
1096 I t k E TRANSACTIONS O N COMPUTFR AIDED DFSIGN VOL Y NO IO OCTOBER I Y 9 0

A Hexagonal Array Machine for Multilayer Wire
Routing

R. VENKATESWARAN AND PINAKI MAZUMDER, MEMBER, IEEE

Abstract-Maze routing is widely used in both printed circuit board
(PCB) and VLSI design. However, for the ever increasing design re-
quirements, this can no longer he done economically without the help
of special purpose hardware accelerators. A new hardware accelerator
comprised of several fast processors interconnected in the form of a
hexagonal mesh with wraparound connections is proposed.

The novelty of the proposed architecture stems from the fact that it
is suitable not only for single-layer routing, but also for routing in par-
allel on multiple layers. A hexagonal machine of dimension C G , with
about 3kC processors, can handle a k-layer grid consisting of kC' grid
points a t about the same speed as a full-grid machine with kG' proces-
sors.

A technique for measuring the performance of a hardware acceler-
ator, in terms of the average delay incurred over a full-grid machine,
is suggested. This has been formalized in case of the hexagonal archi-
tecture and is presented for various nets and mesh dimensions. The
results have been accurately verified by extensive simulation done in
C + + language. It is also demonstrated that the hexagonal mesh, by
virtue of its additional links for expansion, is resilient to about 10% of
failure in the links and processing elements. A detailed design for a
chip implementation of the hexagonal machine is also discussed.

Keywords-Hexagonal array, multilayer routing, interprocessor
cycle period, average delay factor, reconfigurability.

I. INTRODUCTION
UTOMATIC LAYOUT of wiring patterns for printed A circuit boards (PCB's) and integrated circuits (IC's)

have been in vogue for the past several years. For a PCB,
the components are IC packages and the electrical con-
nections are made by a metal etching process. Connec-
tions between layers are made by drilling holes through
the fiberglass and plating them with metal. In an IC, wire
lines of polysilicon are fabricated to carry electrical sig-
nals between circuits. In addition, one or two layers of
metal separated by insulating layers of oxide are depos-
ited and etched above the silicon to form wire lines. Holes
are left in the oxide to form interlayer contacts or vias.
Thus the routing problem, which is to connect all the
points of each net and to ensure that the wiring paths of
the different nets do not intersect each other on any layer,
is quite similar in both the environments. Furthermore,

Manuscript received July 2 I . 1989. This work was supported by the
Army Research Office under the URI program under Grant DAAL 03-87-
K-0007. by the Digital Equipment Corporation Faculty Award, and by the
National Science Foundation Research Invitation Award under Grant MIP-
8808978. This paper was recommended by Associate Editor A. E. Dunlop.

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan. Ann Arbor, MI 48109-2122.

IEEE Log Number 9036682.

several constraints, such as the total wire length, number
of vias used, critical nets, etc., are imposed on the solu-
tion generated. In this paper, we propose a new hexagonal
mesh architecture for a parallel multilayered routing al-
gorithm that is applicable in both of these environments.

Several algorithms, such as the channel [4], [23], maze
[l I], river [15], a - /3 [9], etc., have been proposed in
the literature for routing interconnects in IC's and PCB's.
Among these, the maze router, originally proposed by Lee
[1 I], uses breadth-first search, and thereby it is admissi-
ble in the sense that it always finds a shortest-length path,
if one exists. This attribute of the maze router is fre-
quently exploited in practice to minimize the total inter-
connect length and, presumably, the overall chip area.
Section I11 deals with the Lee algorithm in greater depth.
Many commercial routers use the Lee algorithm or its
variant [7], [6] exclusively, or initially use some other
algorithms to rapidly interconnect most of the nets and
then utilize the Lee algorithm to interconnect the remain-
ing nets. However, this is achieved by paying a high pre-
mium of large storage space (in the worst case, an ex-
ponential to the path length L) and expensive runtime (in
the worst case, 0 (L 2) time to find a path of length L) .
Elegant coding schemes, such as the one suggested by
Akers [I] , can be used to alleviate the storage space prob-
lem. However, time continues to be a severe constraint in
a uniprocessor implementation. Two schemes suggested
were the pipeline-based approach of Sahni [IS] and the
raster-based approach of Rutenbar [171. These ap-
proaches, though economical in hardware, often reduce
the 0 (N 2) time complexity by only a small constant fac-
tor, and hence, are inadequate for large problem sizes.

For multiple layers, the problem becomes even more
acute. The accepted strategy is to route as many nets as
possible on each layer independently. A global routing is
attempted only for the unfinished nets. However, it is well
established that these few remaining nets account for the
majority of the time required in routing.

Specially designed multiprocessor-based routing en-
gines or hardware accelerators thus become absolutely
necessary [2] for doing the complex routing in the very-
large-scale integrated (VLSI) circuits of today. The Lee
maze algorithm, by its very nature, offers much potential
for parallelization, and hence, is an excellent candidate.

The ideal architecture would be an interconnected N X
N k-layer processor array, where each processor Pyk has

0278-0070/90/ 1000- 1096$01 .OO 0 1990 IEEE

VENKATESWARAN A N D MAZUMDER: A N A R R A Y MACHINE FOR MULTILAYER WIRE ROUTING

a one-to-one correspondence with a grid cell al,k in the
layout. Such a fill-grid machine, however, requires kN2
processors and 2kN(N - 1) + N(k - 1) links for a
k-layer N x N grid, which is clearly expensive. Breuer
and Shamsa's L-Machine [3] is the first published design
of this nature. However, it is inflexible in the sense that
it is incapable of handling problem sizes larger than the
physical size of the processing array. Thus the need for a
better architecture, where the grid array can be efficiently
mapped onto a much smaller subset of processors, has
been widely recognized (the folding problem). One of the
chief factors affecting the performance of any such archi-
tecture implementing the Lee algorithm is the interpro-
cessor cycle period (ICP). The ICP is defined as the
smallest number of distinct processors that are encoun-
tered before one gets repeated, while traveling along any
straight line on the grid.

The wire routing machine (WRM) built by Nair et al.
[8] is probably the precursor of the present trend of virtual
machines. It consisted of processing elements connected
in the form of a square mesh. The chief difference of the
WRM was that it used general-purpose microprocessors
rather than custom-made hardware for the node elements;
thus trading compactness for versatility. Martin [121 has
suggested the suitability of the torus-like mesh for folding
operations. Suzuki and others 1211 have built a machine
with 64 processors interconnected in the form of a twisted
torus. Other similar implementations are described in [191
and 1221.

The intention of this paper is to propose a new archi-
tecture for the physical implementation of the Lee algo-
rithm, wherein the processors are interconnected in the
form of a C-wrapped hexagonal mesh. Table I reflects the
superiority of the hexagonal interconnection topology to
existing ones. The larger ICP value implies fewer con-
flicts in processor assignments during wavefront expan-
sion, thereby improving the overall performance. Since
each processor is connected to six others, the hexagonal
machine can do multilayer expansion in parallel, unlike
existing accelerators. This again results in shorter routing
time requirements. Performance results, as obtained from
extensive simulation runs and supplemented by analytical
derivations, have been very promising.

The basic labeling scheme used in the hexagonal array
machine is a very powerful one. It can be used for ma-
chines where the number of nearest neighbors of each pro-
cessor is other than 6. For example, reconfiguring the
basic hexagonal machine by deleting all diagonals along
any one of the three directions yields a cheaper machine
that is still extremely efficient in handling two-dimen-
sional maze routing on a single layer. This is because the
ICP property is unaffected by the number of neighbors pres-
ent. This property also makes the hexagonal array ma-
chine resilient to link and processing element failure, so
far as its routing capability goes.

The rest of the paper is organized as follows. Section
I1 introduces the architecture, labeling scheme, and other
salient properties of the hexagonal array machine. Section

~

1097

TABLE I
EVALUATION OF INTERCONNECTION TOPOLOGIES FOR MALE ROUTING

Interconnection Interprocessor Cycle Multilayer
Topology' Period Routing Recontigurability

Square mesh [8] A X X

Twisted torus 1211 - N X X

L
Hexagonal mesh N J J

'Wraparound topologies with N processing elements. X indicates No
and J indicates Yes.

I11 explains how concurrent multilayer wire routing is
possible on the hexagonal array machine. In Section IV,
an analytical model for estimating the delay is presented.
Section V discusses both hardware and software issues for
chip implementation of the hexagonal array machine. Per-
formance is analyzed in Section VI. Reconfiguration and
fault tolerance aspects are discussed in Section VII.

11. HEXAGONAL-ARRAY MACHINE
Dejnition I : A C-wrapped hexagonal mesh of dimen-

sion e is comprised of 3e (e - 1) + 1 (= N, say) proces-
sors, labeled from 0 to 3e (e - 1), such that each proces-
sor s has six neighbors [s + 1IN, [s + 3e - 1IN, [s +
3e - 2IN, [s + 3 e (e - 1) I N . [s + 3e2 - 6e + 2]N,
and [s + 3e2 - 6e + 3 I N , where [a],, denotes a (mod
b) .

Property 1: An unwrapped hexagonal mesh of dimen-
sion e can be partitioned into 2e - 1 rows in three pos-
sible ways: along the horizontal direction, along the 60-
deg counter-clockwise direction, or along the 120-deg
counter-clockwise direction.

Observation I : Along any of the three directions, let
Ro be the top row, R , the second row, and so on until
R 2 r - 2 . Then a C-type wrapping is obtained by wrapping
the last processor in RI to the first processor in

Fig. Ita) shows an H-mesh of dimension 3 with the
wrappings indicated alongside the arrows. Note that in
this case there are 19 nodes distributed over five rows,
with the wraparounds in the three directions as noted in
Observation 1. For example, in Fig. 1, the last processor
in R, along the horizontal direction, viz., node 2 is
wrapped to the first processor in R4, node 3. The chordal
equivalent of the hexagonal mesh, showing all the wrap-
arounds is shown in Fig. l(b). Such a topology and la-
beling scheme have also been studied in relation to ex-
perimental distributed real-time systems such as HARTS
1-51 and FAIM [20].

Property 2: A C-type wrapping is a homogeneous in-
terconnecton. Any node can be labeled as node 0, that is,
as the center of the mesh.

Lemma I : For a C-wrapped hexagonal mesh of dimen-
sion e, the ICP, i.e., the number of distinct processors
that one encounters before returning to the same processor

R,l + P - I I ? ? - I.

1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. IO. OCTOBER 1990

1 3 3 4 4 5

5
10

1s 3

9 14

0

14 15 15 IS 16 11

(a)
Fig. 1 . (a) A wraparound hexagonal mesh of dimension 3. (b) Its chordal

equivalent.

while traveling along any of the three directions, is p =
N = 3e2 - 3e + 1.

Proof: From Observation 1 , we know that the last
node of row Ri is connected to the first node of row
R,; + e - - , . This can be interpreted as being a linear con-
gruent sequence of the form mod (a, + b) m. In our case,
wehavea = 1, b = e - 1 , x = i, andm = 2e - 1. From
random number theory, this sequence has been shown to
have the maximum possible period of m if and only if b
is relatively prime to m [lo]. This implies, that in our
case, the sequence will be of length 2e - 1 (the number
of rows in the unwrapped hexagonal mesh of dimension
e) if (e - 1) is relatively prime to (2 e - 1) .

Hence, our assertion that p = 3e2 - 3e + 1 is true,
provided that the node numbering is unique. This is true
in the horizontal direction, as we number the nodes with
consecutive numbers. However, from Property 1 and Ob-
servation 1 , it follows that it must also be true in the other
two directions. Q.E.D.

111. ROUTING ON THE HEXAGONAL MESH

The hexagonal array machine is unique in the sense that
it is the first to attempt concurrent multiple-layer routing.
By cleverly assigning processors to grid points on the ac-
tive wavefront, the hexagonal array machine considerably
reduces the otherwise enormous time requirements. Con-
current multilayer wire routing has several advantages.

Via Minimization: A via is a contact used to connect
a wire that extends over two physical layers (metal and
polysilicon). Vias not only take more area but also reduce
the reliability of the circuit. Hence, minimizing the num-
ber of vias is an important issue and is usually carried out
by a post-processing step. This additional cost is often
very high and sometimes unacceptable.

Most routers constrain the polylines to run in one di-
rection (say horizontal) and the metal lines to run in the
other (vertical) direction. Thus the two can be superposed
and a common wavefront propagated. However, every
bend in a wire route causes a switch in the layers, and

hence, must be realized using a via. Clearly, a high per-
centage of these vias are unnecessary and could have been
avoided by allowing poly and metal to run in both direc-
tions. Relaxing the constraint is made possible in the hex-
agonal array machine by allowing for multiple wavefronts
at the same time. It also implicitly assigns an additional
cost to each via during the wave-expansion step. In this
way, paths with more vias become less attractive cost-
wise.

Increased connectivity: Usually maze routers pro-
ceed by routing one net at a time. The question of net
ordering is, therefore, an important one. The hexagonal
array machine does not eliminate this problem. However,
by treating the metal and poly (and possibly other layers)
separately, an obstacle on one layer does not preclude
routing on the other. Now, consider a router that does
multiple-layer routing by considering one layer at a time
in a serial fashion. An important question for such routers
is where to introduce the vias? This question is rendered
irrelevant by routing on all layers simultaneously.

Technology: Current IC technology is capable of
more than two layers: two-metal and two-silicon layer
technology is already in production. In PCB’s, several
layers have traditionally been used. So the need for mul-
tiple-layer wire routing is an accepted one.

The rest of this section will explain how the hexagonal
array machine can perform concurrent multiple-layer
routing. Before proceeding any further, we digress a little
to outline the basic Lee maze routing algorithm. The Lee
algorithm consists of three distinct phases, namely a) wave
expansion, b) backtracing, and c) label clearance. The
wave-expansion step starts from the source cell/cells by
labeling all unoccupied adjacent cells. These newly la-
beled cells constitute the new wavefront for the next ex-
pansion. The process is repeated until the target cell is
reached. If we assume that all cells and all nodes have
similar behavior, and that the propagation speeds are sim-
ilar in all directions, even in the case of an asynchronous
implementation, then for uniform labeling these wave-
fronts appear as diamond-shaped fronts. This observation

VENKATESWARAN AND MAZUMDER: AN ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1099

suggests that any good mapping strategy must ensure min-
imum repetition of processors along any 45- or 135-deg
lines. In the backtracing step, the labels are traced back
from the target to the source, and the shortest path found.
In the final label-clearance step all extra labels are cleared
and the cells on the new net are marked as being occupied
for future expansions.

For multiple layers, each cell must now expand the
wavefront not only to its four neighbors on the same layer,
but also to its neighbors on the adjacent layers. Such an
expansion is possible in a single step on the hexagonal
array machine, since each node has six adjacent neighbors
with which it communicates directly. In a square mesh or
torus topology, the usual strategy is to assign the same
processor to handle the cell au in all the layers. However,
expansion can no longer take place in a single step, re-
sulting in longer routing times.

Definition 2: (Operator) Let CP be the mapping opera-
tor, such that

+:zr x r,. x rz -+ P

where Zi is { k IO I k I i , where i is the dimension of
grid} a n d P is { m l O I m < e 2 - 3e + l } . Then

where a is the processor assigned to the grid cell (0, 0,
0) , wy = 3e - 1 and w, = 3e - 2 , and [a I b refers to a
mod b .
9 is derived based on the mapping scheme shown in

Fig. 2. For other assignments, the formula for 9 can be
similarly derived. Fig. 3 shows the mapping for a two-
layer 16 by 16 grid, using a four-dimensional C-wrapped
hexagonal array. As can be seen, it consists of repeated
folding of the tile, corresponding to the unwrapped four-
dimensional hexagonal array.

Mapping: Of the six neighbors of each node of the hex-
agonal mesh, four of them are assigned to cells on the
same layer and the remaining two to the up-and-down
neighbors on the adjacent layers. Since cells on different
layers are reached in subsequent expansions, vias are im-
plicitly given the cost of traveling along an arc. If a greater
cost must be attached to them, then we can assume the
different arcs to have different weights. For instance, a
weight of 3 can be assigned to the z-links to represent the
additional cost of the vias. To discourage bends in the
wiring path, a cost of 1 or 2 can be assigned to an x / y
link emerging from a node, depending on whether the link
lies in the same direction or in a different one from that
by which that node has been labeled. For an N-node hex-
agonal mesh, it has been shown in Lemma 1 that all hor-
izontal, vertical, 45- and 135-deg paths are mapped on a
cycle containing all cells of the machine, i.e., on a cycle
of periodicity N. This clearly leads to a processor assign-
ment with the fewest conflicts. The revised Lee algorithm
for multiple layers is given in the following.

(I-3eISOUTH (i-3elDOWN

Fig. 2. Processor labeling scheme

0 I 5

I

I 2 7 4 5 6 7 8 9 I O I

(5 - 2 7 2 8 2 9 3 0 3 1 3 2 3 3 1 4 3 5 36 0 I 2 3 4 5

0 -

m

15 -

0 5

3 5 1 6 0 I 2 3 8 9 I O l l l 2 : 3

24 25 26 27 28 2 9 3 0 31 32 33 34 35 36 0 I 2

2 3 4 5 6 7 8 9 1 0

28 29 30 31 32 3 3 34 35 36

17 18 19 20 21 22 23 24 25

Fig. 3 . Mapping for the two-layer 16 by 16 grid using a four-dimensional
H-mesh.

A . ModiJed Lee Algorithm for Multilayer Concurrent
Routing

This algorithm is a variant of the Lee algorithm. It
makes use of the six links of each processor in the hex-
agonal array to propagate the wavefront simultaneously
over all the layers and find the most optimal path, if one
exists.

1) Wave Propogation Phase:
1) Initialization. Set obstruction flags, I source flags

(SC’s), and target flags (TC’s) in the appropriate proces-
sors. Mark SC as the active processor to be expanded.

2) Expand from the active cells in all six directions

‘These represent the terminals and the obstructions posed by the nets
that have been previously routed.

I100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. N O . 10. OCTOBER 1990

(a) (b)

Fig. 4. (a) Processor assignments for a three-layer 4 by 4 grid. (b) Initial
netlist.

along the links of the hexagonal mesh. Transmit to each
processor the following four-tuple:

(a) (b)

Fig. 5 . (a) Snapshots of wavefronts on three layers. (b) Final wiring

TABLE I1
PROCESSOR ASSIGNMENTS DURING W A V E PROPAGATION CYCLES

Clock Processor Assignments

Cycle Layer 1 Layer 2 Layer 3

where X is the layer, x and y are the x and y coordinates
of the cell being reached in this expansion, and c repre-
sents the cost for reaching the cell along this path and can
be omitted if unequal weights are not assigned to the var-
ious links.

3) If TC has been marked, go to the backtrace phase.
Else repeat step (2) .*

2) Backtrace Phase:
1) Let l be the final label of the TC. Mark TC as the

cur-node.
2) Mark all the adjacent (at most six) nodes which have

the label l - 1. If there is only one such node, go to step
4.

3) Choose the node that is on the same layer as
cur-node if possible. If there is more than one possible
candidate, then pick the one that lies in the same direction
as cur-node was with its predecessor.

4) Mark the new node chosen in steps 2 or 3 as the
cur-node. If it corresponds to the source, then quit, as a
path has been traced out. Else go to step 2 .

Example: We now illustrate the process by means of
an example. We consider a 4 by 4 three-layer grid.3 Fig.
4(a) shows the processor assignment to the 64 grid points,
obtained by applying the operator Cp. Fig. 4(b) shows two
nets, A and B, that have been previously routed. Our as-
signment is to route the third net, C , whose endpoints are
also shown. At this stage, one may note that it is not pos-
sible to complete this interconnection without using the
third layer.

*It is assumed that all processors can simultaneously send and receive
messages from their neighbors. This enables us to mark all the neighbors
which need not be expanded in the next phase. To further speedup the
process, we may mark the cells in all layers at the same (x , y) position
as the TC as targets. This is true if we assume accessibility of terminals
from all layers.

'The three layers could represent a two-metal and one-silicon layer
technology.

1 9
2 IO. 17 2
3 1 1 , 18 3 14
4 0, 12 4 3 , 15
5 5 4, 1 1 , 16
6 0, 5 , 12. 17
7 0 1, 6, 13
8 1 , 8 2, 14
9 15 2, 9 3

I O 16 I O
I I 17

Fig. 5(a) is the snapshot at the culmination of the wave
propagation phase of the modified Lee algorithm. The
shaded areas indicate the previous obstacles. The number
in each square is the label associated with that grid point,
i.e., all cells with a label i would lie on the ith wavefront.
For this example, the wave propagation phase requires
eleven clock cycles. There are also no processor conflicts.
Table I1 shows the active processors in each clock cycle.
The distinction between layers is made solely to aid un-
derstanding. Thus during clock cycles 3 , 4 , and 9, a com-
mon wavefront exists over all three layers. Fig. 5(b)
shows the final route for all three nets.

IV. DELAY MODELING FOR THE HEXAGONAL ARRAY
MACHINE

The performance of the hardware accelerator, using
multiple interconnected processors folded to yield a larger
grid size, is usually measured by how much the mapping
minimizes the additional delay incurred over the corre-
sponding full-grid implementation. For our machine, the
maximum additional delay for any given wavefront is de-
termined by the maximum number of cells assigned to a
single processor on that wavefront. Thus if ci is the num-
ber of cells assigned to processor Pi on a certain wave-
front, then the additional delay involved is given by [max
(c ;) - 11, where 0 5 i I N - 1. Hence, ideally, we

VENKATESWARAN A N D MAZUMDER: A N A R R A Y MACHINE FOR MULTILAYER WIRE ROUTING 1101

0 14 9 4 18 13 8

8 9 10 11 12 13 14

would like the additional delay to be as close to zero as
possible.

The extra delay is usually quite complex to calculate as
its depends on a number of factors, such as i) location of
source and destination cells on the grid, ii) obstacles on
the grid, iii) size of the grid, iv) dimension of the hex-
agonal mesh used, and v) physical implementation issues
such as SIMD/MIMD mode of control. To date, most
work in this area has been characterized by an attempt to
estimate the delay by simulation alone, which ordinarily
requires 8 (k G 2) computations for a k-layer grid of size
G X G. However, based on the nature of wavefront prop-
agation on the hexagonal mesh, we can propose a simpler
model that can yield us the same result using only 8 (kN2)
computations, where N is the number of processors avail-
able and G >> N. We believe that similar models can be
developed for other topologies as well.

Notation 1: Let Dj be a permutation of the group

z, = { [OI, [I] , [21, * * > [N - 13; @ }
of congruence classes modulo N.

Theorem I : The four diagonals of the ith wavefront ex-
pansion on the hexagonal mesh machine of dimension e,
handling a single-layer obstacle-free grid of dimension G
X G, are given by the first i + 1 columns of the diagonal
matrix, 3, where

3 17 12 7 2 16 11 6 1 15 10 5

15 16 17 18 0 1 2 3 4 5 6 7

and the Di are as per Notation 1.
Proof: We know that on an obstacle-free grid, the

wavefronts are diamond-shaped. Let us label the four di-
agonals as D l , D2, D3, and D,. As can be seen from Fig.

Fig. 6 . Wavefront expansion on 6 on a three-dimensional mesh.

It is obvious that D3 will only be a shifted version of
DI, where the shift factorj is given by

j = [N - (2e - 1) i l N

where N = 3e2 - 3e + 1.

by applying a mapping function P : D l + D2, where
Furthermore, it can be verified that D2 can be obtained

q : (x) = [N - (2e - l)x],.

Corollary 1 shows that P is an automorphism, which is
to be expected as DI and D2 are cyclic groups of order N.
Like D3, 0, will also be a shifted version of D2, where
this time the shift factor k is given by

k = [N - (3e2 - 9e + 4) i IN . Q.E.D.

Numerical Example: The D matrix for a hexagonal
mesh of dimension 3 and for i = 6 is shown in the fol-
lowing. Note that D, is D l shifted right, j = [19 - (2 *
3 - 1) 6] mod 19 = (-11) mod 19 = 8, and D4 is D2
shifted right, k = [19 - (3 * 32 - 9 * 3 + 4) 6] mod 19
= (- 5) mod 19 = 14:

6, processors along D, and D3 differ by [3e], , while those
along D2 and D, differ by [3e - 2IN. From Lemma 1 , we
know that both these result in cycles of length N. Hence,
indeed the Dj are of the form Z,.

We claim that to estimate the delay, we need know only
the ordinality of the set of cells assigned to each processor
and not the identity of the cells or processors themselves.
Hence, without loss of generality, we can map the pro-
cessors appearing along D l by the vector { 0, 1, 2 - * * N
- 1 }., The entries on the other rows of 3 will be based
on this mapping.

‘Henceforth, it is assumed that the numbers 0. I , etc. refer to the cor-
responding set of congruence classes modulo N .

The first seven columns of D represent the processor
assignment on the sixth wavefront expansion. For in-
stance, the fifth entry of D, is the same as the fourth entry
of D2 (viz. 4). Referring to Fig. 6, we find that processor
17 is indeed assigned to both these cells. The elegance of
this scheme is that, on the basis of the D matrix alone, we
can now estimate the delay on any wavefront.

Corollary I : P = [N - (2e - 1) i I N is an automorph-
ism.

Proof: P is a bijection from D I to D2. This is true as
elements of group D, differ by (2e - 1), which is seen
to have a cycle of N.

1102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. Y. NO. 10. OCTOBER 1990

\k(x o y) = \k(x) o \k(y) for any x and y E D , and
Q.E.D. where o is the modulo N addition operator.

A . Delay Estimates When e Is 1
This is an interesting case as e = 1 corresponds to a

uniprocessor environment. The number of cells on the ith
wavefront ni for a grid of size G x G is given by the
following. For G odd

4i,

4 (G - i) ,

4i,

1
ni =

ni =

For G even

4i - 2 ,

4 (G - i) ,

1,

i <

i = G .

Hence, the maximum delay up t o j expansions is given by
j

4 ,x [min (i, G - i) - 11,
r = l

G odd or j < G / 2

i
4 c [min (i, G - i) - 11 - 2, otherwise.

i = 1

With j = G , we get MD = (G + 1), which is as expected.

B. Delay Estimates When e > 1
Notation 2:

Let D (k), i : j) be the submatrix of 33 (k) , the diagonal
matrix for the kth layer, comprising of columns i to j ,
both inclusive.

Let EDfk(i) = [max t i] , where ti is the number
of times processor Pi appears on the active wavefronts
of the ith expansion and k is the number of layers.
More formally, EDfk(i) is the number of times Pi ap-
pears in D (l) (O : [i + k - l] N) ' e * D (j) (O : [i + (k - j)] ~) * e '

D(k)(o: [i l , v) .
Let EDbk (i) = [max ri 1, where rj is the number of

times processor Pi appears on the active wavefronts of the
ith expansion, when i > G / 2 . Thus EDb differs from EDf
in the sense that it characterizes wavefronts that are cut
off by the grid boundaries. More formally, EDbk (i) is the
number of times Pi appears in D (1)(1; + k - I l N , . ~ - I) , . . .
D (j) ([i + (k - j)] N : N - l) D (k) ([i] N : N - l) '

Let D{ represent row Dj of the diagonal matrix being
repeated j times.

Observarion 2: Based on the periodicity of the proces-
sor mappings on a diagonal, as given in Lemma 1 and

from Theorem 1 , it may be observed that the processor-
to-cell mapping on the ith wavefront expansion is given
by the extended diagonal matrix D ' , where

a n d i = 1N + m.

Theorem 2: For an N-processor hexagonal machine and
a k-layer obstacle-free grid of dimension G X G , where
G >> N , the upper bound on the delay facto? to route
any net is k ((G / N) + 1) .

Proof: It is obvious that the net that will result in the
maximum time is the one spanning from the center of the
grid to a comer. This is because this leads to maximum
possible conflict in the processor assignment over the four
edges of the wavefront expansion.6

In the following derivation, we assume that one unit of
time corresponds to the time taken by a full-grid machine
to perform a single wavefront expansion. Hence, for our
machine, we estimate the time taken by counting the mul-
tiple cell-to-processor assignments on a wavefront. From
Observation 2 , the time for the jth wavefront expansion'
for a single layer, MTI (j), is given by

Hence, the total time up to the Gth expansion is given
by

'Delay factor (DF) = time taken by the hexagonal machine/time taken

6From Lemma 1, we know that this conflict is minimized over a single

'Note that after G / 2 expansions, the wavefronts are partly cut off by

by a full-grid machine.

edge.

the grid boundaries.

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING I103

If we let L (G / 2) J = aN + 6 , then (1) can be reduced
to

+ ab + aM, 1 a (a - 1)

j = b

+ J = .E I (E D f d j) + E D b d j)) (2)

where Mk = fk + bk and fk = Er=-,' ED&(i) and bk =
cyzl' EDbk(i).

Note that if b is not negligible with respect to (a . N),
then we have to add a correction factor 6 = aN EDh,(b)
- 4ab to the total time required.

The expressions in the case of more than one layer are
also very similar. The total time required to route a net
originating from the center of the top layer to a comer at
the bottom layer is given by

On simplification, we find that the total time needed is
given by

(3)

At this point we note that (2) can be obtained from (3)
by replacing k with 1 . From extensive simulation, Mk is
found to be nearly equal to 6kN. If we also assume that
(G / 2) 2: aN, then (3) reduces to

a (a - 1)
2

Tk(G) = 8k N + aM,

= 4k

= 2akN(2a + 1)

[a (. - 1)] N + a * 6kN

= kG($ + I) .

Thus the DF is given by

DF = kG(: + l > / G

= k (i + 1) . (4)

Q.E.D.

Corollary 2: For an N-processor hexagonal machine
and a grid of dimension G x G, where G >> N , the DF
in routing a net which spans from the center to a comer
of the grid is twice as much as that of a net connecting
two diagonally opposite comers of the grid, even though
the latter net is twice as long.*

For a net proceeding from comer to corner, we find that
each wavefront consists of only a single segment. For
simplicity, we are assuming a single-layer grid. The ex-
tensions to the multilayer case is straightforward and is
left to the reader. Note that there will be 2G wavefront
expansions:

2: 2Na * (2a - 1) + (4b - 1)2a

where L(G/2) J = aN + b .
Thus neglecting b , we get

DF = G(: - 2) / 2 G

Hence, from (4) and (5) , we have

G
DF(net1) = ($ + 1) 2:

G
DF(net2) = I(G - 2) 2: G.

2 N
Q.E.D.

Corollary 3: A hexagonal machine of dimension
8 (JkG) can handle a k-layer grid consisting of 8 (k G 2)
cells, at about the same speed as a full-grid machine com-
prised of 8 (kG2) processors.

Proof: From Theorem 2, we know that the delay fac-
tor in routing a net is e (k G / N) . Also, for a hexagonal
mesh, N = 8 (e 2) , where e is the dimension of the
mesh. Q.E.D.

Also, a point worth observing is that the only major
computations required are for the 2N element vectors EDf.
and EDb,, which take 8 (k N ') time at the most.

'These two nets represent extreme cases. In practice. we contend that
the maximum delay will be less by a factor of 4-5 for most other nets.

1104

¶ ?

IEEE ‘ T R A N S A C T I O N S ON C O M P U T E R - A I D E D DESIGN. VOL. Y. N O . IO. O C T O B E R 1900

A m A
0

W O
0 - 3

(u c o
-- % % Z

?/210g r m c .

--1 - - 2 _ _ 3
V “ V

PROCESSOR ARRAY

V . CHIP IMPLEMENTATION ISSUES

*xs:LL7

A . Architectural Issues

@

The hexagonal array machine, as we envision, will con-
sist of a C-wrapped hexagonal mesh of processing ele-
ments which are under the control of an array control unit
(ACU). The machine operates under an SIMD computer
organization wherein each processing element executes
the same instruction globally broadcast by the ACU.

The hexagonal array machine will act as a coprocessor,
or “routing accelerator,” to a workstation or serial main-
frame computer. Our design philosophy is oriented to-
wards a compact design suitable to packing in a VLSI
chip. Some researchers [13], (211 have advocated gen-
eral-purpose processing elements made up of commercial
chips and microprocessors. Their rationale is that they of-
fer flexibility in employing various variants of the maze
algorithm. They further believe that such a machine can
be used for design tasks other than routing. Agreeably,
this can be quite attractive in an experimental setup. How-
ever, the low speedup factors of around 3-4 achieved by
the WRM can be attributed precisely to this lack of ded-
icated hardware, interchip communication overhead, and
lack of stress on performance, among others. Hence, we
believe that a routing accelerator must be dedicated and
hardwired to do its job as fast and efficiently as possible.
It is also our feeling that any routing accelerator, at least
any in the near future, must considerably outperform its
serial version in order to be practically viable. In today’s
ever-increasing design environment, the routing acceler-
ator also must be capable of handlilig problem sizes much
larger than the physical array size. More importantly, it
must be able to address the issue of multilayer routing,
not only for PCB’s, but also for future IC design. It has
been amply demonstrated previously that the hexagonal
mapping appropriately answers all of these problems.
Hence, we employ this interconnection topology in our
goal to come up with a design of a compact, fast machine
that can handle problem sizes much larger than the phys-
ical size of the processing array.

Simulation studies have indicated that speeclup versus
mesh-dimension curve tends to level out with the mesh
dimension around 8. Therefore, we believe that an eight-
dimensional processing array, consisting of 169 process-
ing elements, is ideal for the problem size that can typi-
cally be expected.

Fig. 7 gives us an overview of the hexagonal machine
while Fig. 8 shows the block diagram of a typical pro-
cessing element. Thus the two important components of
the hexagonal array machine are i) the ACU and ii) the
array of interconnected processing elements. The ACU is
responsible for the interface with the host computer. To
begin with, the host computer would pass on to the ACU
information regarding the size of the grid, position of ob-
stacles on the routing surface, if any, and coordinates of
the terminals of the various nets. The other functions of
the ACU will become evident shortly.

i / 2 :

RECEZVE U N I T

SEND CNIT

~ a t a + S t r o b e _ i n e s
6x to eacn ne1ghbol.I

Fig. 8. Block diagram of a single processing element

The processing array is the actual workhorse of the hex-
agonal array machine. Each processing element has spe-
cial-purpose hardware for receiving and propagating la-
beling information with its six neighbors.

VENKATESWARAN AND MAZUMDER: AN A R R A Y MACHINE FOR M U L T I L A Y E R WIRE ROUTING 1105

From Fig. 8, it is obvious that the major bottleneck,
both in terms of space and performance criteria, is the
local memory. The local memory must store pertinent in-
formation regarding the various cells that have been
mapped onto this processing element. Each entry can be
assumed to consist of two parts, namely, the (x , y , h)
coordinates of the cell (fixed data) and a variable part for
maintaining the labeling information for the backtrace
phase; status of the cell, i.e., whether it has been ex-
panded already or whether it is a terminal (source or des-
tination) or whether it is blocked, etc.

In a full-grid machine, such as the L-Machine, the in-
formation that one processor must send to its neighbor
during wavefront expansion can be as simple as a I-b to-
ken. This is possible as each processor is mapped to only
a single point on the grid. In any virtual machine, infor-
mation must also be passed on to the neighbor identifying
the cell instance that corresponds to that expansion. For
our machine, each processor based on the knowledge of
its position in the grid can calculate the (x , y , h) coor-
dinates of its neighbors and send it. This scheme, though
simple, is also very inefficient. Even for a four-layer grid
of dimension 256 by 256, this would entail having to send
18 b each time to each neighbor. More importantly, a pro-
cessing element upon receiving the token must extract in-
formation regarding that cell from its local memory. So,
unless the memory is organized as an associative mem-
ory, there will be a tremendous overhead in processing.

The alternative would seem to be that each cell pass to
its neighbor, during wavefront expansion, the memory
address rather than the cell contents. We shall now dis-
cuss one scheme which can do precisely that. After the
initial mapping using the operator 9 (cf. Definition 1) has
been calculated, the ACU generates a new array INDEX,
defined as follows:

INDEX [x , y , A] = { i-this is the ith occurrence of n
in layer h proceeding in a
row-major fashion }

where n is the processing element to which cell (x , y, h)
is mapped.

Each processing element then calculates the difference
A between its INDEX value and the INDEX values of its
neighbor in each direction. In case the grid boundaries are
met along any direction, an illegal value, X, is entered,
implying the expansion is not possible in that direction.
From Lemma 1 , it is evident that the maximum absolute
value of A is going to be r (G / N) 1 . For a 256 by 256
grid and N = 169, this works out to be 2. Note that this
value is independent of the number of layers in the grid.
Hence, the A value for each direction can be stored in a
3-b field. This in turns means that the fixed part of each
entry would be 18 b wide. The entry for cell (x , y, X) is
stored in the local memory of the mapped processing ele-
ment at address (Ak . . *

ho is the binary representation of X and b, . . . bo is the
binary representation of INDEX[x, y A] .

Xo, b,q * * . b o) , where ha *

Now let m,, be the address of the cell currently being
expanded. Then the information passed to the neighbor-
ing processing element in direction d is the value (m,, +
A,,), where A,, is the difference stored at mr, for direction
d. For a 256 by 256 four-layer grid, this entails sending
only eleven bits of information, as opposed to 18 in the
previous case. However, the vital gain is in the fact that
the cell information received is in the form of an address.
Hence, it results in much speedier retrieval of data from
the local memory.

The cost we pay for the new scheme is the additional
time spent in generating INDEX, even though this will be
more than compensated for by the faster processing. Also,
as the information is static for a given mapping, it can be
precomputed and loaded in the local memories once and
for all. However, the indexes will no longer be consecu-
tive for smaller grids.

The memory contents for the first three processing ele-
ments for the mapping shown in Fig. 2 are shown in Table
111. The entries marked X indicate that no expansion is
possible in those directions because of the grid dimen-
sions.

The send and receive units in Fig. 8 could be as simple
as shift registers with appropriate status flags to indicate
if any new data have arrived. The presence of a bank of
registers, one per neighbor, ensures complete parallelism
in the expansion process. The update unit, as the name
suggests, would update the pertinent cell status and la-
beling information. It could store these cells in a stack-
like structure for faster retrieval by the next-cell unit.
Also, the update unit informs the local control unit of new
data by raising a BSY (busy) line, upon new data arrival,
or the DST line, if the cell corresponds to the target. The
next-cell unit provides the expansion unit with one of the
possibly several active cells mapped on this processing
element. This unit also lowers the BSY line if it finds no
more cells remaining to be expanded by the processing
element in the given cycle. The expansion unit for direc-
tion d adds the value Ad to the address of the cell to form
the message for the neighbor along direction d. This is
then sent by the send unit, provided the Boolean condition
(A,, # X A cell-state = to be expanded) is satisfied.

The preceding operations are all carried out under the
supervision of the local control unit. The ACU broadcasts
the commands globally to all the local control units. Also,
the ACU can individually access each processing ele-
ment, using the X and Y select lines, and initialize the
processing elements at the start, as to the locations of the
initial obstacles and start and end of the nets. During
backtrace the processing elements on the net can raise the
same lines to indicate the route to the ACU. A point to
note is that in this scheme, some processors may be forced
to idle if others have multiple assignments on the current
wavefront (Procedure expand-$-busy) . Additional
speedup could be achieved if the processors were permit-
ted to continue to expand. This would correspond to an
MIMD mode of operation. The cells being expanded dur-
ing any cycle now would no longer correspond to any par-

1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. I O . OCTOBER 1990

TABLE 111
CONTENTS OF THE LOCAL MEMORY FOR PROCESSORS 0 TO 3

Local Memory -0 Local Memory -1

-1
X

o o o x
- 1 - 1 0 0 0 x 0 X
- 1 - 1 0 0 0 x - l x 0 0 0 x
0 - 1 0 x 0 x - 1 0 0 x 0 x
o o x o x o o o x o x o

1 0 - 1 0 x 0
1 0 - 1 0 x 0
1 0 - 1 0 x 0

-1 -1 -1 0 x 0
-1 -1 -1 0 x 0
-1 -1 -1 0 x 0
0 - 1 - 1 0 x 3

I I I

Local Memory - 2 Local Memory - 3

o o o o o x
0 0 0 0 o ' x
o o o o o x
o o o o o x
o o o o o x
0 1 0 0 0 x
O l O X O X

0
0
0
0
0
X
-1
-1

o x o x o
1 - 1 0 x 0
1 - 1 0 x 0
1 - 1 0 x 0
1 - 1 0 x c
1 - 1 0 x (

x - 1 0 x c
0 - 1 0 x (

4" 1 0 0 0 0 :
0 0 0 X

0 0 - 1 0 x c
0 0 -1 0 X
0 0 - 1 0 x
0 0 - 1 0 x 0
0 1 - 1 0 x 0
0 1 - 1 0 x (

ticular wavefront. Procedures 1-5 describe the various
software routines in pseudocode.

B. Procedures f o r an SIMD Model of Computation on
the Hexagonal Machine

Procedure 1: PROC-ELEM main loop
repeat

Process CU command
Execute the appropriate routine, viz.,

EXPAND, EXPAND-IF-BSY, or BACKTRA CE
until OVER.

Procedure 2: EXPAND
for each Ri do

if new data received
Check with cell bank if this is a new cell
if new

Update the labels for the cell
Set DST flag if target reached

cnt+ +

Expand one unexpanded cell by sending message to
the applicable neighbors
cnr- -
if cnr > 0

set BSY flag ON

else

end.
reset BSY flag

Procedure 3: EXPAND-IFBSY
if BSY flag is ON

else

end.

if new data received or if DST flag set

Perform Algori thm EXPAND

skip

Procedure 4: BACKTRACE

if neighbor on cur-dir has correct label

else if neighbor in direction n on same layer has cor-
rect label

else if neighbor in direction n on adjacent layer has

Next = cur-dir

Next = n

correct label
Next = n

cur-dir = Next
Send message to neighbor in direction Next

end.

Procedure 5: CONTROL-UNIT main loop
Compute the mapping of cells to processors
Load mapping information onto the cell banks of the
processors
repeat

Broadcast the source and target for this net
EXPAND
Read DST vector and go to next net if set or if route
not possible
while BSY vector # 0

EXPAND-IF-BSY
until all nets over.

VI. PERFORMANCE ANALYSIS
A simulation has been made based on the preceding ar-

chitecture and the multilayered routing algorithm pro-
posed. The simulation program has been coded in C + +.

We ran several simulations, varying different parame-
ters, such as the hexagonal mesh dimension, the grid size,
and the number of layers to be routed. Thus we were able
to investigate their impact on the routing time. We varied
the mesh dimension from 2 to 32 (i .e . , from seven pro-
cessing elements to 2977 for the 32-dimensional mesh).
We performed sample routing on grids of sizes ranging
from 16 by 16 to 1024 by 1024 and comprised of 1-8
layers. All these routing problems were considered on an
empty grid (i.e., with no previous blockages). A net orig-
inating from the center of the grid and proceeding to a
comer, along with another running between two diago-
nally opposite comers, were always considered. Our mo-
tivation here was simply to get a feel for the order of
delays that we may expect from a hexagonally intercon-
nected machine. The aforementioned two nets, as we have
already shown, require the most time to route.

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING I107

4: 1 :I G;\l, ,

l o G=128

3

2 3 4 5 6 1 8 9

30 -
G=128x8

-

30 -
G = l 2 8 x 8

oi > 4

I
-1

o 7 . , . , . , . , . , . , -- I

0 55 31 i.

2 0 -
>.a 4 - 1

0.. 3.2

G . 1 6 ~ 2

E ; 2 5 1 0 -

2 3 4 5 6 7 8

Hmesh Dimension Hmesh 31mens;on

(C) (d)
Fig. 9. Simulation and analytical results of routing time on the hexagonal

array machine. (a) Simulation results (one layer). (b) Analytical results
(one layer). (c) Simulation results (multilayers). (d) Analytical results
(multilayers).

TABLE IV
ANALYTICAL RESULTS OF DF FOR A K-LAYER 128 BY 128 GRID

128' x 1 128' x 2 128' X 4 128' x 8
Mesh No. of
Dim PES MI DF, M2 DF' M , DFj M4 DF,

2 7 31 13.869 1 73 28.3 184 I63 57.5332 392 118.5470
4 37 211 3.3750 400 6.5213 74 1 12.2754 I537 24.621 I
8 169 1021 2.0039 I967 4.0137 3671 7.4297 6342 13.1484

16 72 1 4447 I .7578 8836 3.4395 I6967 6.662 I 30838 12.8145
24 1657 10273 1.6582 20697 3.2402 40452 6.3633 75167 12.4043
32 2977 I8499 1.5820 37549 3.1816 74085 6.3457 140376 12.3281

The graphs in Fig. 9 show the timing characteristics of
the hexagonal array machine as obtained from simulation.
Also shown are the upper bounds on the time as projected
by the analytical model of Section IV. Both single-layer
and multiple-layer routing results are plotted. Each plot
is of the time needed to route versus the dimension of the
mesh used. The unit for the y axis is taken as the time
taken by a processor to perform one expansion. Table IV
shows the analytical results for Mk and the DF, which are
as expressed in Section IV.

It is seen that the graphs are all exponential in nature
and of the form y = b * IO-", where b and c are positive
numbers. As is intuitively evident, the graphs show that
for a very small dimension, such as 2 or 3, there are many
multiple assigments of cells to the processing elements
per wave expansion. This does not mean a lack of parallel
processing. It only implies that since the same work is to

be handled by fewer processors, the overall time required
to complete the routing is more. As the number of pro-
cessing elements available increases, we need lesser and
lesser time to perform the same routine. Note that the
quality of routing obtained is not dependent on the num-
ber of processors used. It is determined by the routing
algorithm, like the cost functions employed during wave
expansion or the manner in which backtracing is per-
formed. After a mesh dimension of around 8, all of these
curves seem to flatten out, in the sense that increasing the
number of processors available does not provide any sig-
nificant reduction in routing time. Hence, we feel that a
practical implementation which would be required to
tackle problems of these specifications could ideally be
built as an eight-dimensional mesh comprised of 169 pro-
cessing elements. In this way, we will be able to do rout-
ing nearly as fast as a full-grid implementation made up

1108 IEEE TRANSACTIONS ON COMPUI'EK-AIDED DESIGN. VOL. Y. N O IO. OCTOBER I Y Y O

- Layer 1 _ _ _ _ _ _ _ Layer 2
Fig. I O . Sample two-layer routing-example.

of thousands of processing elements. Another conclusion
that we were able to draw was that the time required to
route for most nets is about 0.65-0.85 times the upper
bound on the delay, as predicted by Theorem 2 . Thus this
measure of the delay can be very simply used for evalu-
ating the suitability of a mesh of a certain dimension for
solving a given class of problems.

The rest of the section shows the routing produced for
two, more complex problems considered. Fig. 10 shows
the layout obtained for a sample problem involving 14
nets on a two-layer grid of size 128 by 128. All the blocks
and terminals of all nets lie on the top layer only. Fig. 11
shows the initial blockages and the wiring obtained for a
four-layer PCB problem. In this case, 25 nets were suc-
cessfully routed. Table V summarizes the performance re-
sults for the two problems for meshes of dimensions 4 and
8, respectively.

The results are very promising indeed. For a problem
similar to the two-layer case, Suzuki et al. [21] had ob-
tained an average of 3.4 cells assigned per processor (to-
tal of 64 processors) over each wavefront. This is nearly
twice the value that we get with a five-dimensional mesh
(61 processing elements). We contend that this is a direct
reflection of the superiority of our mapping, viz., the same
processor appears at every N processors along any direc-
tion, instead of the smaller periodicity of N / 2 or less ob-
tained by others. Also, our solution is not unnecessarily
constrained by horizontal-vertical restrictions on wire di-
rections. This offers scope for a greater number of wires
being routed.

Table VI shows the netlist used for the two-layer sam-
ple problem, whose solution is given in Fig. 10. Average
MAF refers to the multiple assignment factor of cells to
processing elements on a given wavefront average over

1 n

Layer 0 Layer 1

L I I I

Layer 2 Layer 3

Fig. 1 1 . Sample four-layer PCB routing example

all wavefront expansions. Total time gives an estimate of
the amount by which our machine might be slowed down
as compared to a full-grid implementation. It is based on
an SIMD mode of computation wherein some processing
elements may remain idle (similar to masking) during the
period when others are handling multiple expansions for
that particular wavefront. Avg PrUt refers to the average
processor utilization percentage.

Table VI1 shows the netlist for the four-layer PCB ex-
ample of Fig. 11. All columns have the same implications
as before.

VII. RECONFIGURABILITY A N D FAULT-TOLERANCE
ISSUES

A . Reconjiguration
The ability of the hexagonal array machine to perform

multilayer routing stems from the fact that each process-
ing element is directly connected to six other neighbors.
Obviously, this implies an increase in the total number of
links required. In fact, for an n node machine, a square
mesh topology requires 2n links as compared to the 3n
links required by the hexagonal machine. However, it is
now possible to perform multilayer routing very effi-
ciently. Currently, most routers tackle a multilayer prob-
lem one layer at a time. This necessitates the onerous task
of finding out the optimal point for the vias, to optimize
the routing criteria as well as to maximize the connectiv-
ity ratio. These routers, therefore, adopt heuristic mea-
sures to simplify the problem, as a result of which, we
may frequently obtain unacceptable results. However, for
two-layer horizontal-and-vertical routing, a four-neighbor
interconnection topology may suffice. For this purpose, it

VENKATESWARAN A N D M A Z U M D E R : A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1 IO9

TABLE V
PERFORMANCE RESULTS O N T H E HEXAGOYAL A R R A Y MACHINE

No . of Mesh No . of Total Wire Avg. Total Avg. Completion
Grid Size Layers Dim. Nets Length MAF Time Pr. Util. Ratio

128 x 128 2 4 14 877 2.9872 5.0735 50 100%
128 X 128 2 8 14 877 I .3063 2.8302 20 100%
64 x 64 4 4 25 1048 2.5573 4.7643 40 100%
64 x 64 4 8 25 1048 I .2539 2.641 1 15 100%

TABLE VI
NETLIST A N D PFRFORMANCE DATA FOR SAMPLE TWO-LAYER ROU r l N G PROBLEM

Avg. Pr.
Source Target Avg. MAF Total Time Ut.

Wire No . of No. of
Net x Y X y Length Vias Bends 4D 8D 4D 8D 4D 8D

1 14 90 26 70 34 0 3 2.1930 1.2789 4.1471 2.6471 42 14
2 20 50 70 55 57 2 1 3.2904 1.3373 5.2456 2.8421 55 22
3 20 40 50 30 42 2 1 2.6543 1.3175 4.6191 3.0238 48 16
4 20 113 70 90 73 0 3 2.5556 1.1665 4.1644 2.2055 56 24
5 55 113 30 60 80 2 I 3.6429 1.4512 5.8000 3.5750 57 20
6 85 113 60 85 55 2 2 2.9429 1.3024 5.0546 2.6546 52 22
7 113 55 90 40 38 0 3 2.4581 1.2258 4.2368 2.3947 49 19
8 68 40 40 48 36 0 I 2.7963 1.2779 4.6667 2.6944 49 19
9 40 29 113 25 79 2 I 3.7639 1.4903 6.3544 3.6962 53 20

I O 70 85 70 14 I35 2 3 4.1843 1.4472 6.7704 3.5259 58 24
I I 30 14 80 50 110 2 3 2.9041 1.2473 5.0000 2.6636 52 21
12 20 25 50 25 46 2 4 2.1899 1.1811 4.3696 2.3261 42 17
13 35 60 70 65 40 0 1 2.6402 1.2038 4.8500 2.4500 45 19
14 85 85 80 40 52 2 1 3.6048 1.3611 5.7500 2.9231 54 23

TABLE VI1
NETLIST A N D PERFORMANCE DATA FOR SAMPLE FOUR-LAYER PCB ROUTING PROBLEM

Source Target Avg. MAF Total Time Avg. Pr. Ut
Wire No . of No. of ~~

Net x y X y Length Vias Bends 4d 8d 4d 8d 4d 8d

I I O 50 I O 30 20
2 13 50 35 28 46
3 25 52 13 30 40
4 25 25 35 25 I O
5 12 20 12 I O I O
6 15 20 27 I O 22
7 18 19 40 I O 31
8 15 55 45 55' 42
9 15 52 38 30 47

I O 30 I O 50 20 32
I 1 35 57 41 30 47
12 44 50 44 30 42
13 46 50 46 30 48
14 45 7 15 I O 41
15 5 50 I O 8 49
16 5 53 I O 5 57
17 55 51 55 20 43
18 55 54 24 5 96
19 55 57 14 5 I l l
20 12 60 27 60 17
21 30 60 50 60 24
22 23 30 37 30 16
23 25 57 40 6 72
24 15 57 30 8 70
25 25 22 36 20 15

0
2
6
0
0
0
0
0
2
2
6
2
2
0
0
0
0
2
4
0
0
2
6
6
0

0
2
1
0
0
2
2
4
3
2
3
5
3
4
2
2
2
5
3
2
2
0
3
1
3

2.3827
3.2050
3.5517
I .4895
I .0427
1.3010
2.5292
2.8576
3.1545
3.4796
2.5776
3.0325
3. I453
3.0886
2.7349
2.7076
2.1820
2.9367
2.6883
1.8967
1.9835
1.8767
3.3784
3.0558
I .6553

1.2001
1.3398
1.4173
1.0886
1 .oooo
1.0433
1.2163
1.2596
1.3338
1.4337
I .2290
1 ,3446
1.3235
1.3088
1.2993
1.3271
I . 1427
1.2719
1.4638
1.2126
I . I372
I . I365
1.391 I
1.2962
I . I296

4.5500
6.2609
6.7750
2.7000
I . 3000
2.0909
4.0968
5.4524
5.9149
6.2813
4.5745
5.2381
5.1875
6.0732
5.6122
5.3684
4.2326
5.5417
5.0360
3.9412
3.7917
3.3750
6.5139
6.0000
3.2000

2.3000
3.0435
3.4250
1 ,7000
1 . 0000
1.3636
2.4516
2.7857
2.9787
3.4688
2.6170
2.9286
2.7083
3. I219
3.2449
3.0351
2.3256
2.8438
3.1441
2.647 I
2.2083
2.1875
3.4306
3.0000
2.0667

40 18
45 20
47 20
31 I I
19 5
26 8
37 13
47 20
47 20
49 19
45 17
38 14
36 15
43 18
44 16
46 17
36 14
45 19
46 15
34 I I
43 16
41 13
48 19
47 20
33 I I

11 10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. IO, OCTOBER 1990

2 3 a

11

10

16 3

Lay.= 1 Layer 2

0 Fig. 13. Additional blockages caused by faulty processing elements.

2 TABLE VI11
EFFECTS OF FAULTY LINKS ON ROUTING

15 16 11

Fig 12 Four-dimensional hexagonal array with diagonals links removed. Average Average
of Faulty Average Total Via per Bends per Average

Time Wirelength Net Net Pr. Util. Links

is possible to simplify the basic hexagonal mesh topology
by deleting the two additional links of each processing
element. One way to achieve this is by removing all the
links along one of the three main directions. Fig. 12 shows
the modified architecture for a four-dimensional mesh,
where all the links along the 60-deg direction have been
removed. Since the interprocessor cycle period is still n
for an n-node mesh, this mapping would result in fewer
conflicts in processor assignment than a comparable
square-mesh or toroidal interconnection.

B. Fault Tolerance
Can routing machines tolerate some amount of failure

in the links or processing elements? This is a very impor-
tant question, especially for WSI or VLSI technology,
where such faults could arise due to imperfections in the
manufacturing process. Unfortunately, this issue is often
unaddressed. What then are the ramifications of faulty
links and processors on routing on the hexagonal array
machine? Clearly these faulty elements will hinder wave-
front expansion and backtracing. In fact, a faulty pro-
cessing element can be modeled as a case where all the
six incoming links are treated as being faulty.

From the point of view of grid layout, these faults,
however, can be conceptualized as creating additional ob-
stacles on the grid surface. The darker squares in Fig. 13
show these additional blockages caused by ten out of the
37 processing elements (27 %) becoming faulty. Conse-
quently, 138 additional cells (26.75%) get blocked. In
spite of this high failure rate, it is heartening to note that
all wires could still be routed for a sample problem as
described in Section VII-B-2).

I) Faulty Links: We took the routing problem of Table
VI and randomly assigned faulty links. This information
is easily handled by setting the appropriate A entries in
the local memory of the two processing elements con-
nected by the faulty link to the illegal X value. Table VI11
summarizes the results obtained.

We observe that the time needed to route, as well as
that for the processor utilization, remains practically the

0
2
3
4
5
6
7
8
9

10

5.0735
5.1231
5.2181
5.1558
5.2059
5.1369
5.2001
5.3131
5.2753
5.4035

877
879
823
877
86 1
877
879
829
837
797'

1.2857
1.4286
1.4286
1.2857
1.7143
1.2857
1.2857
1.5714
1.5714
1.3846

2.0000
2.3571
2.2143
2.4286
3.4286
2.4286
2.5000
2.4286
2.9286
3.8462

50
49
49
50
49
49
49
48
49
49

' 1 net could not be routed in this case

same. The quality of routing in terms of the number of
bends and number of vias used per net deteriorates
slightly. An interesting observation is that in some in-
stances with faulty links, there is a reduction in the total
wire length needed (chiefly for nets 10 and 11). There
are a couple of reasons for this. Firstly, we employ a very
simple backtracer which favors a reduction in the number
of bends and vias to an increase in the wire length. Sec-
ondly, it is another indicator to the effect of net ordering
on performance. Our conclusion, therefore, is that a small
amount of link failure, say about 5% (in this instance,
9%), will not be catastrophic to the hexagonal machine.
Part of this assurance is based on the additional 2 deg of
freedom available to each processing element for expan-
sion.

2) Faulty Processors: To study the effect of processor
failure on routing, we considered a grid corresponding to
the mapping shown in Fig. 2. Our objective was to route
four nets in the presence of 0-10 faulty processing ele-
ments, out of a total of 37. Although the processing ele-
ments were randomly set faulty, we ensured that none of
the source or target cells were mapped onto them. A faulty
processing element can be represented either by setting
the appropriate six A entries in the local memories of the
six neighbors to an illegal value or by considering all cells
mapped to it as being blocked. The results are summa-
rized in Table IX.

Our conclusion here, also is that the hexagonal machine
can survive a large amount of processor failure, but at the

VENKATESWARAN A N D MAZUMDER: A N ARRAY MACHINE FOR MULTILAYER WIRE ROUTING 1111

1 I 1 I

(a) (b)

Fig. 14. Wiring results in the presence of faulty processors. __ Layer
1; ---- Layer 2.

TABLE IX
EFFECTS OF FAULTY PROCESSING ELEMENTS ON ROUTING

Avg. of Avg. of
of Faulty Total Average Avg. Vias per Bends per
Processors Wirelength Time Pr. Util. Net Net

0
1
2
3
4
5
6
7
8

10

62
64
64
62
66
66
90
74
66
94

2.131
2.0873
2.0976
2. I245
2.0461
1 ,9603
I . 8454
2.0227
2. I460
1.6962

26
21
24
23
22
24
19
20
18
16

~

0.50
0.50
0.50
0.50
1 .oo
0.50
1.50
I .oo
1 .oo
2.00

~

I .25
1.50
2.00
2.75
1.75
4.00
5.00
3.75
3.25
6.50

cost of additional vias and bends. Fig. 14(a) shows the
wiring when no processor is faulty and Fig. 14(b) shows
the wiring when ten of the 37 processing elements are
faulty. All the blocks shown are on the top layer, as are
the terminals of all nets. Also note that net 1 running on
layer 2 is partly covered by net 4 running on layer 1. So
is net 4 partially covered by net 2 . Although the routing
in this case is of poor quality, it is worth noting that this
is an instance where nearly 27% of the processing ele-
ments are faulty.

VIII. CONCLUSION
The popularity of hardware routers can be attributed to

their utmost importance in any automated design environ-
ment. Powerful processors are required to achieve faster
turnaround times even though design requirements are
steadily increasing. Full-grid designs like the L-machine
are no longer possible. The question of net ordering in
achieving 100% connectivity with a minimum (or ab-
sence) of overflow nets continues to be a vexing issue for
automatic routers. Some amount of rip-up and rerouting
will inevitably be required in the absence of a scheme for
determining the optimal net order a priori. This rerouting
phase often accounts for the bulk of the total time re-
quired. Allowing for multiple layers is one approach to
reduce the number of overflow nets and thereby the re-
routing overheads. Concurrent multiple-layer routing also

minimizes the number of vias introduced, thereby im-
proving reliability of the circuit. More nets can be con-
nected because of the additional routing space available.
However, existing accelerators based on square-mesh or
torus topologies are not successful when it comes to mul-
tiple layers. We believe that this is a restriction of any
topology wherein each processing element has only four
nearest neighbors.

In this paper, we have investigated the hexagonal mesh
architecture for the physical implementation of the Lee
algorithm. We have shown the high promise of such a
machine in handling routing on single as well as on mul-
tiple layers. The mapping, corresponding to a C-wrapped
hexagonal interconnection of N processing elements, re-
sults in an interprocessor cycle length of N . This is much
superior to the N / 2 results obtained by other researchers
[131, [2 11. Consequently, fewer conflicts arise during
wavefront expansion and a good quality routing can be
achieved in a much shorter period.

We have shown that a mesh of dimension JGk can do
routing on k-layer grids with kG2 grid points at speeds
comparable to the full grid machine. For example, we es-
timate that a four-dimensional hex mesh, with 37 proces-
sors, will take about ((256/37) + 1) 0.6 - 5 times
more than the full-grid implementation having 65 536
processors. We have discussed some of the major issues
involved in physically implementing such a machine. An
SIMD-type model, along with a unique labeling scheme
to lower the local memory requirements, has been pro-
posed. We have also shown the ability of the hexagonal
mesh to withstand considerable link and processing ele-
ment failure and still produce acceptable wiring.

ACKNOWLEDGMENT

The authors would like to sincerely thank Prof. Kang
G. Shin, Director of the Real-Time Computing Labora-
tory for his stimulating discussions about the hexagonal
mesh with wraparound topology.

111

I21

131

141

151

f61

171

191

181

1 101

REFERENCES
S . Akers, “A modification of Lee’s path connection algorithm.” IEEE
Trans. Electron. Cornput., pp. 97-98, Feb. 1967.
T. Blank, “A survey of hardware accelerators used i n CAD,” IEEE
Design Test Cornput., pp. 21-39, Aug. 1984.
M . A. Breuer and K. Shamsa, “A hardware router,” J . Digital Syst.,
vol. 4 , no. 4. pp. 393-408, 1980.
M . Burstein and R. Pelavin. “Hierarchical channel router,” in Proc.
Design Automation Con$, 1983, pp. 591-596.
J . W . Dolter, P. Ramanathan. and K. G . Shin, “ A microprogram-
mable VLSI routing controller for HARTS.” Tech. Rep. CSE-TR-
12-89, Univ. of Michigan, Dep. of EECS, 1989.
1. M . Geyer. “Connection routing algorithms for printed circuit
boards,” IEEE Trum, Circuit Theon . vol. CT-18, pp. 95-100, 1971.
F. 0. Hadlock, “A shortest path algorithm for grid graphs,” Nets-
works, vol. 7, pp. 323-334, 1977.
S . J. Hong, and R. Nair, “Wire-routing machines-New tools for
VLSI physical design,” Proc. IEEE, vol. 71, pp. 57-65, Jan. 1983.
Hu and Shing, “The alpha-beta routing.” in VLSI Circuit Layout:
Theory and Design, T.C. Hu and E. S. Kuh, Eds. New York: IEEE
Press, 1985, pp. 139-144.
D. E. Knuth, The Art of Computer Programming. 2nd Ed. Reading,
MA: Addison Wesley, 1973. vol. 2.

1112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER 1990

C. Y . Lee, “An algorithm for path connections and its applications,”
IRE Trans. Elec. Comput, pp. 346-365, 1961.
A. J. Martin, “The toms: An exercise in constructing a processing
surface,” in Proc. Second CalTech Con$ on VLSI, Jan. 1981, pp.
527-537.
R. Nair, S. J. Hong, S . Liter, and R. Villani, “Global wiring on a
wire routing machine,” in Proc. Design Automation Con$, June 1982,

T. Ohtsuki, “Maze running and line-search algorithms,” in Layour
Design and Verification. Amsterdam, The Netherlands North-Hol-
land, 1986, chap. 3, pp. 99-132.
R. Y. Pinter, “River routing: Methodology and analysis,” in Proc.
Third CalTech Con$ VLSI, Mar. 1983, pp. 141-163.
B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Sys-
rems. Menlo Park, CA: BenjaminlCumming, 1988.
R. A. Rutenbar, “A class of cellular computer architectures to sup-
port physical design automation,” Ph.D. dissertation, Univ. of Mich-
igan, 1984.
S . Sahni and Y. Won, “A hardware accelerator for maze routing,”
in Proc. Design Automat. Con$, 1987, pp. 800-806.
S. Sastry and R. Kumar, “Parallel placement on reduced array archi-
tecture,” in Design Automat. Con$, 1988.
K. S. Stevens, “The communication framework for a distributed en-
semble architecture,” AI Tech. Rep. 47, Schlumberger Res. Lab.,
Feb. 1986.

pp. 224-231.

[21] K . Suzuki, Y. Matsunaga, M. Tachibana, and T. Ohtsuki, “A hard-
ware maze router with application to interactive rip-up and reroute,”
IEEE Trans. Computer-Aided Design, pp. 466-476, Oct. 1986.

[22] T. Watanabe, H. Kitazawa, and Y. Sugiyama, “A parallel adaptable
routing algorithm, and its implementation on a two dimensional array
processor, ” IEEE Trans. Computer-Aided Design, vol. CAD-6, pp.
241-250, Mar. 1987.

[23] T. Yoshimura and E. S . Kuh, “Efficient algorithms for channel rout-
ing,” lEEE Trans. Computer-Aided Design, pp. 180-190, Jan. 1982.

*
R. Venkateswaran received the B.Tech. degree
in computer science from the Indian Institute of
Technology, Bombay, in 1988. Currently, he is
working towards the Ph.D. degree at the Univer-
sity of Michigan.

His areas of interest include physical design,
fault tolerance, neural networks, and high-level
synthesis.

*
Pinaki Mazumder (S’84-M’87) for a photograph and biography, please
see page 511 of the May 1990 issue of this TRANSACTIONS.

