
1096 I t k E  TRANSACTIONS O N  COMPUTFR AIDED DFSIGN VOL Y NO IO OCTOBER I Y 9 0  

A Hexagonal Array Machine for Multilayer Wire 
Routing 

R. VENKATESWARAN AND PINAKI MAZUMDER, MEMBER,  IEEE 

Abstract-Maze routing is widely used in both printed circuit board 
(PCB) and VLSI design. However, for the ever increasing design re- 
quirements, this can no longer he done economically without the help 
of special purpose hardware accelerators. A new hardware accelerator 
comprised of several fast processors interconnected in the form of a 
hexagonal mesh with wraparound connections is proposed. 

The novelty of the proposed architecture stems from the fact that it 
is suitable not only for single-layer routing, but also for routing in par- 
allel on multiple layers. A hexagonal machine of dimension C G ,  with 
about 3kC processors, can handle a k-layer grid consisting of kC' grid 
points a t  about the same speed as a full-grid machine with kG' proces- 
sors. 

A technique for measuring the performance of a hardware acceler- 
ator, in terms of the average delay incurred over a full-grid machine, 
is suggested. This has been formalized in case of the hexagonal archi- 
tecture and is presented for various nets and mesh dimensions. The 
results have been accurately verified by extensive simulation done in 
C +  + language. It is also demonstrated that the hexagonal mesh, by 
virtue of its additional links for expansion, is resilient to about 10% of 
failure in the links and processing elements. A detailed design for a 
chip implementation of the hexagonal machine is also discussed. 

Keywords-Hexagonal array,  multilayer routing, interprocessor 
cycle period, average delay factor, reconfigurability. 

I. INTRODUCTION 
UTOMATIC LAYOUT of wiring patterns for printed A circuit boards (PCB's) and integrated circuits (IC's) 

have been in vogue for the past several years. For a PCB, 
the components are IC packages and the electrical con- 
nections are made by a metal etching process. Connec- 
tions between layers are made by drilling holes through 
the fiberglass and plating them with metal. In an IC, wire 
lines of polysilicon are fabricated to carry electrical sig- 
nals between circuits. In addition, one or two layers of 
metal separated by insulating layers of oxide are depos- 
ited and etched above the silicon to form wire lines. Holes 
are left in the oxide to form interlayer contacts or vias. 
Thus the routing problem, which is to connect all the 
points of each net and to ensure that the wiring paths of 
the different nets do not intersect each other on any layer, 
is quite similar in both the environments. Furthermore, 
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several constraints, such as the total wire length, number 
of vias used, critical nets, etc., are imposed on the solu- 
tion generated. In this paper, we propose a new hexagonal 
mesh architecture for a parallel multilayered routing al- 
gorithm that is applicable in both of these environments. 

Several algorithms, such as the channel [4], [23], maze 
[ l  I], river [15], a - /3 [9], etc., have been proposed in 
the literature for routing interconnects in IC's and PCB's. 
Among these, the maze router, originally proposed by Lee 
[ 1 I], uses breadth-first search, and thereby it is admissi- 
ble in the sense that it always finds a shortest-length path, 
if one exists. This attribute of the maze router is fre- 
quently exploited in practice to minimize the total inter- 
connect length and, presumably, the overall chip area. 
Section I11 deals with the Lee algorithm in greater depth. 
Many commercial routers use the Lee algorithm or its 
variant [7], [6] exclusively, or initially use some other 
algorithms to rapidly interconnect most of the nets and 
then utilize the Lee algorithm to interconnect the remain- 
ing nets. However, this is achieved by paying a high pre- 
mium of large storage space (in the worst case, an ex- 
ponential to the path length L )  and expensive runtime (in 
the worst case, 0 ( L 2 )  time to find a path of length L ) .  
Elegant coding schemes, such as the one suggested by 
Akers [I] ,  can be used to alleviate the storage space prob- 
lem. However, time continues to be a severe constraint in 
a uniprocessor implementation. Two schemes suggested 
were the pipeline-based approach of Sahni [IS] and the 
raster-based approach of Rutenbar [ 171. These ap- 
proaches, though economical in hardware, often reduce 
the 0 ( N 2  ) time complexity by only a small constant fac- 
tor, and hence, are inadequate for large problem sizes. 

For multiple layers, the problem becomes even more 
acute. The accepted strategy is to route as many nets as 
possible on each layer independently. A global routing is 
attempted only for the unfinished nets. However, it is well 
established that these few remaining nets account for the 
majority of the time required in routing. 

Specially designed multiprocessor-based routing en- 
gines or hardware accelerators thus become absolutely 
necessary [2] for doing the complex routing in the very- 
large-scale integrated (VLSI) circuits of today. The Lee 
maze algorithm, by its very nature, offers much potential 
for parallelization, and hence, is an excellent candidate. 

The ideal architecture would be an interconnected N X 
N k-layer processor array, where each processor Pyk has 
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a one-to-one correspondence with a grid cell al,k in the 
layout. Such a fill-grid machine, however, requires kN2 
processors and 2kN(N - 1 )  + N(k - 1 )  links for a 
k-layer N x N grid, which is clearly expensive. Breuer 
and Shamsa's L-Machine [3] is the first published design 
of this nature. However, it is inflexible in the sense that 
it is incapable of handling problem sizes larger than the 
physical size of the processing array. Thus the need for a 
better architecture, where the grid array can be efficiently 
mapped onto a much smaller subset of processors, has 
been widely recognized (the folding problem). One of the 
chief factors affecting the performance of any such archi- 
tecture implementing the Lee algorithm is the interpro- 
cessor cycle period (ICP). The ICP is defined as the 
smallest number of distinct processors that are encoun- 
tered before one gets repeated, while traveling along any 
straight line on the grid. 

The wire routing machine (WRM) built by Nair et al. 
[8] is probably the precursor of the present trend of virtual 
machines. It consisted of processing elements connected 
in the form of a square mesh. The chief difference of the 
WRM was that it used general-purpose microprocessors 
rather than custom-made hardware for the node elements; 
thus trading compactness for versatility. Martin [ 121 has 
suggested the suitability of the torus-like mesh for folding 
operations. Suzuki and others 1211 have built a machine 
with 64 processors interconnected in the form of a twisted 
torus. Other similar implementations are described in [ 191 
and 1221. 

The intention of this paper is to propose a new archi- 
tecture for the physical implementation of the Lee algo- 
rithm, wherein the processors are interconnected in the 
form of a C-wrapped hexagonal mesh. Table I reflects the 
superiority of the hexagonal interconnection topology to 
existing ones. The larger ICP value implies fewer con- 
flicts in processor assignments during wavefront expan- 
sion, thereby improving the overall performance. Since 
each processor is connected to six others, the hexagonal 
machine can do multilayer expansion in parallel, unlike 
existing accelerators. This again results in shorter routing 
time requirements. Performance results, as obtained from 
extensive simulation runs and supplemented by analytical 
derivations, have been very promising. 

The basic labeling scheme used in the hexagonal array 
machine is a very powerful one. It can be used for ma- 
chines where the number of nearest neighbors of each pro- 
cessor is other than 6. For example, reconfiguring the 
basic hexagonal machine by deleting all diagonals along 
any one of the three directions yields a cheaper machine 
that is still extremely efficient in handling two-dimen- 
sional maze routing on a single layer. This is because the 
ICP property is unaffected by the number of neighbors pres- 
ent. This property also makes the hexagonal array ma- 
chine resilient to link and processing element failure, so 
far as its routing capability goes. 

The rest of the paper is organized as follows. Section 
I1 introduces the architecture, labeling scheme, and other 
salient properties of the hexagonal array machine. Section 
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TABLE I 
EVALUATION OF INTERCONNECTION TOPOLOGIES FOR MALE ROUTING 

Interconnection Interprocessor Cycle Multilayer 
Topology' Period Routing Recontigurability 

Square mesh [8] A X X 

Twisted torus 1211 - N X X 

L 
Hexagonal mesh N J J 

'Wraparound topologies with N processing elements. X indicates No 
and J indicates Yes. 

I11 explains how concurrent multilayer wire routing is 
possible on the hexagonal array machine. In Section IV, 
an analytical model for estimating the delay is presented. 
Section V discusses both hardware and software issues for 
chip implementation of the hexagonal array machine. Per- 
formance is analyzed in Section VI. Reconfiguration and 
fault tolerance aspects are discussed in Section VII. 

11. HEXAGONAL-ARRAY MACHINE 
Dejnition I :  A C-wrapped hexagonal mesh of dimen- 

sion e is comprised of 3e ( e - 1 ) + 1 ( = N, say ) proces- 
sors, labeled from 0 to 3e ( e  - 1 ), such that each proces- 
sor s has six neighbors [ s  + 1IN,  [s + 3e - 1IN,  [s + 
3e - 2IN,  [s + 3 e ( e  - 1 ) I N .  [s + 3e2 - 6e + 2]N, 
and [s + 3e2 - 6e + 3 I N ,  where [a],, denotes a (mod 
b) .  

Property 1: An unwrapped hexagonal mesh of dimen- 
sion e can be partitioned into 2e - 1 rows in three pos- 
sible ways: along the horizontal direction, along the 60- 
deg counter-clockwise direction, or along the 120-deg 
counter-clockwise direction. 

Observation I :  Along any of the three directions, let 
Ro be the top row, R ,  the second row, and so on until 
R 2 r - 2 .  Then a C-type wrapping is obtained by wrapping 
the last processor in RI to the first processor in 

Fig. Ita) shows an H-mesh of dimension 3 with the 
wrappings indicated alongside the arrows. Note that in 
this case there are 19 nodes distributed over five rows, 
with the wraparounds in the three directions as noted in 
Observation 1. For example, in Fig. 1, the last processor 
in R, along the horizontal direction, viz., node 2 is 
wrapped to the first processor in R4,  node 3.  The chordal 
equivalent of the hexagonal mesh, showing all the wrap- 
arounds is shown in Fig. l(b). Such a topology and la- 
beling scheme have also been studied in relation to ex- 
perimental distributed real-time systems such as HARTS 
1-51 and FAIM [20]. 

Property 2: A C-type wrapping is a homogeneous in- 
terconnecton. Any node can be labeled as node 0, that is, 
as the center of the mesh. 

Lemma I :  For a C-wrapped hexagonal mesh of dimen- 
sion e, the ICP, i.e., the number of distinct processors 
that one encounters before returning to the same processor 

R,l + P  - I I ? ? -  I. 



1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9. NO. IO.  OCTOBER 1990 

1 3 3 4 4 5  

5 
10 

1s 3 

9 14 

0 

14 15 15 IS 16 11 

(a)  
Fig. 1 .  (a) A wraparound hexagonal mesh of dimension 3. (b) Its chordal 

equivalent. 

while traveling along any of the three directions, is p = 
N = 3e2 - 3e + 1. 

Proof: From Observation 1 ,  we know that the last 
node of row Ri is connected to the first node of row 
R,; + e  - - ,  . This can be interpreted as being a linear con- 
gruent sequence of the form mod (a, + b )  m. In our case, 
wehavea  = 1,  b = e - 1 , x  = i, andm = 2e - 1. From 
random number theory, this sequence has been shown to 
have the maximum possible period of m if and only if b 
is relatively prime to m [lo]. This implies, that in our 
case, the sequence will be of length 2e - 1 (the number 
of rows in the unwrapped hexagonal mesh of dimension 
e )  if ( e  - 1 )  is relatively prime to ( 2 e  - 1) .  

Hence, our assertion that p = 3e2  - 3e + 1 is true, 
provided that the node numbering is unique. This is true 
in the horizontal direction, as we number the nodes with 
consecutive numbers. However, from Property 1 and Ob- 
servation 1 ,  it follows that it must also be true in the other 
two directions. Q.E.D. 

111. ROUTING ON THE HEXAGONAL MESH 

The hexagonal array machine is unique in the sense that 
it is the first to attempt concurrent multiple-layer routing. 
By cleverly assigning processors to grid points on the ac- 
tive wavefront, the hexagonal array machine considerably 
reduces the otherwise enormous time requirements. Con- 
current multilayer wire routing has several advantages. 

Via Minimization: A via is a contact used to connect 
a wire that extends over two physical layers (metal and 
polysilicon). Vias not only take more area but also reduce 
the reliability of the circuit. Hence, minimizing the num- 
ber of vias is an important issue and is usually carried out 
by a post-processing step. This additional cost is often 
very high and sometimes unacceptable. 

Most routers constrain the polylines to run in one di- 
rection (say horizontal) and the metal lines to run in the 
other (vertical) direction. Thus the two can be superposed 
and a common wavefront propagated. However, every 
bend in a wire route causes a switch in the layers, and 

hence, must be realized using a via. Clearly, a high per- 
centage of these vias are unnecessary and could have been 
avoided by allowing poly and metal to run in both direc- 
tions. Relaxing the constraint is made possible in the hex- 
agonal array machine by allowing for multiple wavefronts 
at the same time. It also implicitly assigns an additional 
cost to each via during the wave-expansion step. In this 
way, paths with more vias become less attractive cost- 
wise. 

Increased connectivity: Usually maze routers pro- 
ceed by routing one net at a time. The question of net 
ordering is, therefore, an important one. The hexagonal 
array machine does not eliminate this problem. However, 
by treating the metal and poly (and possibly other layers) 
separately, an obstacle on one layer does not preclude 
routing on the other. Now, consider a router that does 
multiple-layer routing by considering one layer at a time 
in a serial fashion. An important question for such routers 
is where to introduce the vias? This question is rendered 
irrelevant by routing on all layers simultaneously. 

Technology: Current IC technology is capable of 
more than two layers: two-metal and two-silicon layer 
technology is already in production. In PCB’s, several 
layers have traditionally been used. So the need for mul- 
tiple-layer wire routing is an accepted one. 

The rest of this section will explain how the hexagonal 
array machine can perform concurrent multiple-layer 
routing. Before proceeding any further, we digress a little 
to outline the basic Lee maze routing algorithm. The Lee 
algorithm consists of three distinct phases, namely a) wave 
expansion, b) backtracing, and c) label clearance. The 
wave-expansion step starts from the source cell/cells by 
labeling all unoccupied adjacent cells. These newly la- 
beled cells constitute the new wavefront for the next ex- 
pansion. The process is repeated until the target cell is 
reached. If we assume that all cells and all nodes have 
similar behavior, and that the propagation speeds are sim- 
ilar in all directions, even in the case of an asynchronous 
implementation, then for uniform labeling these wave- 
fronts appear as diamond-shaped fronts. This observation 
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suggests that any good mapping strategy must ensure min- 
imum repetition of processors along any 45- or 135-deg 
lines. In the backtracing step, the labels are traced back 
from the target to the source, and the shortest path found. 
In the final label-clearance step all extra labels are cleared 
and the cells on the new net are marked as being occupied 
for future expansions. 

For multiple layers, each cell must now expand the 
wavefront not only to its four neighbors on the same layer, 
but also to its neighbors on the adjacent layers. Such an 
expansion is possible in a single step on the hexagonal 
array machine, since each node has six adjacent neighbors 
with which it communicates directly. In a square mesh or 
torus topology, the usual strategy is to assign the same 
processor to handle the cell au in all the layers. However, 
expansion can no longer take place in a single step, re- 
sulting in longer routing times. 

Definition 2: (Operator) Let CP be the mapping opera- 
tor, such that 

+:zr x r,. x rz -+ P 

where Zi is { k IO I k I i ,  where i is the dimension of 
grid} a n d P  is { m l O  I m < e 2  - 3e + l } .  Then 

where a is the processor assigned to the grid cell (0, 0, 
0) ,  wy = 3e - 1 and w, = 3e - 2 ,  and [ a I b  refers to a 
mod b .  
9 is derived based on the mapping scheme shown in 

Fig. 2.  For other assignments, the formula for 9 can be 
similarly derived. Fig. 3 shows the mapping for a two- 
layer 16 by 16 grid, using a four-dimensional C-wrapped 
hexagonal array. As can be seen, it consists of repeated 
folding of the tile, corresponding to the unwrapped four- 
dimensional hexagonal array. 

Mapping: Of the six neighbors of each node of the hex- 
agonal mesh, four of them are assigned to cells on the 
same layer and the remaining two to the up-and-down 
neighbors on the adjacent layers. Since cells on different 
layers are reached in subsequent expansions, vias are im- 
plicitly given the cost of traveling along an arc. If a greater 
cost must be attached to them, then we can assume the 
different arcs to have different weights. For instance, a 
weight of 3 can be assigned to the z-links to represent the 
additional cost of the vias. To discourage bends in the 
wiring path, a cost of 1 or 2 can be assigned to an x / y  
link emerging from a node, depending on whether the link 
lies in the same direction or in a different one from that 
by which that node has been labeled. For an N-node hex- 
agonal mesh, it has been shown in Lemma 1 that all hor- 
izontal, vertical, 45- and 135-deg paths are mapped on a 
cycle containing all cells of the machine, i.e., on a cycle 
of periodicity N. This clearly leads to a processor assign- 
ment with the fewest conflicts. The revised Lee algorithm 
for multiple layers is given in the following. 

(I-3eISOUTH (i-3elDOWN 

Fig. 2. Processor labeling scheme 

0 I 5  

I 

I 2 7 4  5 6 7 8 9  I O  I 

( 5 - 2 7 2 8  2 9 3 0 3 1  3 2 3 3 1 4 3 5  36 0 I 2 3 4 5 

0 -  

m 

15 - 

0 5 

3 5 1 6 0  I 2 3 8 9  I O  l l l 2 : 3  

24 25 26 27 28 2 9 3 0  31 32 33  34 35 36 0 I 2 

2 3 4 5 6 7 8 9 1 0  

28 29 30 31 32 3 3  34  35 36 

17 18 19 20 21 22 23  24 25 

Fig. 3 .  Mapping for the two-layer 16 by 16 grid using a four-dimensional 
H-mesh. 

A .  ModiJed Lee Algorithm for  Multilayer Concurrent 
Routing 

This algorithm is a variant of the Lee algorithm. It 
makes use of the six links of each processor in the hex- 
agonal array to propagate the wavefront simultaneously 
over all the layers and find the most optimal path, if one 
exists. 

1 )  Wave Propogation Phase: 
1) Initialization. Set obstruction flags, I source flags 

(SC’s), and target flags (TC’s) in the appropriate proces- 
sors. Mark SC as the active processor to be expanded. 

2) Expand from the active cells in all six directions 

‘These represent the terminals and the obstructions posed by the nets 
that have been previously routed. 
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(a) (b) 

Fig. 4. (a) Processor assignments for a three-layer 4 by 4 grid. (b) Initial 
netlist. 

along the links of the hexagonal mesh. Transmit to each 
processor the following four-tuple: 

(a) (b) 

Fig. 5 .  (a) Snapshots of wavefronts on three layers. (b) Final wiring 

TABLE I1 
PROCESSOR ASSIGNMENTS DURING W A V E  PROPAGATION CYCLES 

Clock Processor Assignments 

Cycle Layer 1 Layer 2 Layer 3 

where X is the layer, x and y are the x and y coordinates 
of the cell being reached in this expansion, and c repre- 
sents the cost for reaching the cell along this path and can 
be omitted if unequal weights are not assigned to the var- 
ious links. 

3) If TC has been marked, go to the backtrace phase. 
Else repeat step ( 2 )  .* 

2)  Backtrace Phase: 
1) Let l be the final label of the TC. Mark TC as the 

cur-node. 
2) Mark all the adjacent (at most six) nodes which have 

the label l - 1. If there is only one such node, go to step 
4.  

3) Choose the node that is on the same layer as 
cur-node if possible. If there is more than one possible 
candidate, then pick the one that lies in the same direction 
as cur-node was with its predecessor. 

4) Mark the new node chosen in steps 2 or 3 as the 
cur-node. If it corresponds to the source, then quit, as a 
path has been traced out. Else go to step 2 .  

Example: We now illustrate the process by means of 
an example. We consider a 4 by 4 three-layer grid.3 Fig. 
4(a) shows the processor assignment to the 64 grid points, 
obtained by applying the operator Cp. Fig. 4(b) shows two 
nets, A and B,  that have been previously routed. Our as- 
signment is to route the third net, C ,  whose endpoints are 
also shown. At this stage, one may note that it is not pos- 
sible to complete this interconnection without using the 
third layer. 

*It is assumed that all processors can simultaneously send and receive 
messages from their neighbors. This enables us to mark all the neighbors 
which need not be expanded in the next phase. To further speedup the 
process, we may mark the cells in all layers at the same ( x ,  y ) position 
as the TC as targets. This is true if we assume accessibility of terminals 
from all layers. 

'The three layers could represent a two-metal and one-silicon layer 
technology. 

1 9 
2 IO.  17 2 
3 1 1 ,  18 3 14 
4 0, 12 4 3 ,  15 
5 5 4, 1 1 ,  16 
6 0, 5 ,  12. 17 
7 0 1, 6, 13 
8 1 ,  8 2, 14 
9 15 2,  9 3 

I O  16 I O  
I I  17 

Fig. 5(a) is the snapshot at the culmination of the wave 
propagation phase of the modified Lee algorithm. The 
shaded areas indicate the previous obstacles. The number 
in each square is the label associated with that grid point, 
i.e., all cells with a label i would lie on the ith wavefront. 
For this example, the wave propagation phase requires 
eleven clock cycles. There are also no processor conflicts. 
Table I1 shows the active processors in each clock cycle. 
The distinction between layers is made solely to aid un- 
derstanding. Thus during clock cycles 3 , 4 ,  and 9, a com- 
mon wavefront exists over all three layers. Fig. 5(b) 
shows the final route for all three nets. 

IV. DELAY MODELING FOR THE HEXAGONAL ARRAY 
MACHINE 

The performance of the hardware accelerator, using 
multiple interconnected processors folded to yield a larger 
grid size, is usually measured by how much the mapping 
minimizes the additional delay incurred over the corre- 
sponding full-grid implementation. For our machine, the 
maximum additional delay for any given wavefront is de- 
termined by the maximum number of cells assigned to a 
single processor on that wavefront. Thus if ci is the num- 
ber of cells assigned to processor Pi on a certain wave- 
front, then the additional delay involved is given by [ max 
( c ; )  - 11, where 0 5 i I N - 1. Hence, ideally, we 
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would like the additional delay to be as close to zero as 
possible. 

The extra delay is usually quite complex to calculate as 
its depends on a number of factors, such as i) location of 
source and destination cells on the grid, ii) obstacles on 
the grid, iii) size of the grid, iv) dimension of the hex- 
agonal mesh used, and v) physical implementation issues 
such as SIMD/MIMD mode of control. To date, most 
work in this area has been characterized by an attempt to 
estimate the delay by simulation alone, which ordinarily 
requires 8 ( k G 2 )  computations for a k-layer grid of size 
G X G. However, based on the nature of wavefront prop- 
agation on the hexagonal mesh, we can propose a simpler 
model that can yield us the same result using only 8 (kN2) 
computations, where N is the number of processors avail- 
able and G >> N. We believe that similar models can be 
developed for other topologies as well. 

Notation 1: Let Dj be a permutation of the group 

z, = { [OI, [ I ] ,  [21, * * > [ N  - 13; @ } 
of congruence classes modulo N. 

Theorem I :  The four diagonals of the ith wavefront ex- 
pansion on the hexagonal mesh machine of dimension e, 
handling a single-layer obstacle-free grid of dimension G 
X G, are given by the first i + 1 columns of the diagonal 
matrix, 3, where 

3 17 12 7 2 16 11 6 1 15 10 5 

15 16 17 18 0 1 2 3 4 5 6 7 

and the Di are as per Notation 1. 
Proof: We know that on an obstacle-free grid, the 

wavefronts are diamond-shaped. Let us label the four di- 
agonals as D l ,  D2, D3,  and D,. As can be seen from Fig. 

Fig. 6 .  Wavefront expansion on 6 on a three-dimensional mesh. 

It is obvious that D3 will only be a shifted version of 
DI,  where the shift factorj is given by 

j = [N - (2e - 1 ) i l N  

where N = 3e2 - 3e + 1. 

by applying a mapping function P : D l  + D2,  where 
Furthermore, it can be verified that D2 can be obtained 

q : ( x )  = [ N  - (2e - l)x],. 

Corollary 1 shows that P is an automorphism, which is 
to be expected as DI and D2 are cyclic groups of order N. 
Like D3, 0, will also be a shifted version of D2, where 
this time the shift factor k is given by 

k = [ N  - (3e2 - 9e + 4) i IN .  Q.E.D. 

Numerical Example: The D matrix for a hexagonal 
mesh of dimension 3 and for i = 6 is shown in the fol- 
lowing. Note that D, is D l  shifted right, j = [ 19 - ( 2  * 
3 - 1 ) 6 ]  mod 19 = ( -11 )  mod 19 = 8,  and D4 is D2 
shifted right, k = [ 19 - ( 3  * 32 - 9 * 3 + 4 ) 6 ]  mod 19 
= ( - 5 )  mod 19 = 14: 

6, processors along D, and D3 differ by [ 3e], , while those 
along D2 and D, differ by [ 3e - 2IN. From Lemma 1 ,  we 
know that both these result in cycles of length N. Hence, 
indeed the Dj are of the form Z,. 

We claim that to estimate the delay, we need know only 
the ordinality of the set of cells assigned to each processor 
and not the identity of the cells or processors themselves. 
Hence, without loss of generality, we can map the pro- 
cessors appearing along D l  by the vector { 0, 1, 2 - * * N 
- 1 }., The entries on the other rows of 3 will be based 
on this mapping. 

‘Henceforth, it is assumed that the numbers 0. I ,  etc. refer to the cor- 
responding set of congruence classes modulo N .  

The first seven columns of D represent the processor 
assignment on the sixth wavefront expansion. For in- 
stance, the fifth entry of D, is the same as the fourth entry 
of D2 (viz. 4). Referring to Fig. 6, we find that processor 
17 is indeed assigned to both these cells. The elegance of 
this scheme is that, on the basis of the D matrix alone, we 
can now estimate the delay on any wavefront. 

Corollary I :  P = [ N - (2e - 1 ) i I N  is an automorph- 
ism. 

Proof: P is a bijection from D I  to D2. This is true as 
elements of group D, differ by (2e - 1 ), which is seen 
to have a cycle of N. 
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\k(x o y )  = \k(x) o \k( y )  for any x and y E D ,  and 
Q.E.D. where o is the modulo N addition operator. 

A .  Delay Estimates When e Is 1 
This is an interesting case as e = 1 corresponds to a 

uniprocessor environment. The number of cells on the ith 
wavefront ni for a grid of size G x G is given by the 
following. For G odd 

4i, 

4 ( G  - i ) ,  

4i,  

1 
ni = 

ni = 

For G even 

4i - 2 ,  

4 ( G  - i ) ,  

1, 

i < 

i = G .  

Hence, the maximum delay up t o j  expansions is given by 
j 

4 ,x [min (i,  G - i )  - 11, 
r = l  

G odd or j < G / 2  

i 
4 c [min (i,  G - i )  - 11 - 2,  otherwise. 

i =  1 

With j = G ,  we get MD = ( G  + 1 ), which is as expected. 

B. Delay Estimates When e > 1 
Notation 2:  

Let D (k), i : j  ) be the submatrix of 33 ( k ) ,  the diagonal 
matrix for the kth layer, comprising of columns i to j ,  
both inclusive. 

Let EDfk(i)  = [max t i ] ,  where ti is the number 
of times processor Pi appears on the active wavefronts 
of the ith expansion and k is the number of layers. 
More formally, EDfk(i)  is the number of times Pi ap- 
pears in D ( l ) ( O : [ i + k - l ] N )  ' e * D ( j ) ( O : [ i + ( k - j ) ] ~ ) *  e ' 

D(k)(o: [ i l , v ) .  
Let EDbk ( i ) = [ max ri 1, where rj is the number of 

times processor Pi appears on the active wavefronts of the 
ith expansion, when i > G / 2 .  Thus EDb differs from EDf 
in the sense that it characterizes wavefronts that are cut 
off by the grid boundaries. More formally, EDbk ( i  ) is the 
number of times Pi appears in D ( 1 )( 1; + k - I l N , . ~  - I ) , . . .  
D ( j ) ( [ i + ( k - j ) ] N : N - l )  D ( k ) ( [ i ] N : N - l ) '  

Let D{ represent row Dj of the diagonal matrix being 
repeated j times. 

Observarion 2: Based on the periodicity of the proces- 
sor mappings on a diagonal, as given in Lemma 1 and 

from Theorem 1 ,  it may be observed that the processor- 
to-cell mapping on the ith wavefront expansion is given 
by the extended diagonal matrix D ' ,  where 

a n d i  = 1N + m. 

Theorem 2:  For an N-processor hexagonal machine and 
a k-layer obstacle-free grid of dimension G X G ,  where 
G >> N ,  the upper bound on the delay facto? to route 
any net is k ( ( G / N )  + 1) .  

Proof: It is obvious that the net that will result in the 
maximum time is the one spanning from the center of the 
grid to a comer. This is because this leads to maximum 
possible conflict in the processor assignment over the four 
edges of the wavefront expansion.6 

In the following derivation, we assume that one unit of 
time corresponds to the time taken by a full-grid machine 
to perform a single wavefront expansion. Hence, for our 
machine, we estimate the time taken by counting the mul- 
tiple cell-to-processor assignments on a wavefront. From 
Observation 2 ,  the time for the jth wavefront expansion' 
for a single layer, MTI ( j ), is given by 

Hence, the total time up to the Gth expansion is given 
by 

'Delay factor (DF) = time taken by the hexagonal machine/time taken 

6From Lemma 1, we know that this conflict is minimized over a single 

'Note that after G / 2  expansions, the wavefronts are partly cut off by 

by a full-grid machine. 

edge. 

the grid boundaries. 
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If we let L ( G / 2 )  J = aN + 6 ,  then ( 1 )  can be reduced 
to 

+ ab + aM, 1 a ( a  - 1) 

j = b  

+ J =  .E I ( E D f d j )  + E D b d j ) )  ( 2 )  

where Mk = fk + bk and fk = Er=-,' ED&( i ) and bk = 
cyzl' EDbk( i ). 

Note that if b is not negligible with respect to ( a  . N ), 
then we have to add a correction factor 6 = aN EDh,( b )  
- 4ab to the total time required. 

The expressions in the case of more than one layer are 
also very similar. The total time required to route a net 
originating from the center of the top layer to a comer at 
the bottom layer is given by 

On simplification, we find that the total time needed is 
given by 

( 3 )  

At this point we note that ( 2 )  can be obtained from ( 3 )  
by replacing k with 1 .  From extensive simulation, Mk is 
found to be nearly equal to 6kN.  If we also assume that 
( G / 2 )  2: aN, then ( 3 )  reduces to 

a ( a  - 1)  
2 

Tk(G) = 8k N + aM, 

= 4k 

= 2akN(2a + 1 )  

[ a ( .  - 1 ) ] N  + a * 6kN 

= kG($ + I ) .  

Thus the DF is given by 

DF = kG(: + l > / G  

= k ( i  + 1 ) .  ( 4 )  

Q.E.D. 

Corollary 2: For an N-processor hexagonal machine 
and a grid of dimension G x G, where G >> N ,  the DF 
in routing a net which spans from the center to a comer 
of the grid is twice as much as that of a net connecting 
two diagonally opposite comers of the grid, even though 
the latter net is twice as long.* 

For a net proceeding from comer to corner, we find that 
each wavefront consists of only a single segment. For 
simplicity, we are assuming a single-layer grid. The ex- 
tensions to the multilayer case is straightforward and is 
left to the reader. Note that there will be 2G wavefront 
expansions: 

2: 2Na * (2a - 1 )  + (4b  - 1)2a 

where L(G/2) J = aN + b .  
Thus neglecting b ,  we get 

DF = G(: - 2 ) / 2 G  

Hence, from (4) and ( 5 ) ,  we have 

G 
DF(net1) = ($ + 1 )  2: 

G 
DF(net2) = I(G - 2)  2: G. 

2 N  
Q.E.D. 

Corollary 3: A hexagonal machine of dimension 
8 ( JkG ) can handle a k-layer grid consisting of 8 ( k G 2 )  
cells, at about the same speed as a full-grid machine com- 
prised of 8 ( kG2) processors. 

Proof: From Theorem 2, we know that the delay fac- 
tor in routing a net is e ( k G / N ) .  Also, for a hexagonal 
mesh, N = 8 ( e 2 ) ,  where e is the dimension of the 
mesh. Q.E.D. 

Also, a point worth observing is that the only major 
computations required are for the 2N element vectors EDf.  
and EDb,, which take 8 ( k N ' )  time at the most. 

'These two nets represent extreme cases. In practice. we contend that 
the maximum delay will be less by a factor of 4-5 for most other nets. 
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A .  Architectural Issues 

@ 

The hexagonal array machine, as we envision, will con- 
sist of a C-wrapped hexagonal mesh of processing ele- 
ments which are under the control of an array control unit 
(ACU). The machine operates under an SIMD computer 
organization wherein each processing element executes 
the same instruction globally broadcast by the ACU. 

The hexagonal array machine will act as a coprocessor, 
or “routing accelerator,” to a workstation or serial main- 
frame computer. Our design philosophy is oriented to- 
wards a compact design suitable to packing in a VLSI 
chip. Some researchers [13], (211 have advocated gen- 
eral-purpose processing elements made up of commercial 
chips and microprocessors. Their rationale is that they of- 
fer flexibility in  employing various variants of the maze 
algorithm. They further believe that such a machine can 
be used for design tasks other than routing. Agreeably, 
this can be quite attractive in an experimental setup. How- 
ever, the low speedup factors of around 3-4 achieved by 
the WRM can be attributed precisely to this lack of ded- 
icated hardware, interchip communication overhead, and 
lack of stress on performance, among others. Hence, we 
believe that a routing accelerator must be dedicated and 
hardwired to do its job as fast and efficiently as possible. 
It is also our feeling that any routing accelerator, at least 
any in the near future, must considerably outperform its 
serial version in order to be practically viable. In today’s 
ever-increasing design environment, the routing acceler- 
ator also must be capable of handlilig problem sizes much 
larger than the physical array size. More importantly, it 
must be able to address the issue of multilayer routing, 
not only for PCB’s, but also for future IC design. It has 
been amply demonstrated previously that the hexagonal 
mapping appropriately answers all of these problems. 
Hence, we employ this interconnection topology in our 
goal to come up with a design of a compact, fast machine 
that can handle problem sizes much larger than the phys- 
ical size of the processing array. 

Simulation studies have indicated that speeclup versus 
mesh-dimension curve tends to level out with the mesh 
dimension around 8. Therefore, we believe that an eight- 
dimensional processing array, consisting of 169 process- 
ing elements, is ideal for the problem size that can typi- 
cally be expected. 

Fig. 7 gives us an overview of the hexagonal machine 
while Fig. 8 shows the block diagram of a typical pro- 
cessing element. Thus the two important components of 
the hexagonal array machine are i) the ACU and ii) the 
array of interconnected processing elements. The ACU is 
responsible for the interface with the host computer. To 
begin with, the host computer would pass on to the ACU 
information regarding the size of the grid, position of ob- 
stacles on the routing surface, if any, and coordinates of 
the terminals of the various nets. The other functions of 
the ACU will become evident shortly. 

i / 2 :  

RECEZVE U N I T  

SEND CNIT 

~ a t a  + S t r o b e  _ i n e s  
6x  to eacn ne1ghbol.I 

Fig. 8. Block diagram of a single processing element 

The processing array is the actual workhorse of the hex- 
agonal array machine. Each processing element has spe- 
cial-purpose hardware for receiving and propagating la- 
beling information with its six neighbors. 



VENKATESWARAN AND MAZUMDER:  AN A R R A Y  MACHINE FOR M U L T I L A Y E R  WIRE ROUTING 1105 

From Fig. 8, it is obvious that the major bottleneck, 
both in terms of space and performance criteria, is the 
local memory. The local memory must store pertinent in- 
formation regarding the various cells that have been 
mapped onto this processing element. Each entry can be 
assumed to consist of two parts, namely, the ( x ,  y ,  h ) 
coordinates of the cell (fixed data) and a variable part for 
maintaining the labeling information for the backtrace 
phase; status of the cell, i.e., whether it has been ex- 
panded already or whether it is a terminal (source or des- 
tination) or whether it is blocked, etc. 

In a full-grid machine, such as the L-Machine, the in- 
formation that one processor must send to its neighbor 
during wavefront expansion can be as simple as a I-b to- 
ken. This is possible as each processor is mapped to only 
a single point on the grid. In any virtual machine, infor- 
mation must also be passed on to the neighbor identifying 
the cell instance that corresponds to that expansion. For 
our machine, each processor based on the knowledge of 
its position in the grid can calculate the ( x ,  y ,  h ) coor- 
dinates of its neighbors and send it. This scheme, though 
simple, is also very inefficient. Even for a four-layer grid 
of dimension 256 by 256, this would entail having to send 
18 b each time to each neighbor. More importantly, a pro- 
cessing element upon receiving the token must extract in- 
formation regarding that cell from its local memory. So, 
unless the memory is organized as an associative mem- 
ory, there will be a tremendous overhead in processing. 

The alternative would seem to be that each cell pass to 
its neighbor, during wavefront expansion, the memory 
address rather than the cell contents. We shall now dis- 
cuss one scheme which can do precisely that. After the 
initial mapping using the operator 9 (cf. Definition 1 )  has 
been calculated, the ACU generates a new array INDEX, 
defined as follows: 

INDEX [ x ,  y ,  A ]  = { i-this is the ith occurrence of n 
in layer h proceeding in a 
row-major fashion } 

where n is the processing element to which cell ( x ,  y, h ) 
is mapped. 

Each processing element then calculates the difference 
A between its INDEX value and the INDEX values of its 
neighbor in each direction. In case the grid boundaries are 
met along any direction, an illegal value, X, is entered, 
implying the expansion is not possible in that direction. 
From Lemma 1 ,  it is evident that the maximum absolute 
value of A is going to be r ( G / N )  1 . For a 256 by 256 
grid and N = 169, this works out to be 2. Note that this 
value is independent of the number of layers in  the grid. 
Hence, the A value for each direction can be stored in a 
3-b field. This in turns means that the fixed part of each 
entry would be 18 b wide. The entry for cell ( x ,  y,  X ) is 
stored in the local memory of the mapped processing ele- 
ment at address ( Ak . . * 

ho is the binary representation of X and b, . . . bo is the 
binary representation of INDEX[x, y A ] .  

Xo, b,q * * . b o ) ,  where ha * 

Now let m,, be the address of the cell currently being 
expanded. Then the information passed to the neighbor- 
ing processing element in direction d is the value (m,, + 
A,,), where A,, is the difference stored at mr, for direction 
d.  For a 256 by 256 four-layer grid, this entails sending 
only eleven bits of information, as opposed to 18 in the 
previous case. However, the vital gain is in the fact that 
the cell information received is in the form of an address. 
Hence, it results in much speedier retrieval of data from 
the local memory. 

The cost we pay for the new scheme is the additional 
time spent in generating INDEX, even though this will be 
more than compensated for by the faster processing. Also, 
as the information is static for a given mapping, it can be 
precomputed and loaded in the local memories once and 
for all. However, the indexes will no longer be consecu- 
tive for smaller grids. 

The memory contents for the first three processing ele- 
ments for the mapping shown in Fig. 2 are shown in Table 
111. The entries marked X indicate that no expansion is 
possible in those directions because of the grid dimen- 
sions. 

The send and receive units in Fig. 8 could be as simple 
as shift registers with appropriate status flags to indicate 
if any new data have arrived. The presence of a bank of 
registers, one per neighbor, ensures complete parallelism 
in the expansion process. The update unit, as the name 
suggests, would update the pertinent cell status and la- 
beling information. It could store these cells in a stack- 
like structure for faster retrieval by the next-cell unit. 
Also, the update unit informs the local control unit of new 
data by raising a BSY (busy) line, upon new data arrival, 
or the DST line, if the cell corresponds to the target. The 
next-cell unit provides the expansion unit with one of the 
possibly several active cells mapped on this processing 
element. This unit also lowers the BSY line if it finds no 
more cells remaining to be expanded by the processing 
element in the given cycle. The expansion unit for direc- 
tion d adds the value Ad to the address of the cell to form 
the message for the neighbor along direction d.  This is 
then sent by the send unit, provided the Boolean condition 
(A,, # X A cell-state = to be expanded) is satisfied. 

The preceding operations are all carried out under the 
supervision of the local control unit. The ACU broadcasts 
the commands globally to all the local control units. Also, 
the ACU can individually access each processing ele- 
ment, using the X and Y select lines, and initialize the 
processing elements at the start, as to the locations of the 
initial obstacles and start and end of the nets. During 
backtrace the processing elements on the net can raise the 
same lines to indicate the route to the ACU. A point to 
note is that in this scheme, some processors may be forced 
to idle if others have multiple assignments on the current 
wavefront (Procedure expand-$-busy) . Additional 
speedup could be achieved if the processors were permit- 
ted to continue to expand. This would correspond to an 
MIMD mode of operation. The cells being expanded dur- 
ing any cycle now would no longer correspond to any par- 
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TABLE 111 
CONTENTS OF THE LOCAL MEMORY FOR PROCESSORS 0 TO 3 

Local Memory -0  Local Memory -1 

-1 
X 

o o o x  
- 1 - 1  0 0 0 x 0 X 
- 1 - 1  0 0 0 x - l x  0 0 0 x 
0 - 1 0  x 0 x - 1 0  0 x 0 x 
o o x o x o  o o x o x o  

1 0  - 1 0  x 0 
1 0  - 1 0  x 0 
1 0  - 1 0  x 0 

-1 -1 -1 0 x 0 
-1 -1 -1 0 x 0 
-1 -1 -1 0 x 0 
0 - 1 - 1  0 x 3 

I I I 

Local Memory - 2  Local Memory - 3  

o o o o o x  
0 0 0 0 o ' x  
o o o o o x  
o o o o o x  
o o o o o x  
0 1 0 0 0 x  
O l O X O X  

0 
0 
0 
0 
0 
X 
-1 
-1 

o x o x o  
1 - 1  0 x 0 
1 - 1  0 x 0 
1 - 1  0 x 0 
1 - 1  0 x c 
1 - 1  0 x ( 

x - 1  0 x c 
0 - 1  0 x ( 

4" 1 0 0 0 0 : 
0 0 0  X 

0 0 - 1 0  x c 
0 0 -1 0 X 
0 0 - 1 0  x 
0 0 - 1 0  x 0 
0 1 - 1 0  x 0 
0 1 - 1 0  x ( 

ticular wavefront. Procedures 1-5 describe the various 
software routines in pseudocode. 

B. Procedures f o r  an SIMD Model of Computation on 
the Hexagonal Machine 

Procedure 1: PROC-ELEM main loop 
repeat 

Process CU command 
Execute the appropriate routine, viz., 

EXPAND, EXPAND-IF-BSY, or BACKTRA CE 
until OVER. 

Procedure 2: EXPAND 
for each Ri do 

if new data received 
Check with cell bank if this is a new cell 
if new 

Update the labels for the cell 
Set DST flag if target reached 

cnt+ + 

Expand one unexpanded cell by sending message to 
the applicable neighbors 
cnr- - 
if cnr > 0 

set BSY flag ON 

else 

end. 
reset BSY flag 

Procedure 3: EXPAND-IFBSY 
if BSY flag is ON 

else 

end. 

if new data received or if DST flag set 

Perform Algori thm EXPAND 

skip 

Procedure 4: BACKTRACE 

if neighbor on cur-dir has correct label 

else if neighbor in direction n on same layer has cor- 
rect label 

else if neighbor in direction n on adjacent layer has 

Next = cur-dir 

Next = n 

correct label 
Next = n 

cur-dir = Next 
Send message to neighbor in direction Next 

end. 

Procedure 5: CONTROL-UNIT main loop 
Compute the mapping of cells to processors 
Load mapping information onto the cell banks of the 
processors 
repeat 

Broadcast the source and target for this net 
EXPAND 
Read DST vector and go to next net if set or  if route 
not possible 
while BSY vector # 0 

EXPAND-IF-BSY 
until all nets over. 

VI. PERFORMANCE ANALYSIS 
A simulation has been made based on the preceding ar- 

chitecture and the multilayered routing algorithm pro- 
posed. The simulation program has been coded in C + +. 

We ran several simulations, varying different parame- 
ters, such as the hexagonal mesh dimension, the grid size, 
and the number of layers to be routed. Thus we were able 
to investigate their impact on the routing time. We varied 
the mesh dimension from 2 to 32 ( i .e . ,  from seven pro- 
cessing elements to 2977 for the 32-dimensional mesh). 
We performed sample routing on grids of sizes ranging 
from 16 by 16 to 1024 by 1024 and comprised of 1-8 
layers. All these routing problems were considered on an 
empty grid (i.e., with no previous blockages). A net orig- 
inating from the center of the grid and proceeding to a 
comer, along with another running between two diago- 
nally opposite comers, were always considered. Our mo- 
tivation here was simply to get a feel for the order of 
delays that we may expect from a hexagonally intercon- 
nected machine. The aforementioned two nets, as we have 
already shown, require the most time to route. 
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Fig. 9. Simulation and analytical results of routing time on the hexagonal 

array machine. (a) Simulation results (one layer). (b) Analytical results 
(one layer). (c) Simulation results (multilayers). (d) Analytical results 
(multilayers). 

TABLE IV 
ANALYTICAL RESULTS OF DF FOR A K-LAYER 128 BY 128 GRID 

128' x 1 128' x 2 128' X 4 128' x 8 
Mesh No. of 
Dim PES MI DF, M2 DF' M ,  DFj M4 DF, 

2 7 31 13.869 1 73 28.3 184 I63 57.5332 392 118.5470 
4 37 211 3.3750 400 6.5213 74 1 12.2754 I537 24.621 I 
8 169 1021 2.0039 I967 4.0137 3671 7.4297 6342 13.1484 

16 72 1 4447 I .7578 8836 3.4395 I6967 6.662 I 30838 12.8145 
24 1657 10273 1.6582 20697 3.2402 40452 6.3633 75167 12.4043 
32 2977 I8499 1.5820 37549 3.1816 74085 6.3457 140376 12.3281 

The graphs in Fig. 9 show the timing characteristics of 
the hexagonal array machine as obtained from simulation. 
Also shown are the upper bounds on the time as projected 
by the analytical model of Section IV. Both single-layer 
and multiple-layer routing results are plotted. Each plot 
is of the time needed to route versus the dimension of the 
mesh used. The unit for the y axis is taken as the time 
taken by a processor to perform one expansion. Table IV 
shows the analytical results for Mk and the DF, which are 
as expressed in Section IV. 

It is seen that the graphs are all exponential in nature 
and of the form y = b * IO-", where b and c are positive 
numbers. As is intuitively evident, the graphs show that 
for a very small dimension, such as 2 or 3, there are many 
multiple assigments of cells to the processing elements 
per wave expansion. This does not mean a lack of parallel 
processing. It only implies that since the same work is to 

be handled by fewer processors, the overall time required 
to complete the routing is more. As the number of pro- 
cessing elements available increases, we need lesser and 
lesser time to perform the same routine. Note that the 
quality of routing obtained is not dependent on the num- 
ber of processors used. It is determined by the routing 
algorithm, like the cost functions employed during wave 
expansion or the manner in which backtracing is per- 
formed. After a mesh dimension of around 8, all of these 
curves seem to flatten out, in the sense that increasing the 
number of processors available does not provide any sig- 
nificant reduction in routing time. Hence, we feel that a 
practical implementation which would be required to 
tackle problems of these specifications could ideally be 
built as an eight-dimensional mesh comprised of 169 pro- 
cessing elements. In this way, we will be able to do rout- 
ing nearly as fast as a full-grid implementation made up 
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- Layer 1 _ _ _ _ _ _ _  Layer 2 
Fig. I O .  Sample two-layer routing-example. 

of thousands of processing elements. Another conclusion 
that we were able to draw was that the time required to 
route for most nets is about 0.65-0.85 times the upper 
bound on the delay, as predicted by Theorem 2 .  Thus this 
measure of the delay can be very simply used for evalu- 
ating the suitability of a mesh of a certain dimension for 
solving a given class of problems. 

The rest of the section shows the routing produced for 
two, more complex problems considered. Fig. 10 shows 
the layout obtained for a sample problem involving 14 
nets on a two-layer grid of size 128 by 128. All the blocks 
and terminals of all nets lie on the top layer only. Fig. 11 
shows the initial blockages and the wiring obtained for a 
four-layer PCB problem. In this case, 25 nets were suc- 
cessfully routed. Table V summarizes the performance re- 
sults for the two problems for meshes of dimensions 4 and 
8, respectively. 

The results are very promising indeed. For a problem 
similar to the two-layer case, Suzuki et al. [21] had ob- 
tained an average of 3.4 cells assigned per processor (to- 
tal of 64 processors) over each wavefront. This is nearly 
twice the value that we get with a five-dimensional mesh 
(61 processing elements). We contend that this is a direct 
reflection of the superiority of our mapping, viz., the same 
processor appears at every N processors along any direc- 
tion, instead of the smaller periodicity of N / 2  or less ob- 
tained by others. Also, our solution is not unnecessarily 
constrained by horizontal-vertical restrictions on wire di- 
rections. This offers scope for a greater number of wires 
being routed. 

Table VI shows the netlist used for the two-layer sam- 
ple problem, whose solution is given in Fig. 10. Average 
MAF refers to the multiple assignment factor of cells to 
processing elements on a given wavefront average over 

1 n 

Layer 0 Layer 1 

L I I  I 

Layer 2 Layer 3 

Fig. 1 1 .  Sample four-layer PCB routing example 

all wavefront expansions. Total time gives an estimate of 
the amount by which our machine might be slowed down 
as compared to a full-grid implementation. It is based on 
an SIMD mode of computation wherein some processing 
elements may remain idle (similar to masking) during the 
period when others are handling multiple expansions for 
that particular wavefront. Avg PrUt refers to the average 
processor utilization percentage. 

Table VI1 shows the netlist for the four-layer PCB ex- 
ample of Fig. 11. All columns have the same implications 
as before. 

VII. RECONFIGURABILITY A N D  FAULT-TOLERANCE 
ISSUES 

A .  Reconjiguration 
The ability of the hexagonal array machine to perform 

multilayer routing stems from the fact that each process- 
ing element is directly connected to six other neighbors. 
Obviously, this implies an increase in  the total number of 
links required. In fact, for an n node machine, a square 
mesh topology requires 2n links as compared to the 3n 
links required by the hexagonal machine. However, it is 
now possible to perform multilayer routing very effi- 
ciently. Currently, most routers tackle a multilayer prob- 
lem one layer at a time. This necessitates the onerous task 
of finding out the optimal point for the vias, to optimize 
the routing criteria as well as to maximize the connectiv- 
ity ratio. These routers, therefore, adopt heuristic mea- 
sures to simplify the problem, as a result of which, we 
may frequently obtain unacceptable results. However, for 
two-layer horizontal-and-vertical routing, a four-neighbor 
interconnection topology may suffice. For this purpose, it 
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TABLE V 
PERFORMANCE RESULTS O N  T H E  HEXAGOYAL A R R A Y  MACHINE 

No .  of Mesh No .  of Total Wire Avg.  Total Avg.  Completion 
Grid Size Layers Dim. Nets Length MAF Time Pr. Util. Ratio 

128 x 128 2 4 14 877 2.9872 5.0735 50 100% 
128 X 128 2 8 14 877 I .3063 2.8302 20 100% 
64 x 64 4 4 25 1048 2.5573 4.7643 40 100% 
64 x 64 4 8 25 1048 I .2539 2.641 1 15 100% 

TABLE VI 
NETLIST A N D  PFRFORMANCE DATA FOR SAMPLE TWO-LAYER ROU r l N G  PROBLEM 

Avg. Pr. 
Source Target Avg.  MAF Total Time Ut. 

Wire No .  of No. of 
Net x Y X y Length Vias Bends 4D 8D 4D 8D 4D 8D 

1 14 90 26 70 34 0 3 2.1930 1.2789 4.1471 2.6471 42 14 
2 20 50 70 55 57 2 1 3.2904 1.3373 5.2456 2.8421 55 22 
3 20 40 50 30 42 2 1 2.6543 1.3175 4.6191 3.0238 48 16 
4 20 113 70 90 73 0 3 2.5556 1.1665 4.1644 2.2055 56 24 
5 55 113 30 60 80 2 I 3.6429 1.4512 5.8000 3.5750 57 20 
6 85 113 60 85 55 2 2 2.9429 1.3024 5.0546 2.6546 52 22 
7 113 55 90 40 38 0 3 2.4581 1.2258 4.2368 2.3947 49 19 
8 68 40 40 48 36 0 I 2.7963 1.2779 4.6667 2.6944 49 19 
9 40 29 113 25 79 2 I 3.7639 1.4903 6.3544 3.6962 53 20 

I O  70 85 70 14 I35 2 3 4.1843 1.4472 6.7704 3.5259 58 24 
I I  30 14 80 50 110 2 3 2.9041 1.2473 5.0000 2.6636 52 21 
12 20 25 50 25 46 2 4 2.1899 1.1811 4.3696 2.3261 42 17 
13 35 60 70 65 40 0 1 2.6402 1.2038 4.8500 2.4500 45 19 
14 85 85 80 40 52 2 1 3.6048 1.3611 5.7500 2.9231 54 23 

TABLE VI1 
NETLIST A N D  PERFORMANCE DATA FOR SAMPLE FOUR-LAYER PCB ROUTING PROBLEM 

Source Target Avg.  MAF Total Time Avg.  Pr. Ut 
Wire No .  of No.  of ~~ 

Net x y X y Length Vias Bends 4d 8d 4d 8d 4d 8d 

I I O  50 I O  30 20 
2 13 50 35 28 46 
3 25 52 13 30 40 
4 25 25 35 25 I O  
5 12 20 12 I O  I O  
6 15 20 27 I O  22 
7 18 19 40 I O  31 
8 15 55 45 55' 42 
9 15 52 38 30 47 

I O  30 I O  50 20 32 
I 1  35 57 41 30 47 
12 44 50 44 30 42 
13 46 50 46 30 48 
14 45 7 15 I O  41 
15 5 50 I O  8 49 
16 5 53 I O  5 57 
17 55 51 55 20 43 
18 55 54 24 5 96 
19 55 57 14 5 I l l  
20 12 60 27 60 17 
21 30 60 50 60 24 
22 23 30 37 30 16 
23 25 57 40 6 72 
24 15 57 30 8 70 
25 25 22 36 20 15 

0 
2 
6 
0 
0 
0 
0 
0 
2 
2 
6 
2 
2 
0 
0 
0 
0 
2 
4 
0 
0 
2 
6 
6 
0 

0 
2 
1 
0 
0 
2 
2 
4 
3 
2 
3 
5 
3 
4 
2 
2 
2 
5 
3 
2 
2 
0 
3 
1 
3 

2.3827 
3.2050 
3.5517 
I .4895 
I .0427 
1.3010 
2.5292 
2.8576 
3.1545 
3.4796 
2.5776 
3.0325 
3. I453 
3.0886 
2.7349 
2.7076 
2.1820 
2.9367 
2.6883 
1.8967 
1.9835 
1.8767 
3.3784 
3.0558 
I .6553 

1.2001 
1.3398 
1.4173 
1.0886 
1 .oooo 
1.0433 
1.2163 
1.2596 
1.3338 
1.4337 
I .2290 
1 ,3446 
1.3235 
1.3088 
1.2993 
1.3271 
I .  1427 
1.2719 
1.4638 
1.2126 
I .  I372 
I .  I365 
1.391 I 
1.2962 
I .  I296 

4.5500 
6.2609 
6.7750 
2.7000 
I .  3000 
2.0909 
4.0968 
5.4524 
5.9149 
6.2813 
4.5745 
5.2381 
5.1875 
6.0732 
5.6122 
5.3684 
4.2326 
5.5417 
5.0360 
3.9412 
3.7917 
3.3750 
6.5139 
6.0000 
3.2000 

2.3000 
3.0435 
3.4250 
1 ,7000 
1 . 0000 
1.3636 
2.4516 
2.7857 
2.9787 
3.4688 
2.6170 
2.9286 
2.7083 
3. I219 
3.2449 
3.0351 
2.3256 
2.8438 
3.1441 
2.647 I 
2.2083 
2.1875 
3.4306 
3.0000 
2.0667 

40 18 
45 20 
47 20 
31 I I  
19 5 
26 8 
37 13 
47 20 
47 20 
49 19 
45 17 
38 14 
36 15 
43 18 
44 16 
46 17 
36 14 
45 19 
46 15 
34 I I 
43 16 
41 13 
48 19 
47 20 
33 I I  
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0 Fig. 13. Additional blockages caused by faulty processing elements. 

2 TABLE VI11 
EFFECTS OF FAULTY LINKS ON ROUTING 

15 16 11 

Fig 12 Four-dimensional hexagonal array with diagonals links removed. Average Average 
# of Faulty Average Total Via per Bends per Average 

Time Wirelength Net Net Pr. Util. Links 

is possible to simplify the basic hexagonal mesh topology 
by deleting the two additional links of each processing 
element. One way to achieve this is by removing all the 
links along one of the three main directions. Fig. 12 shows 
the modified architecture for a four-dimensional mesh, 
where all the links along the 60-deg direction have been 
removed. Since the interprocessor cycle period is still n 
for an n-node mesh, this mapping would result in fewer 
conflicts in processor assignment than a comparable 
square-mesh or toroidal interconnection. 

B. Fault Tolerance 
Can routing machines tolerate some amount of failure 

in the links or processing elements? This is a very impor- 
tant question, especially for WSI or VLSI technology, 
where such faults could arise due to imperfections in the 
manufacturing process. Unfortunately, this issue is often 
unaddressed. What then are the ramifications of faulty 
links and processors on routing on the hexagonal array 
machine? Clearly these faulty elements will hinder wave- 
front expansion and backtracing. In fact, a faulty pro- 
cessing element can be modeled as a case where all the 
six incoming links are treated as being faulty. 

From the point of view of grid layout, these faults, 
however, can be conceptualized as creating additional ob- 
stacles on the grid surface. The darker squares in Fig. 13 
show these additional blockages caused by ten out of the 
37 processing elements (27 % ) becoming faulty. Conse- 
quently, 138 additional cells (26.75%) get blocked. In 
spite of this high failure rate, it is heartening to note that 
all wires could still be routed for a sample problem as 
described in Section VII-B-2). 

I) Faulty Links: We took the routing problem of Table 
VI and randomly assigned faulty links. This information 
is easily handled by setting the appropriate A entries in 
the local memory of the two processing elements con- 
nected by the faulty link to the illegal X value. Table VI11 
summarizes the results obtained. 

We observe that the time needed to route, as well as 
that for the processor utilization, remains practically the 

0 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5.0735 
5.1231 
5.2181 
5.1558 
5.2059 
5.1369 
5.2001 
5.3131 
5.2753 
5.4035 

877 
879 
823 
877 
86 1 
877 
879 
829 
837 
797' 

1.2857 
1.4286 
1.4286 
1.2857 
1.7143 
1.2857 
1.2857 
1.5714 
1.5714 
1.3846 

2.0000 
2.3571 
2.2143 
2.4286 
3.4286 
2.4286 
2.5000 
2.4286 
2.9286 
3.8462 

50 
49 
49 
50 
49 
49 
49 
48 
49 
49 

' 1 net could not be routed in this case 

same. The quality of routing in terms of the number of 
bends and number of vias used per net deteriorates 
slightly. An interesting observation is that in some in- 
stances with faulty links, there is a reduction in the total 
wire length needed (chiefly for nets 10 and 11). There 
are a couple of reasons for this. Firstly, we employ a very 
simple backtracer which favors a reduction in the number 
of bends and vias to an increase in the wire length. Sec- 
ondly, it is another indicator to the effect of net ordering 
on performance. Our conclusion, therefore, is that a small 
amount of link failure, say about 5% (in this instance, 
9% ), will not be catastrophic to the hexagonal machine. 
Part of this assurance is based on the additional 2 deg of 
freedom available to each processing element for expan- 
sion. 

2) Faulty Processors: To study the effect of processor 
failure on routing, we considered a grid corresponding to 
the mapping shown in Fig. 2. Our objective was to route 
four nets in the presence of 0-10 faulty processing ele- 
ments, out of a total of 37. Although the processing ele- 
ments were randomly set faulty, we ensured that none of 
the source or target cells were mapped onto them. A faulty 
processing element can be represented either by setting 
the appropriate six A entries in the local memories of the 
six neighbors to an illegal value or by considering all cells 
mapped to it as being blocked. The results are summa- 
rized in Table IX. 

Our conclusion here, also is that the hexagonal machine 
can survive a large amount of processor failure, but at the 
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(a) (b) 

Fig. 14. Wiring results in the presence of faulty processors. __ Layer 
1; ---- Layer 2. 

TABLE IX 
EFFECTS OF FAULTY PROCESSING ELEMENTS ON ROUTING 

Avg. of Avg. of 
# of Faulty Total Average Avg. Vias per Bends per 
Processors Wirelength Time Pr. Util. Net Net 

0 
1 
2 
3 
4 
5 
6 
7 
8 

10 

62 
64 
64 
62 
66 
66 
90 
74 
66 
94 

2.131 
2.0873 
2.0976 
2. I245 
2.0461 
1 ,9603 
I .  8454 
2.0227 
2. I460 
1.6962 

26 
21 
24 
23 
22 
24 
19 
20 
18 
16 

~ 

0.50 
0.50 
0.50 
0.50 
1 .oo 
0.50 
1.50 
I .oo 
1 .oo 
2.00 

~ 

I .25 
1.50 
2.00 
2.75 
1.75 
4.00 
5.00 
3.75 
3.25 
6.50 

cost of additional vias and bends. Fig. 14(a) shows the 
wiring when no processor is faulty and Fig. 14(b) shows 
the wiring when ten of the 37 processing elements are 
faulty. All the blocks shown are on the top layer, as are 
the terminals of all nets. Also note that net 1 running on 
layer 2 is partly covered by net 4 running on layer 1. So 
is net 4 partially covered by net 2 .  Although the routing 
in this case is of poor quality, it is worth noting that this 
is an instance where nearly 27% of the processing ele- 
ments are faulty. 

VIII. CONCLUSION 
The popularity of hardware routers can be attributed to 

their utmost importance in any automated design environ- 
ment. Powerful processors are required to achieve faster 
turnaround times even though design requirements are 
steadily increasing. Full-grid designs like the L-machine 
are no longer possible. The question of net ordering in 
achieving 100% connectivity with a minimum (or ab- 
sence) of overflow nets continues to be a vexing issue for 
automatic routers. Some amount of rip-up and rerouting 
will inevitably be required in the absence of a scheme for 
determining the optimal net order a priori. This rerouting 
phase often accounts for the bulk of the total time re- 
quired. Allowing for multiple layers is one approach to 
reduce the number of overflow nets and thereby the re- 
routing overheads. Concurrent multiple-layer routing also 

minimizes the number of vias introduced, thereby im- 
proving reliability of the circuit. More nets can be con- 
nected because of the additional routing space available. 
However, existing accelerators based on square-mesh or 
torus topologies are not successful when it comes to mul- 
tiple layers. We believe that this is a restriction of any 
topology wherein each processing element has only four 
nearest neighbors. 

In this paper, we have investigated the hexagonal mesh 
architecture for the physical implementation of the Lee 
algorithm. We have shown the high promise of such a 
machine in handling routing on single as well as on mul- 
tiple layers. The mapping, corresponding to a C-wrapped 
hexagonal interconnection of N processing elements, re- 
sults in an interprocessor cycle length of N .  This is much 
superior to the N / 2  results obtained by other researchers 
[ 131, [ 2  11. Consequently, fewer conflicts arise during 
wavefront expansion and a good quality routing can be 
achieved in a much shorter period. 

We have shown that a mesh of dimension JGk can do 
routing on k-layer grids with kG2 grid points at speeds 
comparable to the full grid machine. For example, we es- 
timate that a four-dimensional hex mesh, with 37 proces- 
sors, will take about ( (256/37)  + 1 )  0.6 - 5 times 
more than the full-grid implementation having 65 536 
processors. We have discussed some of the major issues 
involved in physically implementing such a machine. An 
SIMD-type model, along with a unique labeling scheme 
to lower the local memory requirements, has been pro- 
posed. We have also shown the ability of the hexagonal 
mesh to withstand considerable link and processing ele- 
ment failure and still produce acceptable wiring. 
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