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A Neural Network Design for Circuit Partitioning 

Absfracf-This paper proposes a neural network model for circuit 
bipartitioning. The massive parallelism of neural nets has been suc- 
cessfully exploited to balance the partitions of a circuit and to reduce 
the external wiring between the partitions. The experimental results 
obtained by neural nets are found to be comparable with those achieved 
by the Fiduccia and Mattheyses algorithm. The proposed approach can 
he implemented in hardware to accelerate the time consuming parti- 
tioning procedures. 

I. INTRODUCTION 
IVEN a set of circuit elements and the net-lists show- G ing the connectivity between these elements, the ob- 

jective of circuit partitioning is to allocate these elements 
into two or more blocks (partitions) such that the number 
of external wires interconnecting these blocks is mini- 
mized. The minimization of external wires reduces the 
wiring cost and also improves the re1i:lhility of the hprd- 
ware. The problem of finding the minimum number of 
external wires is NP-complete. A number of heuristic al- 
gorithms have been proposed in the literature to obtain 
near-minimum solutions to the partitioning problem. An 
early approach is due to Kodres [91 who developed clus- 
ters of well-connected circuit elements around a set of 
predetermined elements (called seeds). The algorithm is 
fast, but often results in very poor partitioning. A better 
approach is to construct an initial partition and then suc- 
cessively reduce the number of external wires by itera- 
tively moving the elements from one block to another 
block, while keeping the partitions somewhat balanced 
[l] ,  [3], [8], [lo], [13]. This study investigates the pos- 
sibility of utilizing the collective computational properties 
of neural networks to obtain fast heuristic solutions. Cur- 
rent research work in artificial neural net implementations 
has demonstrated the feasibility of building analog elec- 
tronic neural nets having hundreds or thousands of neu- 
rons, with state transition times comparable to the prim- 
itive binary device switching delay [4], [ 121, [ 151. By 
associating iterative rearrangements of components’ po- 
sitions with neuron state transitions, a significant gain in 
speed can be achieved over the conventional software al- 
gorithms running on sequential computers. 

In the following, some related prior works are briefly 
reviewed. We start with the seminal work by Kernighan 
and Lin [8], which was originally introduced for parti- 

Manuscript received June 20. 1989. This work was supported in part by 
the National Science Foundation . the Digital Equipment Corporation and 
by the U.S. Army. This paper was recommended by Associate Editor A. 
E. Dunlop. 

The authors are with the Department ot Electrical Engineering and 
Computer Science, University of Michigan. Ann Arbor, MI 48109. 

IEEE Log Number 90371 16. 

tioning communication networks represented as graphs. 
The average complexity of the algorithm is known to be 
O ( n 2  log n ) .  Starting with an arbitrary partition, in each 
iteration the algorithm selects a vertex from each block 
and exchanges the pair so that a maximum reduction in 
the sum of the weighted external edges is achieved. Once 
a vertex changes its side in the partition, it is not consid- 
ered as a candidate for later selections. If there are 2n 
vertices in the graph to be partitioned, the size of the 
search space for painvise exchange decreases from n ’ to 
( n  - 1)2, then to ( n  - 2)2 ,  and so on. Let g, be the edge- 
cut reduction achieved by the ith painvise exchange. The 
value of g, may be positive, zero or negative as long as it 
is the maximum reduction achievable at that time. In the 
end, the algorithm finds out the first k painvise exchanges 
such .hat C,g, i: maximized. 

Later, Schweikert and Kernighan illustrated the defi- 
ciencies of using graph models for partitioning circuits 
[ 131. They proposed the net-cut circuit model by repre- 
senting the true connection relationships among compo- 
nents joined by the same signal line. Consider a net of 
four components shown in Fig. l(a). If modeled as a graph 
with an edge created for every connected pair of compo- 
nents, it would become a fully connected graph as shown 
in Fig. l(b). 

In the Schweikert and Kernighan algorithm, the exter- 
nal lines are reduced based on the following criteria. 

1)  When all components of the same net are in the same 
block, moving any one of the components to the other 
block will create an additional external line. 

2) If a component is the only one in the net remaining 
in a block, moving it to the other block will remove the 
net from the cut. 

3) When two or more, but not all, of the components 
in the same net are within a block, moving any one of the 
components will have no effect on the number of external 
connections. 

In Fig. 2. given an example net of three components, 
the movements of component a in cases l ) ,  2 ) ,  and 3) 
show the necessity of the above three criteria. 

Fiduccia and Mattheyses [3] proposed a partitioning al- 
gorithm with linear runtime complexity, where the prob- 
lem size is defined in the number of pins in the circuits. 
Rather than pairwise exchanges, each time only a single 
component from either block is chosen for a position 
change while keeping the partition roughly in balance. A5 

in the previously described two algorithms, to prevent 
components from thrashing between the blocks, a com- 
ponent is not allowed to change its position twice. The 
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work states. For both the graph and net-cut models, the 
criteria for selecting components for changing locations 
are described in terms of neuron connections and the cor- 
responding strengths (weights) between neurons. Section 
IV described ways of balancing a partition for compo- 
nents of equal and unequal sizes. It also shows how the 
degree of evenness between partitions can be maintained 
by the neural networks. 

11. NEURAL NET MODEL 
The mathematical formalization of the human nervous 

system dates back to the work by McCulloch and Pitts in 
the early forties [ 1 11, where the nervous system is mod- 

(b) 

Fig. 1 .  Comparison between the net-cut and graph connectivity models. 
(a) Net-cut model. (b) Graph model. 
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Fig. 2 Example caqes ot a net of three components in net-cut 
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Fig. 3. Example for the demonstration of multilevel cell gain 

component selection criterion called cell gain is similar 
to the one identified by Schweikert and Kernighan. With 
each single component movement, component selection 
and cell gain information are updated by manipulating a 
smart bucket list data structure. Thus the runtime com- 
plexity is made pr8portional to the problem size. 

A possible improvement on the linear algorithm was 
subsequently proposed by Krishnamurthy [lo]. The gen- 
eralization is based on the observation that a lot of ties 
are encountered when selecting a component with the 
largest cell gain. A multilevel lookahead for cell gain in- 
formation is, therefore, suggested for tie-breaking. For 
example, consider the partition shown in Fig. 3. Accord- 
ing to the single-level cell gain measure, it appears that 
moving either component U o r b  will have no effect on the 
external line reduction. However, if a is moved, two more 
nets will each have only one last component left in the 
block. On the contrary, moving b has none of this second- 
level cell gain. 

The rest of the paper is organized as follows. Section 
I1 provides a brief overview of the neural network model 
and its computational properties. Section I11 illustrates the 
circuit partition representation in the form of neural net- 

eled as a set of neurons (computation elements) intercon- 
nected by synapses (weighted links). Each neuron in the 
model is potentially connected to other neurons, and is 
capable of receiving impulses from them, and can fire im- 
pulses as output to those neurons. This output function of 
a neuron depends on whether the total amount of input 
excitation received exceeds its predetermined threshold 19, 
or not. One convention is to describe the state of neuron 
i by a binary value s,, with s, = 0 being a nonfiring con- 
dition and s, = 1 an impulse firing condition. Another 
way is to make s, a bipolar state with s, = - 1 representing 
a negative-firing condition and s, = 1 a positive-firing 
condition. 

For neuron interactions, between two different neurons 
i and j ,  there is a synapse serving as a bidirectional com- 
munication channel. The signals passing through the syn- 
apse in  both directions are considered independent. More- 
over, the signal traveling from neuron i to neuron j is 
amplified by a weight factor wJ,, i.e., if the impulses fired 
by a neuron correspond to a unit influence. then the firing 
of neuron i produces wJI amount of influence on neuron j .  

Now, lets,‘ denote neuron i’s next state value. From the 
above description one can represent the neural net state 
rrunsition function as follows: 

O(or - 1 1 ,  if C wlJs, < o,, 

s: = 1 ,  if C w,,s, > e,, i s, 9 otherwise. 

Actually in the human nervous system or any other arti- 
ficial implementations, neural nets evolve in time and have 
smooth continuous transitions during state change. Neu- 
ron processors are expected to operate in an asynchronous 
and random fashion [ 5 ] .  

Fig. 4 shows a primitive schematic design of an analog 
electronic neural net, in which a neuron processor (am- 
plifier) may be realized simply as a series connection of 
two inverters [4], and a synapse is just a resistor with 
resistance value inversely proportional to its synaptic 
weight. In this case, a zero weight factor is indicated by 
a missing resistor. Then, the state of a neuron is repre- 
sented by the amplifier’s uninverted binary output value, 
and the influence is simulated by electrical current. As we 

J 

J 
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Fig. 4. Schematic of an analog electronic neural net 

can see, rather than actually having a dedicated link be- 
tween two neurons, all input currents to a particular neu- 
ron are superimposed on a common bus connecting to the 
neuron's input. 

Now, let us look at the overall network state transition 
behavior. Given a network state vector X = ( x l ,  x 2 ,  . . 9 

, x N ) ,  where xi  is the state of neuron i ,  X is called a$xed 
point if and only if xl = xi  for all i ' s .  That is, of all the 
possible 2 states of a neural net, only the fixed points 
are considered stable. If the current network state is not 
one of the fixed points, the neural net cannot maintain the 
present state. One immediate question about the network 
behavior could be on the state convergence: starting with 
an arbitrary state, will the network eventually reach a fixed 
point? To answer the question an energy function has been 
formulated [6]. To illustrate the energy convergence in a 
simple fashion, we will temporarily assume that neurons 
have binary behavior (nonfiring or firing), and that all 
neuron thresholds are zero in value. First, let us consider 
the case of a positive influence being fired to a neuron. 
According to the ceuron's functional definition, this input 
will encourage the neuron to fire impulses. If the neuron 
is already in the firing state, this input can be looked upon 
as a negative energy, since by convention a system is more 
stable when the energy level is lower. Likewise, a nega- 
tive influence sent to a neuron in the nonfiring state should 
also be considered as a negative energy. On the other 
hand, a positive energy is created if a firing neuron re- 
ceives a negative influence or a nonfiring neuron receives 
a positive influence, since the network is potentially des- 
tabilized by the input. 

Finally, the total energy E ,  also known as a Lyapunov 
function [ 5 ] ,  is given by 

1 
E = - - C C s,w,,s, 

2 1  J 

Note that the change of state by neuron i will result in an 
absolute decrease of CJu',Js, in energy. This, taken to- 
gether with the fact that the total energy is bounded, guar- 
antees that the network will reach a local minimal energy 
fixed point [6]. 

111. EXTERNAL WIRING MINIMIZATION 
In this section, we concentrate on partitioning circuits 

into two blocks. We will begin with circuits represented 

by the graph model, and then proceed to the net-cut model 
to demonstrate how neural networks can be applied to re- 
duce the number of external lines. The issue of maintain- 
ing the balanced partition will be discussed in the next 
section. 

3.1. Moving Cells Between Blocks 
Let us consider the case in which every wire in a circuit 

is shared by exactly two different components, so that the 
connections can be modeled accurately by the graph 
model. The interconnection relation between n given 
components can then be represented by a matrix T = { ti, 3, 
where I,, designates the number of wires between com- 
ponents i and j ,  1 I i ,  j I n .  

Suppose that component i is in block X ,  X E { A ,  B } .  
The number of associated internal lines, a!;, will be 
CrEXr,.i. Note that ti ,  is zero for all i ' s  to ignore connec- 
tions between pins of the same component. Similarly, the 
number of associated external lines, o,, will be C,EAr , . i  if 
i E B ,  or CrEBt\., if i E A .  

It may be noted that if the component i is moved from 
block X to the other block, its associated external lines 
will turn to internal and its associated internal lines will 
become external. Thus the reduction of external lines due 
to movement of component i ,  denoted here as y,, will be 
the difference between the numbers of external and inter- 
nal lines associated with component i, i .e.,  yi, = 0, - 
a!;. 

It is interesting to note that the internal connections be- 
tween two components in the same block can be mapped 
proportionally to a stabilizing negative energy in neural 
networks, and likewise the external connections between 
two components in different blocks can be mapped pro- 
portionally to a destabilizing positive energy in neural 
networks. This way, the neural network's convergence 
towards minimal network energy levels can be utilized for 
the purpose of circuit partitioning. To show how the map- 
ping is done, let us first represent partitions as neural net 
states by mapping the position of each component to a 
neuron with bipolar states. We define 

- 1 ,  

+ 1, 

if the ith component is in block A ,  

if the ith component is in block B. 
SI = [ 

If we choose to use the number of wires between two con- 
nected components as the degree of connectivity between 
them, then the weight of the corresponding synapse can 
be defined accordingly, i.e.,  w,, = GI . where GI is 
some positive constant. 

Now, if neuron i is in + 1 state, then it will fire GI  * rji 
amount of positive influence to neuron j ,  for all j # i ,  
encouraging them to either stay in or change to + 1 state. 
Meanwhile neuron i will be receiving some aiGl amount 
of positive influence to stay in + 1 state, and some a i G I  
amount of negative influence to move to the other block. 
In other words, whether a component is to change side 
or not, is determined exactly by the neuron's next state 
transition function given in Section 11. The previous as- 
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sumption that a neuron receiving a larger opposing influ- 
ence in aggregation changes its state faster, will corre- 
spond naturally to the component selection for movement 
in each iteration. The ties are resolved in a random fash- 
ion. 

3.2. The Net-Cut Circuit Model 
Now let us consider the signal net shown in Fig. 1. 

Suppose that the signal net is now divided as shown in 
Fig. 5(a), with component a assigned to one block com- 
ponents b,  c ,  and d to the other block. As we can see, 
moving component a will reduce the number of external 
lines by one. However, if the signal net is modeled by a 
graph as shown in Fig. 5(b), it appears that three external 
lines can be removed instead of one. Confusions of this 
sort do occur due to the inaccurate modeling of associated 
internal and external lines of component U .  

Following Schweikert and Kernighan’s net-cut model 
[13], y, will be calculated in the following fashion. Let 
X be the set of nets that component i belongs to, and n 
is a net in 92. We define, for the net n :  

0, 

I ,  otherwise. 

0, i 1, otherwise. 

if component i of n is alone in the dock, 

if all components of n are in the same block, 
i a: = 

P:  = 

Finally we have, 

y; = c (PI’ - a ; ) .  
l l € X  

Since the underlying external line reduction calculation 
method has been drastically changed, we propose a new 
neural net design to represent the net-cut model. The new 
design must be able to avoid duplicated positive or neg- 
ative influences being fired to a component neuron from 
all other component neurons in the net. 

To achieve this goal, we propose the use of additional 
neurons for processing cell gain information. The idea is 
to prepare no synaptic interconnections between pairs of 
the component neurons of the same net unless there are 
only two components in the net. The influences that en- 
courage a component neuron to keep or change its state 
will now be provided by some other additional noncom- 
ponent neurons. 

Before we set out to describe the new neural net design, 
the functional behavior of a neuron is enhanced for the 
net-cut model. First, a reference value ri is suggested as 
an input to neuron i ,  which is used to compare with the 
total received feedback influence to determine the next 
state. Basically, when r, = 0, neuron i behaves just like 
a simple thresholding processor with threshold being zero. 
However, when a nonzero reference value is applied, the 
neuron must receive a larger total feedback in absolute 
value than the magnitude of the reference to be in  a non- 
zero state. Moreover, a neuron is supposed to be in f l  
( - 1 ) state if a large enough positive (negative) total in- 
fluence in magnitude is received. However, the corre- 

. 

I 

(a) 

, 

( b )  

Fig. 5 .  Min-cut partitions of the two models shown in Fig. I 

spondence is reversed when r, is negative, i.e., a large 
enough positive (negative) total influence in magnitude 
will set the neuron in - 1 ( + 1 ) state. The above descrip- 
tion can be summarized by diagrams shown in Fig. 6. The 
exact state transition function is formalized as follows: 

( s,, if C w,,s, = 0 and r, = 0, 

or ( -E  w,,s, > I r,l and r, > 0) 

or (E  wus, > 1 r, 1 and r, < 0) , 

+ 1 ,  if ( C  wIIs, > 0 and r, = 0) 

or ( -C wI ls ,  > I r, 1 and r, < 0)  , 

b, if IC wlJsJ I < I r, I and r, # 0. 

Now, consider a signal net of k components, k > 2. To 
take care of the three observations made by Schweikert 
and Kernighan in the net-cut model, a neuron x is added 
so that every component neuron in the net is connected to 
x by synaptic weight GI .  Neuron x’s reference input is set 
to the value ( k  - 3 )  GI.  This way, if all components are 
in block X ,  each of the component neurons will receive 
- G, ( GI ) amount of influence from neuron x to stay in 
the block if X = A (B). Also, when both blocks have two 
or more components, neuron x will not fire any influence 
to the component neurons. As for the case where there is 
exactly one component in, say block A ,  and all others in  
block B ,  although the lone component neuron will receive 
GI amount of influence from neuron x to change state as 
expected, the rest of the components will each receive an 
extra GI amount of influence from x .  Thus the second ob- 
servation is invalidated. To remedy this problem, k ad- 
ditional neurons, y l ,  y z ,  * * * , yL,  are added so that y ,  
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s t c p 1 : s t a t e  

influence 

step 2: state 

influence 

step 3: s t a t e  
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r1 >o I; <o TABLE I r =o 

AN EXAMPLE NEURAL NET CONVERGENCE FOR EXTERNAL WIRING 
REDUCTION 

Fig. 6. The next state transition function for neurons. 

1 - 1  - 1  ~1 ~1 -1 0 0 0 0 

-1 0 0 0 -2  3 1 1 1 -6 

~1 -1 - 1  -1 ~1 -1 0 0 0 0 

-1 0 0 0 - 4  3 3 3 3 -12 

-1 -1 -1  -1 -1 -1 -1 -1 -1 -1 

- 1  1 -1  -1 - 4  3 3 3 3 ~ 1 2  

I 11.5 (reference) 
111 

''11,1 synapse w i t h  weight -: 

\synapse w i t h  w e i g h t  +I 

-5 synapse w i t h  w e i g h t  t3 

Fig. 7. A neural net constructed for a signal net of four components. 

connects to all component neurons in the net except the 
ith one, with synaptic weights all being -GI .  Each y neu- 
ron has a reference -( k - 1.5) GI so that, when detecting 
all k - 1 connected component neurons in the same state, 
the extra influence fired by neuron x to these components 
is neutralized by the opposing influence fired by the y neu- 
ron. However, the addition of these y neurons has a side 
effect on the first observation, i.e., when all k components 
are in block X ,  each component neuron will also receive 
incorrectly an extra ( k  - 1 ) GI (or  - ( k  - 1 ) GI ) amount 
of opposing influence from the y neurons if X = A (or B ) .  
Finally, this can be compensated by introducing a neuron 
z which connects to all component neurons with synaptic 
weight ( k  - 1 ) GI and has a reference being ( k  ( k  - 1 ) 
- 0.5) GI .  The interconnections among the ccmponent 
neurons and the x, y,  z neurons with k = 4; and GI = 1 
is shown in Fig. 7 .  For an initial partitioning of having 
component a in  block A and components b, c, and d in 
block B ,  the dynamic neural-net convergence operations 
for external wiring reduction are given in Table I. The 
neural subnetwork finally reaches a stable state by moving 
component a from block A to B ,  and the net-list is re- 
moved from the cut. 

IV. BALANCING THE PARTITION 
In this section, we address the issue of balancing the 

sizes of the two blocks that define a circuit partition. The 
association of block size evenness with the neural net- 
work system energy level is demonstrated. Here, to make 
things easier, we will start with the assumption that all 
components are of the same size, and later extend the so- 
lution for the general case. 

As before we choose to represent the n components by 
n neurons with bipolar states, i .e.,  si E { - 1, + 1 }, 1 5 
i 5 n .  Moreover, if component i is currently in block 
A ( B )  then neuron i is said to be in - 1 ( +  1 )  state. Let 
Ecp denote the degree of unevenness of a circuit partition. 
We can define 

Ecp = G2/2 * (2; s i )2  

where G2 is some positive constant. Ecp is minimized to 
zero when there are equal numbers of + 1's and - 1's as 
the states of the component neurons. 

Note that we can rewrite the unevenness measure alter- 
natively as 

Compared with the form of the neural net energy function 

we find that Ecp can be made equivalent to E" by as- 
signing all synaptic weights between component neurons 
of the neural net to -G2. Note that the inclusion of self- 
feedback loops is indicated by the transformation. To 
avoid possible oscillation in neural net convergence, we 
need to ignore the creation of synapses as self-feedback 
loops. Thus a neuron's own state (position) is not taken 
into consideration by the very neuron processor when 
trying to balance the partition. The effect is insignificant 
when partitioning large circuits. Otherwise, the states of 
a neural net must be monitored closely to force the net- 
work to stop if an oscillation is detected. An empirical 
maximum convergence time limit may also be needed to 
prevent the problem. 

Now, let us consider the case of having k components 
in block A .  This way every component neuron will re- 
ceive - ( n  - 2 k ) G 2  amount of influence. If there are 
fewer components in A ,  i.e., k < n / 2 ,  the influence will 
be negative. Consequently, neurons which correspond to 
components in B will be encouraged to change state from 



1270 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL 9. NO. 12. DECEMBER 1990 

+ 1 to - 1, while other neurons in A will be encouraged 
to stay in - 1 state. 

To combine the considerations of external line reduc- 
tion and partition balancing, the weight values w,,'s ob- 
tained here are added, respectively, with the ones ob- 
tained in Section 111 to define the final synaptic strengths 
for neuron interactions. In other words. this kind of influ- 
ence created due to block size balancing will be combined 
with the influence created due to cell gain consideration 
to determine the component movements between blocks. 

In the following, three typical circuits are divided 
evenly into two blocks to provide some neural net circuit 
partitioning performance measurements. For each exper- 
iment, we adopt the following technique to obtain the fi- 
nal partition. 

1) Starting with two randomly formed circuit halves A 
and B ,  apply neural net partitioning to obtain an improved 
minimal partition as blocks A' and B ' .  

2 )  Partition A' into two circuit halves A ;  and A i ,  and 
B' into B ;  and B;.  

3 )  Form new initial partitions as A ;  U B ;  and Ai U 
B;,  and perform neural net partitioning. 

4) Form second new initial partition as A ;  U BA and 
A; U B ; ,  and perform neural net partitioning. 

5 )  Record the best partitioning obtained in  steps l ) ,  3 ) ,  
and 4) as the result. 

Of the three sample circuits, circuit 1 has 62 compo- 
nents and 33 signal nets, circuit 2 has 100 components 
and 53 signal nets, and circuit 3 has 58 components and 
69 signal nets. For each circuit, 300 random initial par- 
titions are tried for each experiment to obtain the perfor- 
mance results. Histograms of the number of external lines 
(cut size) achieved are shown in Fig. 8 ,  with the overall 
performance summarized in Table 11. 

On the average, for all three example circuits used here, 
the Fiduccia and Mattheyses algorithm is able to find a 
partition with smaller cut. However, the average differ- 
ences are within one or two lines, or less than 10% of the 
average cut size obtained by the Fiduccia and Mattheyses 
algorithm. As for the smallest cut size achieved, in one 
example the neural net approach is more effective by one 
external line, and in the other two examples the Fiduccia 
and Mattheyses method is better by two external lines. 
For both methods, the choice of initial partition for an 
iterative improvement is expected to have significant im- 
pact on the final solution's quality, which explains the 
large variances in cut sizes, 02 ,  observed in the simulation 
results. In this respect, the substantial speed gain achiev- 
able by neural computing will be more attractive in at- 
tempting a large amount of random trials. 

Now let us return to the issue of adjusting the degree 
of evenness of a partition by neural network convergence. 
Since the partitioning done by a neural net used two com- 
bined criteria, the importance of block size balancing rel- 
ative to external line minimization can thus be adjusted 
by the G2/GI ratio. G2 can be set to a relatively larger 
number to obtain a high degree of partition evenness. On 
the other hand, if strict balancing of the partition is not 
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Fig. 8 .  Performance comparison of the Neural and the Fiduccia-Mat- 
theyses algorithms. 

TABLE 11 
CUT SIZES OBTAINED B Y  NEURAL NET A N D  FIDUCCIA-MATTHEYSES 

ALGORITHMS ( U  = STANDARD DEVIATION) 

II I min ave max 0 I min ave max u I1 1 ckt 1 1 f '2: 1.9 1 k 15.4 14.4 '22 1.6 1 ckt 2 26.5 2.8 24.1 3.5 

ckt 3 15.8 27 3.8 14.7 21 3 1 

required, G2 can be set to a relatively smaller number so 
that the number of external lines may be further reduced 
by keeping the circuit roughly divided during the parti- 
tioning process. A simulation study is performed on cir- 
cuit 4 which has 23 components and 23 signal nets, with 
results provided in Table 111. 

It may be noted that as the G2 /GI  ratio increases, the 
variance in the block sizes improves but the average cut 
size tends to be larger, which may be explained by the 
lessened emphasis on selecting components with larger 
cell gains. 
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TABLE 111 
CUT SIZE VERSUS GZ/G,  WITH EQUAL SIZE COMPONENTS ( U  = 

STANDARD DEVIATION) 

0.2 11.5 

0.3 

TABLE IV 
CUT SIZE VERSUS G,/G, WITH UNEQUAL SIZE COMPONENTS ( a  = 

STANDARD DEVIATION) 

0.20 32.8 4.0 

Finally, we will modify the neural net connection pro- 
gramming scheme to partition circuits with unequal com- 
ponent sizes. Recall that a component in A is represented 
by a neuron in a -1 state, and a component in B is rep- 
resented by a neuron in a + 1  state. Our intention is to 
make the positive (negative) influences received by a neu- 
ron proportional to the total size of block A ( B ) ,  so that a 
larger A will cause all neurons to receive a net positive 
influence, and a larger B will cause all neurons to receive 
a net negative influence. 

One way to achieve this is to make the neural net inter- 
connection weight matrix asymmetric, i.e., let wrJ, the 
connection strength from neuronj to neuron i, be negative 
and proportional to the size of component i in magnitude. 
Thus componentj with size z, in block A ( B )  will send out 
through amplification of synapses, say G2 . zJ(  -G2 z J )  
amount of influence to push all neurons to block B ( A ) .  
Conversely, each neuron receives a total influence of 
C J (  -G2 . z J ) ,  which reflects the evenness of the partition 
with actual sizes of the components considered. Note that 
due to the asymmetric weight matrix, the neural net con- 
vergence is not guaranteed. Special care may be needed 
to terminate the operation. By setting z, to the number of 
pins of component j ,  the neural net partitioning is carried 
out on circuit 4. In Table IV, the simulation results show 
that the quality of partitioning with unequal size compo- 
nents is similar to the one with equal size components. 

V.  CONCLUSIONS 
In this paper, the circuit partitioning problem is solved 

using neural networks. We have demonstrated how the 
neural net state convergence properties can be utilized to 
balance the partition and also to select circuit elements for 
movement. According to the simulation results, both the 
average and the best-case solutions are comparable to 
those obtained by the Fiduccia and Mattheyses algorithm. 
The design is readily implementable in hardware on ex- 

isting programmable electronic neural network chips [ 121, 
with some functional modifications to the neuron proces- 
sors. Since neuron processors collectively perform binary 
thresholding operations, fast convergence to minimal so- 
lutions can be guaranteed. Thus the proposed approach 
can be used as a hardware acceleration of partitioning 
problems that normally require very high computation 
times. The technique discussed in this study can also be 
applied to the gate matrix placement problem [7]. 
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