
Genetic beam search for gate matrix layout 

K. Shahookar 
W. Khamisani 
P. Mazurnder 
S.M. Reddy 

Indexing terms: CMOS, Gate matrix layout, Genetic algorithm 

Abstract: The paper presents a novel implementa- 
tion of the genetic algorithm in combination with 
beam search for gate matrix layout. This is a per- 
mutation problem, for which the traditional 
genetic crossover operator results in repetition of 
gates, and therefore the GA is not applicable 
without modification. However, the GA is a very 
efficient stochastic optimisation technique, and is 
easily parallelisable. To adapt it to the gate matrix 
layout problem, the principles of beam search 
have been used. The gates are ranked according to 
their connectivity with each other, and the ranks 
of the gates to be placed next to each other are 
picked by the GA. A beam value is used to restrict 
the ranks of the gates placed next to each other to 
a low value. This reduces the search space to be 
explored, and thus results in a more efficient 
search. The algorithm produces better results 
compared to a graph-theoretic approach on 
published netlists. 

1 Introduction 

The gate matrix layout style was introduced by Lopez 
and Law [l], and can be considered as an extension of 
the Weinberger style [2] for CMOS layouts. It is charac- 
terised by simplicity of design and quick turnaround 
time. However, it has been found that straightforward 
implementation leads to very inefficient usage of chip 
area. The gate matrix is composed of intersecting rows of 
diffusion and columns of polysilicon. All transistors 
having a common input are placed on a common poly- 
silicon column. Connections between source and drain 
terminals of transistors connected in series/parallel, as 
well as connections to the polysilicon gates, are made by 
nets which run in rows of metal interconnect. At each 
intersection of a row and column, either a transistor can 
be fabricated, with two nets connecting the source and 
drain, or the net can form a contact with the polysilicon. 

Fig. 1 shows an example circuit, consisting of multiple 
CMOS complex gates, its netlist, connectivity matrix, 
layout, and the symbolic representation of the layout, 
suitable for gate matrix design. Power and ground 

0 IEE, 1994 
Paper 9879E (E10, E3), first received 18th March and in revised form 
30th September 1993 
K. Shahookar, W. Khamisani and P. Mazumder are with the Depart- 
ment of Electrical Engineering and Computer Science, University of 
Michigan, Ann Arbor, MI 48109, USA 
S.M. Reddy is with the Department of Electrical and Computer Engin- 
eerink University of Iowa, Iowa City, Iowa, USA 

I E E  Proc.-Comput. Digit. Tech., Vol. 141, No. 2, March I994 

routing is not shown in the layout; it is assumed to be on 
a separate layer. The set of gates consists of one column 
for each set of transistors that have their gates connected 
together, plus one column for each output of the entire 
gate matrix circuit. 

The netlist consists of the set of gates connected to 
each net. The connectivity matrix specifies how many 
nets connect each pair of gates. 

Several graph algorithms as well as a stochastic optim- 
isation technique and simulated annealing have been 
used for gate matrix optimisation. Well known graph 
algorithms are proposed in References 3-8. These give 
moderately good results and are quite fast. Ohtsuki et al. 
[3] gave the first graph-theoretic model for this problem 
using interval graphs. Simulated annealing was proposed 
for gate matrix layout in References 8 and 9. It gives 
good results, but is very slow and hard to parallelise 
efficiently. 

2 Genetic algorithm 

The genetic algorithm (GA) [lo] is a stochastic optim- 
isation algorithm that simulates the process of natural 
evolution (optimisation) in living creatures. It uses two 
basic processes from evolution: inheritance, or the 
passing of useful features from one generation to the next, 
and competition, or survival of the fittest, which results in 
weeding out the bad features from the individuals in the 
population. 

The main advantages of the GA are 
(i) It is adaptive, and learns from experience. 
(ii) It has intrinsic parallelism. 
(iii) It is efficient for complex problems. 
(iv) It is easy to parallelise, especially on a loosely 

coupled workstation network, without much communica- 
tion overhead [ 113. 

The GA starts with several alternative solutions to the 
optimisation problem, which are considered as individ- 
uals in a population. Often these solutions are coded as a 
binary string, called a chromosome. In the gate matrix 
problem, these consist of a representation of the gate 
permutation, encoded as described in the following 
Section. The initial population is usually constructed ran- 
domly. The GA then uses these individuals to produce a 
new generation of hopefully better solutions as follows. 

First it does an evaluation using a user-provided 
fitness function. The next step is selection and repro- 
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duction. For each individual, a number of copies are 
made, proportional to its fitness, while keeping the popu- 
lation size constant. The least fit individuals are deleted. 
Therefore, a fitter individual, hopefully containing some 
useful features, has a higher probability of multiplying. 
This is the survival of the fittest part of the GA. 

Parentl: A B C D E 

Parent2: C F I B K 

Offspringl: A B C D E 

Ls 
F G H I J K 
G A 0 E H J 

G A 0 E H J 
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The next step is crossover, where individuals are 
chosen two at a time, at random, as parents. They are 
converted into two new individuals, called offspring, by 
exchanging parts of their structure. Thus, each offspring 
inherits a combination of features from both parents. 
This enables the GA to try out various features in differ- 
ent combinations, and see whether or not they still retain 
their fitness. 

The next step is mutation. An incremental change is 
made to each member of the population, with a small 
probability. After mutation is performed on an individ- 
ual, it no longer has just the combination of features 
inherited from its two parents, but also incorporates the 
additional change caused by mutation. This ensures that 
the GA can explore new features that may not yet be in 
the population. It makes the entire search space reach- 
able despite the finite population size. 

This completes the production of a new generation. 
This process is repeated for several generations, and the 
fittest gate permutation seen in the entire run is output at 
the end. 

3 GA and beam search 

The problem of determining the gate permutation is NP- 
complete, and is very similar to the travelling salesman 
problem. These permutation problems result in conflicts 
in the implementation of the traditional GA, as discussed 
in detail in Reference 12. For example, Fig. 2 shows one 



This paper describes a novel implementation of the 
GA for permutation problems, using beam search to 
reduce the search space. For each gate i, all other gates j 
connected to it are ranked in descending order of the 
number of connections between gates i and j .  The GA 
picks one of the K best-ranked gates to place next to 
each gate. The chromosome coding consists of the ranks 
associated with the starting gate (the gate to be placed at 
the extreme left) and with each other gate. 

In beam search, we consider only a small subset of the 
solution space. Only those permutations are considered 
which can be obtained by placing one of the K best- 
ranked gates next to each gate. As we have K choices of 
gates for each column (except at the end when fewer than 
K gates are left to assign), the subspace considered is 
approximately K" instead of n!, and K 6 n, where n is the 
number of gates and K is the given beam value. In the 
following Sections, we will see what is an appropriate 
value for K. 

3.1 Schemata 
Holland [lo] explains the working of the GA in terms of 
the schemata contained in a chromosome. Each bit in the 
chromosome (or each symbol, if the encoding is not 
binary) is called a gene, and conveys a certain property of 
the current chromosome, which effects its fitness function, 
and which can be inherited by other chromosomes. 
Groups of genes are called schemata. Thus a schema is a 
partially specified chromosome, with the rest of the gene 
values as don't cares. According to Holland's schema 
theorem, if a certain group of genes occurs in the 
members of the population with a high average fitness, it 
will be inherited by many other offspring, and will multi- 
ply. This is because the GA produces more offspring out 
of the fitter members of the population. At the same time, 
crossover will enable the mixing of such schemata, which 
will be tried out in the presence of other schemata in the 
same string, resulting in the discovery of larger and larger 
good schemata, giving, in this case, more complete gate 
matrix permutations. 

Note that we never manipulate partial gate matrix 
permutations separately. All members of the population 
are complete permutations. They contain these partial 
permutations, or schemata implicitly, and evaluating one 
entire permutation results in the refining of our estimate 
of the fitness of all the partial permutations it contains. 
As an n-bit string consists of 2" substrings or schemata, 
this represents a large amount of implicit parallelism in 
the operation of the algorithm. 

Contiguous substrings of a gate permutation, as 
shown in the left and right halves of Fig. 2, are meaning- 
ful schemata, and a good contiguous substring from each 
parent may result in a good offspring, although there 
might be some disruption at the cut. However, we have 
already seen that passing contiguous substrings of a per- 
mutation results in conflicts. 

The approach chosen in this research is to combine 
rank information from the two parents, as the ranks 
provide meaningful information that can be inherited 
from the parents, and which controls the fitness of the 
offspring. 

3.2 Algorithm 
The GENESIS package [17] has been used as the GA for 
this research. The evaluation algorithm for constructing 
permutations from the chromosomes is listed in Fig. 3. It 
is illustrated in Fig. 4 for the five-gate circuit of Fig. 1. 
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The explanation of the algorithm will be easier in terms 
of this example. 

The connectivity matrix is given in Fig. 4, which speci- 
fies how many nets connect each pair of gates, as deter- 
mined simply by counting from the netlist. As part of the 
initialisation procedure, a sorted matrix is constructed, 
containing, for each gate, all other gates sorted in 
descending order of their connectivity. 

The GA provides the chromosomes that define a gate 
matrix placement. Each chromosome includes a starting 
rank. If the rank for the starting gate is i, the ith least 
connected gate is picked as the starting gate, considering 
the total connectivity of all gates. In the example, the 
starting rank is 1, so Z, with total connectivity 3 is 
picked. This is based on the heuristic that the least- 
connected gates should preferably be on the edges. 
Hence, the GA gets a chance to pick one of K least- 
connected gates as the starting gate, where K is the beam 
value. 

In addition, for each gate G, the chromosome gives the 
rank i of the next gate to be placed to its right. This rank 
is to be looked up in the sorted matrix in the row of G, to 
pick the ith most-connected gate to G. If this gate has 
already been placed, we have to search in both directions 
for the closest free rank in the row of G. 

After selecting Z as the starting gate, the next step is to 
select the rank associated with Z in the chromosome, and 
pick the next gate to the right. In the example, the rank is 
1, and from the sorted matrix, C is the most-connected 
gate to 2. The rank associated with C in the chromo- 
some is three. From the sorted matrix, the third most- 
connected gate to C is Z. This is already placed. To 
resolve this conflict, the rank is approximated to the 
nearest available one. In this case, D (rank 4) is placed 
next to C. The rank associated with D in the chromo- 
some is 1, so from the sorted matrix, B is the next choice. 
The rank associated with B in the chromosome is 2, so 
A is the closest available choice. Note that as an extra 
rank is specified in the chromosome for the starting 
gate, the rank for the ending gate is redundant, and is 
ignored. In this example, the rank specified for A was 
never used. 

The probability of any requested-gate being available 
is proportional to the ratio of the number of gates not yet 
placed to the total number of gates. At the beginning of 
the permutation construction, all gates are available, so 
there is a high probability that the ranks requested by the 
GA are available. This probability decreases as the per- 
mutation is contructed. On average, the probability of a 
requested gate being available is 50% throughout the 
permutation construction. The probability that the 
requested gate, or the next or previous ranked gate, being 
available is 87.5%, and there is only a 12.5% probability 
that we will have to search further up and down the 
sorted matrix. 

Thus, the permutation is constructed semi-greedily by 
considering the individual gate-to-gate connectivities, and 
using the instructions from the GA. The objective of the 
GA is to obtain feedback from the fitness function for the 
entire permutation, and optimise the ranks so as to attain 
a near-global optimum in the fitness function. 

The GA works by passing some meaningful informa- 
tion from the parents to the offspring in the form of sche- 
mata. The fitness of the offspring depends on this 
information. In this algorithm, the ranks provide this 
meaningful information that can be inherited from the 
parents. That is, if, after placing a gate A, placing the kth 
best-ranked gate next to A results in a high fitness in the 
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parent, passing that information to the child can result in 
a high fitness for the child. 

After a permutation is constructed, it is evaluated. The 
span of each net is determined. The track count for all 
the gates included in the span of the net is incremented 
by one. The maximum track count at any gate gives the 
number of tracks required. The total netlength is the sum 
of these net spans. The fitness of the gate matrix layout is 
given by 

The default value of weight is the number of gates. This 
gives the number of tracks an appropriately high weight- 
age, and finds a layout with the minimum number of 
tracks first, and then tries to minimise the netlength. 
Note that the number (tracks * gates) will always be 
slightly larger than the netlength. The weight can be 
changed to reflect the designer’s preference. 

A special mutation function was also added to the 
GENESIS package. The GA starts with random ranks 

f =  l/(tracks *weight + netlength) 

Procedure INlT 
Input: Problem data 
Output: Connectivity matrix, sorted matrix 
Begin 

for all gates, and reduces them in an attempt to place the 
most-connected gates next to each other. In general, it 
finished with small values for most of the ranks in the 
chromosome. It was discovered that the algorithm was 
performing poorly because the traditional mutation oper- 
ator changed some of the ranks back to a random value 
(with a small probability). Therefore, a new mutation 
operator was provided, which randomly increased or 
decreased the ranks by 1. This is a more incremental 
change, and explores the space close to the current value 
of the ranks, while still maintaining the reachability of all 
rank values. 

4 Results 

The algorithm was tested on six netlists, ranging from 15 
to 100 gates. The program was written in C and was run 
on a DECstation 3100. 

The first experiment was conducted on a 60-gate 
circuit to optimise the parameters of the C A .  The results 

Read netlist: 
Construct a connectivity matrix, C[i]  [ j ]  = No. of nets connecting gates i. j :  
For i  = 1 to num-gates 
Begin 

Fill row i of sorted-matrix with all gates except gate i ;  
Quick sort row i of sorred_matrix on descending order of connectivities from gate I ;  

End 
End. 

Procedure BEAM-SEARCH 
Input: Chromosome, connectivity matrix, sorted matrix 
Output: Gate permutation, fitness 
Begin 

Read the rankj for the starting gate from chromosome; 
Considering the total connectivity of each gate, choose thejth least-connected gate as the starting gate; 
current-gate = StaRingjate; 
permutation [O] = starring-gate; 

For i  = 1 to num-gates - 1 
Begin 

Mark currentsate as used; 
Read the rankj associated with the current-gate from the chromosome; 
Determine next-gate = jth-best gate from sone&matrix; 
If n e x t j a t e  is already marked used then 

permutation [il = next-gate; 
currentgate = next-gate: 

Alternatively scan up and down the sorted matrix to determine the nearest available rank: 

End 
/* Evaluate Gate Permutation: t/ 
netlength = 0; 
weight = num-gates; 
For each net i 
Begin 

1. default */ 

Find the position of the left-most gate connected to net i ;  
Find the position of the right-most gate connected to net i ;  
Increment the track count for each gate from the left-most gate to the right-most gate; 
netlength = netlength + (distance between leh-most and right-most gate); 

End 
num-tracks = max. of track counts of all gates; 
fitness = 1 /(num-tracks I weight + netlength) ; 
End. 

Procedure MUTATION 
Input: Chromosome 
Output: Mutated chromosome 
Begin 

For all genes 
If rand(0, 1) < mutationgrobability 
Begin 

gene =gene + rand-integer(-1. + 1 ) :  
If gene exceeds beam limits then reset gene value to limit; 

End 
End. 

Fig. 3 
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Connectivity matrix Sorted matrix Chromosome Layout 
A 8 C D Z total rank: 1 2 3 4 Stan 1 2 C D B A 

Fig. 4 

A 1  
A 0 4 3 1 1  9 A :  8 C D Z  8 2 
8 4 0 3 2 0  9 8 : A C D Z  C 3 
C 3 3 0 1 2  9 C: A B Z D  D 1 
D 1 2 1 0 0 4  D : B A C Z  Z 1  
2 1 0 2 0 0  3 Z: C A 8 D  

Steps in decoding the chromosome 

Step Permutation Gates used 

A B C D Z  

Z C D  
4 Z C D 8  . m m m  
5 Z C D 8 A m . m . e  

Example of chromosome decodingfoor the circuit of Fig. I 

beam value 

Fig. 5 Effect of genetic parameters and beam value 
minimum ~~-~ average 

3830 

3600 

34M) 

3200 

0 4 0  060 080 100 

are plotted in Fig. 5. The graphs show the final fitness for 
the @-gate layout. The two curves in each graph are the 
minimum population, and average population at the end 
of each run. The results obtained for various beam values 
for the 60-gate circuit are also shown in this Figure. 
Similar experiments were performed for other circuits of 
different sizes. Our initial conjecture was that a larger 
beam value would be required for larger problems, in 
order to escape local optima. However, experiment 
showed that a small beam value of 8 gave the best or 
near-best results for all problems. The reason for this is 
that each gate is directly connected to at most a few 
other gates. Thus, for small i ,  the connectivity of any gate 
to the ith-best gate becomes zero. A look at the connect- 
ivity matrix shows that in most cases i is only a little 
larger than 8. Thus, for each gate, only the first i gates 
can be meaningfully ranked in descending order of their 
connectivity. 

Fig. 5 also gives the results of varying the crossover 
and mutation rates. The mutation rate 0.005 and cross- 
over rate 0.7 which gave the best results were selected. It 
was observed that if the population size is above 75, it 
does not affect the results significantly, and in a predict- 
able manner. Therefore, an arbitrary population size of 
100 was selected. Other parameters were set by default. 
Table 1 gives the CA parameters used with the 
GENESIS package. 

Next, the algorithm was run with these parameters on 
six netlists. The results are shown in Table 2. Three of the 
netlists were taken from Reference 8 in which Hong et al. 
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provide results for a simulated annealing technique as 
well as for a heuristic technique. The number of rows and 
the netlength for Hong’s layouts as given in Table 2 were 
determined from the layouts published in the Appendix 
of Reference 8. In one case, we obtained one less track, 
and in all three cases, we obtained a better netlength. 

The Table shows that the evaluation function used 
about 90% of the CPU time, and crossover, mutation etc. 
are relatively fast. This is to be expected in an algorithm 

Table 1 : Genetic algorithm parameters for GENESIS 

Population size 100 
Crossover rate 0.7 
Mutation rate 0.005 
Generation gap 1 .o 
Sigma scaling 3.0 
Chromosome codina binarv 

Beam value 8 

Table 2: Exmrimental results 
~ 

Gates Nets Hongs [81 Genetic beam search 

Rows Net- Rows Net- Evalu- Total Eva1 
length length ations CPU (s) 

time 
( 5 )  

15 18 7 71 7 67 loo00 119 99 
29 37 13 255 13 227 100000 2896 2603 
36 24 - - 9 203 120000 3259 286 3 
48 48 13 411 12 365 250000 13931 17R91 ~ .~. -~~.. .  ..._ 
60 70 - - 26 1149 150000 1314.0 1236.6 
100 100 ~ - 49 2957 170000 36496 3503.7 
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that does conflict resolution as part of the evaluation 
procedure, to derive a valid gate sequence from a 
chromosome that is a bit-string. The evaluation time 
shown in the Table includes this conflict-resolution time. 

Fig. 6 shows the gate matrix layout for a 48-gate 
problem. 

Fig. 6 Layoui for the 48-gale circuit of Hung er al. 

5 Conclusions 

In this paper, we have presented a novel implementation 
of the GA for gate matrix layout. Gate matrix layout is 
an important tool for VLSI synthesis. This is a permu- 
tation problem, for which the traditional genetic cross- 
over operator results in repetition of gates, and therefore 
the GA is not applicable without modification. However, 
the GA is a very efficient stochastic optimisation tech- 
nique, which is adaptive, and easily parallelisable. To 
adapt it to the gate matrix layout problem, the principles 
of beam search have been used. The gates are sorted 
according to their connectivity to each other, and the 
ranks of the gates to be placed next to each other are 
given by the GA. A beam value is used to restrict the 
ranks of the gates placed next to each other to a low 
value. This reduces the search space to be. explored, and 
thus results in a more efficient search. 

The algorithm has been tried on six netlists, with up to 
100 gates, including three benchmark circuits. The 
resulting track count and netlength were better than pre- 
viously published results. The GENESIS package was 
used as the genetic algorithm of choice, along with 
appropriate evaluation functions to implement beam 
search. The values for the crossover rate, mutation rate 
and population size were fixed to give the best possible 
results with a wide variety of circuits. 
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