
Genetic beam search for gate matrix layout

K. Shahookar
W. Khamisani
P. Mazurnder
S.M. Reddy

Indexing terms: CMOS, Gate matrix layout, Genetic algorithm

Abstract: The paper presents a novel implementa-
tion of the genetic algorithm in combination with
beam search for gate matrix layout. This is a per-
mutation problem, for which the traditional
genetic crossover operator results in repetition of
gates, and therefore the GA is not applicable
without modification. However, the GA is a very
efficient stochastic optimisation technique, and is
easily parallelisable. To adapt it to the gate matrix
layout problem, the principles of beam search
have been used. The gates are ranked according to
their connectivity with each other, and the ranks
of the gates to be placed next to each other are
picked by the GA. A beam value is used to restrict
the ranks of the gates placed next to each other to
a low value. This reduces the search space to be
explored, and thus results in a more efficient
search. The algorithm produces better results
compared to a graph-theoretic approach on
published netlists.

1 Introduction

The gate matrix layout style was introduced by Lopez
and Law [l], and can be considered as an extension of
the Weinberger style [2] for CMOS layouts. It is charac-
terised by simplicity of design and quick turnaround
time. However, it has been found that straightforward
implementation leads to very inefficient usage of chip
area. The gate matrix is composed of intersecting rows of
diffusion and columns of polysilicon. All transistors
having a common input are placed on a common poly-
silicon column. Connections between source and drain
terminals of transistors connected in series/parallel, as
well as connections to the polysilicon gates, are made by
nets which run in rows of metal interconnect. At each
intersection of a row and column, either a transistor can
be fabricated, with two nets connecting the source and
drain, or the net can form a contact with the polysilicon.

Fig. 1 shows an example circuit, consisting of multiple
CMOS complex gates, its netlist, connectivity matrix,
layout, and the symbolic representation of the layout,
suitable for gate matrix design. Power and ground

0 IEE, 1994
Paper 9879E (E10, E3), first received 18th March and in revised form
30th September 1993
K. Shahookar, W. Khamisani and P. Mazumder are with the Depart-
ment of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI 48109, USA
S.M. Reddy is with the Department of Electrical and Computer Engin-
eerink University of Iowa, Iowa City, Iowa, USA

I E E Proc.-Comput. Digit. Tech., Vol. 141, No. 2, March I994

routing is not shown in the layout; it is assumed to be on
a separate layer. The set of gates consists of one column
for each set of transistors that have their gates connected
together, plus one column for each output of the entire
gate matrix circuit.

The netlist consists of the set of gates connected to
each net. The connectivity matrix specifies how many
nets connect each pair of gates.

Several graph algorithms as well as a stochastic optim-
isation technique and simulated annealing have been
used for gate matrix optimisation. Well known graph
algorithms are proposed in References 3-8. These give
moderately good results and are quite fast. Ohtsuki et al.
[3] gave the first graph-theoretic model for this problem
using interval graphs. Simulated annealing was proposed
for gate matrix layout in References 8 and 9. It gives
good results, but is very slow and hard to parallelise
efficiently.

2 Genetic algorithm

The genetic algorithm (GA) [lo] is a stochastic optim-
isation algorithm that simulates the process of natural
evolution (optimisation) in living creatures. It uses two
basic processes from evolution: inheritance, or the
passing of useful features from one generation to the next,
and competition, or survival of the fittest, which results in
weeding out the bad features from the individuals in the
population.

The main advantages of the GA are
(i) It is adaptive, and learns from experience.
(ii) It has intrinsic parallelism.
(iii) It is efficient for complex problems.
(iv) It is easy to parallelise, especially on a loosely

coupled workstation network, without much communica-
tion overhead [113.

The GA starts with several alternative solutions to the
optimisation problem, which are considered as individ-
uals in a population. Often these solutions are coded as a
binary string, called a chromosome. In the gate matrix
problem, these consist of a representation of the gate
permutation, encoded as described in the following
Section. The initial population is usually constructed ran-
domly. The GA then uses these individuals to produce a
new generation of hopefully better solutions as follows.

First it does an evaluation using a user-provided
fitness function. The next step is selection and repro-

This research was partially supported by NSF
grant 9013192 and the University of Michigan
faculty grant.

123

duction. For each individual, a number of copies are
made, proportional to its fitness, while keeping the popu-
lation size constant. The least fit individuals are deleted.
Therefore, a fitter individual, hopefully containing some
useful features, has a higher probability of multiplying.
This is the survival of the fittest part of the GA.

Parentl: A B C D E

Parent2: C F I B K

Offspringl: A B C D E

Ls
F G H I J K
G A 0 E H J

G A 0 E H J

nl ={A, 8)
n2 = {E. C}
n 3 = {A, B. C}
n 4 = {A. B. C. D l
n5 = {C, Z}
n6 = {A, c, Z}
n7 = { A , 8)
n8 = {B, D}

A B C D Z

A 0 4 3 1 1
8 4 0 3 2 0
c 3 3 0 1 2
D l 2 1 0 0
z 1 0 2 0 0

b

Z A B C D

P
n

C d

w n6 n7 n3 n8 n5

e f

124

The next step is crossover, where individuals are
chosen two at a time, at random, as parents. They are
converted into two new individuals, called offspring, by
exchanging parts of their structure. Thus, each offspring
inherits a combination of features from both parents.
This enables the GA to try out various features in differ-
ent combinations, and see whether or not they still retain
their fitness.

The next step is mutation. An incremental change is
made to each member of the population, with a small
probability. After mutation is performed on an individ-
ual, it no longer has just the combination of features
inherited from its two parents, but also incorporates the
additional change caused by mutation. This ensures that
the GA can explore new features that may not yet be in
the population. It makes the entire search space reach-
able despite the finite population size.

This completes the production of a new generation.
This process is repeated for several generations, and the
fittest gate permutation seen in the entire run is output at
the end.

3 GA and beam search

The problem of determining the gate permutation is NP-
complete, and is very similar to the travelling salesman
problem. These permutation problems result in conflicts
in the implementation of the traditional GA, as discussed
in detail in Reference 12. For example, Fig. 2 shows one

This paper describes a novel implementation of the
GA for permutation problems, using beam search to
reduce the search space. For each gate i, all other gates j
connected to it are ranked in descending order of the
number of connections between gates i and j . The GA
picks one of the K best-ranked gates to place next to
each gate. The chromosome coding consists of the ranks
associated with the starting gate (the gate to be placed at
the extreme left) and with each other gate.

In beam search, we consider only a small subset of the
solution space. Only those permutations are considered
which can be obtained by placing one of the K best-
ranked gates next to each gate. As we have K choices of
gates for each column (except at the end when fewer than
K gates are left to assign), the subspace considered is
approximately K" instead of n!, and K 6 n, where n is the
number of gates and K is the given beam value. In the
following Sections, we will see what is an appropriate
value for K.

3.1 Schemata
Holland [lo] explains the working of the GA in terms of
the schemata contained in a chromosome. Each bit in the
chromosome (or each symbol, if the encoding is not
binary) is called a gene, and conveys a certain property of
the current chromosome, which effects its fitness function,
and which can be inherited by other chromosomes.
Groups of genes are called schemata. Thus a schema is a
partially specified chromosome, with the rest of the gene
values as don't cares. According to Holland's schema
theorem, if a certain group of genes occurs in the
members of the population with a high average fitness, it
will be inherited by many other offspring, and will multi-
ply. This is because the GA produces more offspring out
of the fitter members of the population. At the same time,
crossover will enable the mixing of such schemata, which
will be tried out in the presence of other schemata in the
same string, resulting in the discovery of larger and larger
good schemata, giving, in this case, more complete gate
matrix permutations.

Note that we never manipulate partial gate matrix
permutations separately. All members of the population
are complete permutations. They contain these partial
permutations, or schemata implicitly, and evaluating one
entire permutation results in the refining of our estimate
of the fitness of all the partial permutations it contains.
As an n-bit string consists of 2" substrings or schemata,
this represents a large amount of implicit parallelism in
the operation of the algorithm.

Contiguous substrings of a gate permutation, as
shown in the left and right halves of Fig. 2, are meaning-
ful schemata, and a good contiguous substring from each
parent may result in a good offspring, although there
might be some disruption at the cut. However, we have
already seen that passing contiguous substrings of a per-
mutation results in conflicts.

The approach chosen in this research is to combine
rank information from the two parents, as the ranks
provide meaningful information that can be inherited
from the parents, and which controls the fitness of the
offspring.

3.2 Algorithm
The GENESIS package [17] has been used as the GA for
this research. The evaluation algorithm for constructing
permutations from the chromosomes is listed in Fig. 3. It
is illustrated in Fig. 4 for the five-gate circuit of Fig. 1.

IEE Pr0c.-Comput. Digit. Tech., Vol. 141, No. 2, March 1994

The explanation of the algorithm will be easier in terms
of this example.

The connectivity matrix is given in Fig. 4, which speci-
fies how many nets connect each pair of gates, as deter-
mined simply by counting from the netlist. As part of the
initialisation procedure, a sorted matrix is constructed,
containing, for each gate, all other gates sorted in
descending order of their connectivity.

The GA provides the chromosomes that define a gate
matrix placement. Each chromosome includes a starting
rank. If the rank for the starting gate is i, the ith least
connected gate is picked as the starting gate, considering
the total connectivity of all gates. In the example, the
starting rank is 1, so Z, with total connectivity 3 is
picked. This is based on the heuristic that the least-
connected gates should preferably be on the edges.
Hence, the GA gets a chance to pick one of K least-
connected gates as the starting gate, where K is the beam
value.

In addition, for each gate G, the chromosome gives the
rank i of the next gate to be placed to its right. This rank
is to be looked up in the sorted matrix in the row of G, to
pick the ith most-connected gate to G. If this gate has
already been placed, we have to search in both directions
for the closest free rank in the row of G.

After selecting Z as the starting gate, the next step is to
select the rank associated with Z in the chromosome, and
pick the next gate to the right. In the example, the rank is
1, and from the sorted matrix, C is the most-connected
gate to 2. The rank associated with C in the chromo-
some is three. From the sorted matrix, the third most-
connected gate to C is Z. This is already placed. To
resolve this conflict, the rank is approximated to the
nearest available one. In this case, D (rank 4) is placed
next to C. The rank associated with D in the chromo-
some is 1, so from the sorted matrix, B is the next choice.
The rank associated with B in the chromosome is 2, so
A is the closest available choice. Note that as an extra
rank is specified in the chromosome for the starting
gate, the rank for the ending gate is redundant, and is
ignored. In this example, the rank specified for A was
never used.

The probability of any requested-gate being available
is proportional to the ratio of the number of gates not yet
placed to the total number of gates. At the beginning of
the permutation construction, all gates are available, so
there is a high probability that the ranks requested by the
GA are available. This probability decreases as the per-
mutation is contructed. On average, the probability of a
requested gate being available is 50% throughout the
permutation construction. The probability that the
requested gate, or the next or previous ranked gate, being
available is 87.5%, and there is only a 12.5% probability
that we will have to search further up and down the
sorted matrix.

Thus, the permutation is constructed semi-greedily by
considering the individual gate-to-gate connectivities, and
using the instructions from the GA. The objective of the
GA is to obtain feedback from the fitness function for the
entire permutation, and optimise the ranks so as to attain
a near-global optimum in the fitness function.

The GA works by passing some meaningful informa-
tion from the parents to the offspring in the form of sche-
mata. The fitness of the offspring depends on this
information. In this algorithm, the ranks provide this
meaningful information that can be inherited from the
parents. That is, if, after placing a gate A, placing the kth
best-ranked gate next to A results in a high fitness in the

125

parent, passing that information to the child can result in
a high fitness for the child.

After a permutation is constructed, it is evaluated. The
span of each net is determined. The track count for all
the gates included in the span of the net is incremented
by one. The maximum track count at any gate gives the
number of tracks required. The total netlength is the sum
of these net spans. The fitness of the gate matrix layout is
given by

The default value of weight is the number of gates. This
gives the number of tracks an appropriately high weight-
age, and finds a layout with the minimum number of
tracks first, and then tries to minimise the netlength.
Note that the number (tracks * gates) will always be
slightly larger than the netlength. The weight can be
changed to reflect the designer’s preference.

A special mutation function was also added to the
GENESIS package. The GA starts with random ranks

f = l/(tracks *weight + netlength)

Procedure INlT
Input: Problem data
Output: Connectivity matrix, sorted matrix
Begin

for all gates, and reduces them in an attempt to place the
most-connected gates next to each other. In general, it
finished with small values for most of the ranks in the
chromosome. It was discovered that the algorithm was
performing poorly because the traditional mutation oper-
ator changed some of the ranks back to a random value
(with a small probability). Therefore, a new mutation
operator was provided, which randomly increased or
decreased the ranks by 1. This is a more incremental
change, and explores the space close to the current value
of the ranks, while still maintaining the reachability of all
rank values.

4 Results

The algorithm was tested on six netlists, ranging from 15
to 100 gates. The program was written in C and was run
on a DECstation 3100.

The first experiment was conducted on a 60-gate
circuit to optimise the parameters of the C A . The results

Read netlist:
Construct a connectivity matrix, C[i] [j] = No. of nets connecting gates i. j :
For i = 1 to num-gates
Begin

Fill row i of sorted-matrix with all gates except gate i ;
Quick sort row i of sorred_matrix on descending order of connectivities from gate I ;

End
End.

Procedure BEAM-SEARCH
Input: Chromosome, connectivity matrix, sorted matrix
Output: Gate permutation, fitness
Begin

Read the rankj for the starting gate from chromosome;
Considering the total connectivity of each gate, choose thejth least-connected gate as the starting gate;
current-gate = StaRingjate;
permutation [O] = starring-gate;

For i = 1 to num-gates - 1
Begin

Mark currentsate as used;
Read the rankj associated with the current-gate from the chromosome;
Determine next-gate = jth-best gate from sone&matrix;
If n e x t j a t e is already marked used then

permutation [il = next-gate;
currentgate = next-gate:

Alternatively scan up and down the sorted matrix to determine the nearest available rank:

End
/* Evaluate Gate Permutation: t/
netlength = 0;
weight = num-gates;
For each net i
Begin

1. default */

Find the position of the left-most gate connected to net i ;
Find the position of the right-most gate connected to net i ;
Increment the track count for each gate from the left-most gate to the right-most gate;
netlength = netlength + (distance between leh-most and right-most gate);

End
num-tracks = max. of track counts of all gates;
fitness = 1 /(num-tracks I weight + netlength) ;
End.

Procedure MUTATION
Input: Chromosome
Output: Mutated chromosome
Begin

For all genes
If rand(0, 1) < mutationgrobability
Begin

gene =gene + rand-integer(-1. + 1) :
If gene exceeds beam limits then reset gene value to limit;

End
End.

Fig. 3

126

Generic beam search algorithm

IEE Pr0c.-Comput. Digit. Tech., Vol. 141, No. 2, March 1994

Connectivity matrix Sorted matrix Chromosome Layout
A 8 C D Z total rank: 1 2 3 4 Stan 1 2 C D B A

Fig. 4

A 1
A 0 4 3 1 1 9 A : 8 C D Z 8 2
8 4 0 3 2 0 9 8 : A C D Z C 3
C 3 3 0 1 2 9 C: A B Z D D 1
D 1 2 1 0 0 4 D : B A C Z Z 1
2 1 0 2 0 0 3 Z: C A 8 D

Steps in decoding the chromosome

Step Permutation Gates used

A B C D Z

Z C D
4 Z C D 8 . m m m
5 Z C D 8 A m . m . e

Example of chromosome decodingfoor the circuit of Fig. I

beam value

Fig. 5 Effect of genetic parameters and beam value
minimum ~~-~ average

3830

3600

34M)

3200

0 4 0 060 080 100

are plotted in Fig. 5. The graphs show the final fitness for
the @-gate layout. The two curves in each graph are the
minimum population, and average population at the end
of each run. The results obtained for various beam values
for the 60-gate circuit are also shown in this Figure.
Similar experiments were performed for other circuits of
different sizes. Our initial conjecture was that a larger
beam value would be required for larger problems, in
order to escape local optima. However, experiment
showed that a small beam value of 8 gave the best or
near-best results for all problems. The reason for this is
that each gate is directly connected to at most a few
other gates. Thus, for small i , the connectivity of any gate
to the ith-best gate becomes zero. A look at the connect-
ivity matrix shows that in most cases i is only a little
larger than 8. Thus, for each gate, only the first i gates
can be meaningfully ranked in descending order of their
connectivity.

Fig. 5 also gives the results of varying the crossover
and mutation rates. The mutation rate 0.005 and cross-
over rate 0.7 which gave the best results were selected. It
was observed that if the population size is above 75, it
does not affect the results significantly, and in a predict-
able manner. Therefore, an arbitrary population size of
100 was selected. Other parameters were set by default.
Table 1 gives the CA parameters used with the
GENESIS package.

Next, the algorithm was run with these parameters on
six netlists. The results are shown in Table 2. Three of the
netlists were taken from Reference 8 in which Hong et al.

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 2, March 1994

crossow rate

D
E =
c

r” c

4200

4000

3800

3600

3400

3203

00000 0002 0004 0006 0008
mutaton rate

provide results for a simulated annealing technique as
well as for a heuristic technique. The number of rows and
the netlength for Hong’s layouts as given in Table 2 were
determined from the layouts published in the Appendix
of Reference 8. In one case, we obtained one less track,
and in all three cases, we obtained a better netlength.

The Table shows that the evaluation function used
about 90% of the CPU time, and crossover, mutation etc.
are relatively fast. This is to be expected in an algorithm

Table 1 : Genetic algorithm parameters for GENESIS

Population size 100
Crossover rate 0.7
Mutation rate 0.005
Generation gap 1 .o
Sigma scaling 3.0
Chromosome codina binarv

Beam value 8

Table 2: Exmrimental results
~

Gates Nets Hongs [81 Genetic beam search

Rows Net- Rows Net- Evalu- Total Eva1
length length ations CPU (s)

time
(5)

15 18 7 71 7 67 loo00 119 99
29 37 13 255 13 227 100000 2896 2603
36 24 - - 9 203 120000 3259 286 3
48 48 13 411 12 365 250000 13931 17R91 ~ .~. -~~.._
60 70 - - 26 1149 150000 1314.0 1236.6
100 100 ~ - 49 2957 170000 36496 3503.7

127

that does conflict resolution as part of the evaluation
procedure, to derive a valid gate sequence from a
chromosome that is a bit-string. The evaluation time
shown in the Table includes this conflict-resolution time.

Fig. 6 shows the gate matrix layout for a 48-gate
problem.

Fig. 6 Layoui for the 48-gale circuit of Hung er al.

5 Conclusions

In this paper, we have presented a novel implementation
of the GA for gate matrix layout. Gate matrix layout is
an important tool for VLSI synthesis. This is a permu-
tation problem, for which the traditional genetic cross-
over operator results in repetition of gates, and therefore
the GA is not applicable without modification. However,
the GA is a very efficient stochastic optimisation tech-
nique, which is adaptive, and easily parallelisable. To
adapt it to the gate matrix layout problem, the principles
of beam search have been used. The gates are sorted
according to their connectivity to each other, and the
ranks of the gates to be placed next to each other are
given by the GA. A beam value is used to restrict the
ranks of the gates placed next to each other to a low
value. This reduces the search space to be. explored, and
thus results in a more efficient search.

The algorithm has been tried on six netlists, with up to
100 gates, including three benchmark circuits. The
resulting track count and netlength were better than pre-
viously published results. The GENESIS package was
used as the genetic algorithm of choice, along with
appropriate evaluation functions to implement beam
search. The values for the crossover rate, mutation rate
and population size were fixed to give the best possible
results with a wide variety of circuits.

6 References

1
method for MOS VLSI’, IEEE Trans. Electron Devices, 1980

2 WEINBERGER, A.: ‘Large scale integration of MOS complex
logic: a layout method’, IEEE J. Solid-State Circuits, 1967

3 WING, 0.: ‘Interval-graph-hased circuit layout’. Proceedings of the
IEEE International Conference on Computer-Aided Design, 1983

4 WING, O., HUANG, S., and WANG, R.: ‘Gate matrix layout’,
IEEE Trans. Cumput.-Aided Des., lntegr. Circuits Sysi., 1985,
CAD-4,(3)

5 XU, D.M., CHEN, Y.K. er al.: ‘A new algorithm for gate matrix
layout’. Proceedings of the IEEE International Circuits and Systems
Symposium, 1987, p. 288

6 HWANG, D.K., FUCHS, W.K., and KANG, S.M.: ‘An efficient
approach to gate matrix layout’, IEEE Trans. Camput.-Aided Des.,
lntegr. Circuits Sysr., 1987, CAD-6, (9)

7 HUANG, S., and WING, 0.: ‘Improved gate matrix layout’, IEEE
Trans. Cumput.-Aided Des., lntegr. Circuifs Syst., 1989, CAD-3, (8)

8 HONG, Y., PARK, K., and KIM, M.: ‘A heuristic algorithm for
ordering the columns in one-dimensional logic arrays‘, IEEE Trans.
Cumput.-Aided Des., Integr. Circuits Syst., 1989, CADI, (9, pp. 547-
562

9 LEONG, H.W.: ‘A new algorithm for gate matrix layout’. Pro-
ceedings of the IEEE International Conference on Computer-Aided
Design, 1986, pp. 316-319

IO HOLLAND, J.H.: ‘Adaptation in natural and artificial systems’
(University of Michigan Press, Ann Arbor, 1985)

I I MOHAN, S., and MAZUMDER, P.: ‘A distributed genetic algo-
rithm for standard cell placement on a network of workstations’.
Technical Report, Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, 1991

12 SHAHOOKAR, K., and MAZUMDER, P.: ‘A genetic approach to
standard cell placement using meta-genetic parameter optimization’,
IEEE Trans. Cumput.-Aided Des., lnregr. Circuits Syst., 1990,
CAD-10, (5)

13 OLIVER, I.M., SMITH, D.J., and HOLLAND, J.R.C.: ‘A study of
permutation crossover operators on the travelling salesman
problem’. Proceedings of the International Conference on Genetic
Algorithms and their Applications, 1985, pp. 224-230

14 CHAN, H., MAZUMDER, P., and SHAHOOKAR, K.: ‘Macro-cell
placement by genetic adaptive search with bitmap-represented
chromosomes’, Inregr. V L S l J., 1991, pp. 49-77

15 ESBENSEN, H.: ‘A genetic algorithm for macro cell placement’,
Proc. Euro-DAC, 1992 (to appear)

16 COHOON, J.P., and PARIS, W.D.: ‘Genetic placement’. Pro-
ceedinp of the IEEE International Conference on Computer-Aided
Design’, 1986, pp. 422-425

17 GREFENSTETTE, JJ., and SCHRAUDOLPH, N.N.: ‘A user’s
guide to GENESIS I .2 ucsd‘. CSE Department, University of Cali-
fornia, San Diego, 1987

18 GOLDBERG, D.E.: ‘Genetic algorithm in search, optimization and
machine learning’, 1989

LOPEZ, A.D., and LAW, H.F.S.: ‘A dense gate matrix layout i

128 IEE Pruc.-Cumput. Digit Tech., Vol. 141, Nu. 2, March 1994

