i, j )

I
dxi j (t)

dt

+
∑

(i, j )

dxi j (t)

dt

d

dxi j (t)

∫ xi j

0
m(s)ds

−
∑

(i, j )

a f α
dxi j (t)

dt
. (31)
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Fig. 9. (a)–(f) Six different sets of initial conditions in which the initial
states of cell c(2, 2) are the same [1].

Similar to the derivation of (23), one can obtain the follow-
ing from (31) as:
dV (t)

dt
= −

∑

(i, j )

dxi j (t)

dt

⎧
⎨

⎩

∑

(k,l)

āi j,kl xkl(t) +
∑

(k,l)

bi j,kl ukl(t)

+ I − d

dxi j (t)

∫ xi j

0
m(s)ds + a f α

⎫
⎬

⎭

= −
∑

(i, j )

dxi j (t)

dt

⎧
⎨

⎩
−m(xi j (t)) +

∑

(k,l)

(āi j,kl xkl(t)

+ bi j,kl ukl(t)) + I + α f α

⎫
⎬

⎭
. (32)

Substituting (25) into (32), and recalling C > 0, one can
obtain

dV (t)

dt
= −

∑

(i, j )

C

(
dxi j (t)

dt

)2

≤ 0. (33)

Then, it can be concluded that the M-CNN with a single
stuck-at-α fault is still stable, which indicates the fault toler-
ance property.

V. COMPUTER SIMULATIONS

In this section, the M-CNN has been numerically analyzed
on software MATLAB, including its stability, fault tolerance
property, and two typical applications in image processing.

A. Stability Analysis

The transient behavior of the cell c(2,2) in a 4 × 4
M-CNN subjected to six sets of initial conditions (shown in
Fig. 9) are shown in Fig. 10. It can be observed that the
output (state) of the M-CNN cells can reach stability and

Fig. 10. The transient behaviors of cell c(2,2) in the memristor-based CNN.
Curves (a)–(f) denote the transient behaviors of the corresponding initial
conditions in (a)–(f) in Fig.9, respectively.

keep it ultimately. This is in accordance with the theoretical
derivation in Section IV and essential for sequent applications.
In this simulation, the templates and the offset current is
chosen as

A =
⎡

⎣
0 1 0
1 2 1
0 1 0

⎤

⎦, B = 0, I = 0. (34)

B. Analysis of Fault Tolerance Property

To verify the fault tolerance property, a 21 × 21 M-CNN
is considered to implement the image inversion function.
The corresponding standard templates and the offset current
(or threshold) are chosen as

A =
⎡

⎣
0 2 0
0 2 0
0 2 0

⎤

⎦, B =
⎡

⎣
0 0 0
0 4 0
0 0 0

⎤

⎦, I = 4. (35)

Fig. 11 shows the time evolvement for image inversion of
the M-CNN with a single stuck-at-0 faulty cell c(8,5). It can
be observed that although there is a stuck-at-0 faulty cell,
the M-CNN can still accomplish the image inversion task
satisfactorily, i.e., inversing the original black diamond into
the white one successfully. It should be mentioned that the
black-line boundary of each subfigure is added to present the
simulation results better, but it does not belong to the objective
image.

C. Applications of the M-CNN

Two kinds of M-CNNs are used to perform several typical
applications in image processing: 1) uncoupled M-CNN for
HLD and edge extraction and 2) coupled M-CNN for noise
removal.
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Fig. 11. Image inversion of the M-CNN with a single stuck-at-0 faulty cell
at (8, 5).

Fig. 12. HLD with uncoupled M-CNN. (a) Input and (b) output images.

1) Uncoupled M-CNN for HLD and Edge Extraction:
A CNN is considered as uncoupled if all of the elements of
the feedback template A are zeroes or only with one nonzero
element at center indicating self-feedback [9]. HLD is one of
the functions an uncoupled CNN can complete. It means that
the uncoupled CNN will horizontally delete isolated points
and the remaining horizontal lines should contain at least two
points. For this example, the templates and the offset current
are given by [21]

A = [0 1 0], B = [1 1 1], I = −1. (36)

Fig. 12(a) and (b) shows the original image and the result,
respectively.

Another application is edge extraction, which is a common
operation in image processing. Edge extraction is an important
case of feature extraction because the edges of an image con-
tain most of the information regarding the shape of the image.
Here, using the templates in (37), a practical example of a
license plate [shown in Fig. 13(a)] was, respectively, input into
the M-CNN and the standard CNN to get its edges extracted.
The processed results are shown in Fig. 13(b) and (c),

Fig. 13. Illustration of image processing performance for edge extraction.
(a) Original (input) images. (b) Output of the M-CNN. (c) Output of a
traditional CNN.

Fig. 14. Image processing performance for noise removal is illustrated. The
left two image are noise-free image and input image with 0.02 Gaussian white
noise. On the right, the first row presents the process of the M-CNN and the
second row shows that of the standard CNN.

respectively

A =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B =
⎡

⎣
−1 −1 −1
−1 8 −1
−1 −1 −1

⎤

⎦, I = −1. (37)

Fig. 13(a)–(c) shows the original image and the processed
results obtained from the M-CNN and the standard CNN,
respectively. Note that in the edge extraction the feedback
template elements are all zeroes, which means there is no
feedback including self-feedback needed. The experiential
results have also verified that the M-CNN model possesses
similar processing performance in image processing with
the standard CNN: the average pixel difference between
Fig. 13(b) and (c) is 1.47%.

2) Coupled M-CNN for Noise Removal (σ = 0.02): In
CNNs, linear image processing with feedback and con-
trol templates is equivalent to spatial convolution with
infinite-impulse response kernels [3]. For the image that is
obtained from the real world by a camera or some other
equipment, it is inevitable to be polluted by some noise. Thus,
noise removal is a necessary and important operation. Now, we
consider a 19 × 19 image (top left corner of Fig. 14), which
is polluted by Gaussian white noise with variance σ = 0.02,
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Fig. 15. Synaptic weight processing via the memristor bridge circuit with
memristor variations.

its mean value m = 0 (bottom left corner), as the input of
a 19 × 19 M-CNN and a standard CNN, respectively. The
processed results are illustrated on the first and the second
rows correspondingly. The employed templates and threshold
are given by (38). This simulation indicates that the M-CNN
has satisfactory processing performance for noise removal as
that of the standard CNN even with much simpler circuit
structure

A =
⎡

⎣
0 1 0
1 4 1
0 1 0

⎤

⎦, B =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, I = 0. (38)

D. Impact of Variations of the Memristors on the M-CNN

The variations of the memristor synaptic weights may result
from the process variation on memristors, the weight-setting
inaccuracy, and weighting operation influence, and so on.
Taking the four ideal lines (corresponding to four levels
of weights), for instance, assume that the overall variation
impacts on the memristor weights follow a Gaussian distribu-
tion with variance σ = 0.02, 100 lines denoting the deviations
of the ideal weights can be generated, as shown in Fig. 15.

In this section, we take the HLD, for example, to evalu-
ate the performance of the M-CNN under variations in the
memristors. Since for the CNNs, the image processing is a
procedure of iteratively finding stable solution, we at first
assume that during each iteration, the memristor synaptic
weight (templates) varies following a Gaussian distribution
with variance σ = 0.02 and then Monte-Carlo simulations
are conducted 100 times for which the results are shown
in Fig. 16.

Furthermore, Fig. 17 shows the average error (blue square)
and the average running time (green star) of 100 Monte-Carlo
simulations versus the increasing memristor weights variation.
It can be observed that the variations of the memristor weights
do not influence the processing result very much, because
the small deviation is negligible compared with the binary
quantization of the output signals. For instance, even with

Fig. 16. Histogram of the errors of 100 times of simulations for HLD with
memristor weights variations.

Fig. 17. Average error (blue square) and average running time (green star)
in seconds versus memristor weights variation’s variance in 100 simulations
for HLD.

variance of 1.0, the finial output is the same as the original
one. However, since the image processing is a series of
iterative operations, if some variations arise in the templates,
the process will thus need more iterations to get the stable
solution.

VI. CONCLUSION

The memristor has been extensively studied in biological
sciences and electrical engineering as a means to compactly
implement synaptic function in neural networks. This paper
presents a novel implementation scheme for M-CNNs along
with detailed mathematical analysis. In the proposed M-CNN,
memristors are employed not only to implement the synaptic
weights (the templates) in programmable bridge structure, but
also to replace the original linear state resistor. The weight
programming and weighing process can both be performed in
the memristor bridge circuit, and the original sigmoid output
circuit can be eliminated to further reduce the size of the PE
as well as to improve the speed of computation. Therefore, the
proposed architecture is more compact and versatile, as well
as suitable for VLSI implementation.

Mathematical analysis including stability and fault tolerance
has been presented using the Lyapunov theorem, thereby pro-
viding a theoretical foundation for M-CNN implementation.
The simulation results indicate the performance of M-CNN
in image processing for numerous common functions such
as HLD, edge extraction, and noise removal. Finally, the
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effects of variations of memristors characteristics have been
investigated by performing Monte-Carlo simulation. It was
observed that variations of memristor characteristics influence
the performance of an M-CNN somewhat in speed without
impairing the quality of the final results.
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