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A New Built-In Self-Repair Approach to VLSI
Memory Yield Enhancement by Using
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Abstract—As VLSI chip size is rapidly increasing. more and
more circuit components are becoming inaccessible for external
testing, diagnosis, and repair. Memory arrays are widely used
in VLSI chips, and restructuring of partially faulty arrays by
the available spare rows and columns is a computationally in-
tractable problem. Conventional software memory-repair al-
gorithms cannot he readily implemented within a VI.SI chip to
diagnose and repair these faulty memory arrays. Intelligent
hardware based on a neural-network model provides an effec-
tive solution for such built-in self-repair (BISR) applications.
This paper clearly demonstrates how to represent the objective
function of the memory repair problem as a neural-network
energy function, and how to exploit the neural network’s con-
vergence property for deriving optimal repair solutions. Two
algorithms have been developed using a neural network, and
their performances are compared with the repair most (RNI)
algorithm that is commonly used by memory chip manufactur-
ers. For randomly gencrated defect patterns, the proposed al-
gorithm with a hill-climbing (HC) capability has been found to
be successful in repairing memory arrays in 98% cases, as op-
posed to RM's 20% cases. The paper also demonstrates how,
by using very small silicon overhead, onc can implement this
algorithm in hardware within a VLSI ¢bip for BISR of memory
arrays. The proposed auto-repair approach is shown to im-
prove the VLSI chip vield by a significant factor, and it can
also improve the life span of the chip by automatically restruc-
turing its memory arrays in the event of sporadic cell failures
during the field use.

I. INTRODUCTION

S THE VLSI device technological feature width 1s

rapidly decreasing to the range of hundreds of
nanometers. the chip yield tends to reduce progressively
due to increased chip arca, complex tubrication pro-
cesses. and shrinking device geometries. In order to sul-
vage partially faulty chips. redundant circuwit elements are
incorporated in the chips. and an appropriate reconfigur-
ation scheme is employed to bypass and replace the fuulty
clements. In high-density dynamic random-access mem-
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ory (DRAM) chips. redundant rows and columns are
added to recontigure the memory subarrays, wherc the
rows or columns in which defective cclls appear, ure
climinated by using techniques such as electrically pro-
grammable Liutches or laser personalization. The problem
of optimal recontiguration and spare allocation has been
widely studied by many rescarchers [1]. [9], [10], [14].
[15]. [29]. A review of these algorithms for memory di-
agnosis and repair can be seen in [4]. But all of these
algorithms cannot be readily applied to embedded arrays,
where they are neither controlluble by external testers, nor
are their responses readily observable. Built-in self-test
iBIST) circuits ure commonly used to comprehensively
test such embedded arrays and bad chips are discarded
when thev tail 1o pass the relevant test procedures. In or-
der to salvage the partially taulty chips. new built-in sclf-
repair (BISR) circuits must be developed for optimal re:
pair of the faulty memory arrays.

In this paper. a novel self-repair scheme is proposed
that uses a built-in neural network to determine how to
automatically repair a faulty memory array by utilizing
the spare rows and columns. Two algorithms have becen
proposcd to illustrate how a neural network can solve ran-
dom defects. and their performances are compared with
the conventional software repair algorithms, such as Re-
pair Most 128]. The Repair Most (RM) algorithm s a
greedy algorithim that iteratively assigns a spare row (col-
umn) to replace the row (column) which currently has the
maximum uncovered cells until all the cells are covered
or bypassed (providing a successtul solution), or all the
spare rows and columns are exhausted (failing to give a
repairable solution. it all taulty cells are not bypassed).
whichever occurs first. This algorithm s selected for
comparison because it is relatively simple and can be im-
plemented by digital hardware. unlike other software al-
gorithms. such as simulated anncaling or approximation
algorithms. A hardware version ot simulated anncaling
will require a Gaussian white noise generator to generate
the random moves and a logarithmic circuit to schedule
the temperature. The other heuristic-based algorithms
tlike FLCA. LECA. und BECA [15], and branch-and-
bound [14]) will require microcode-driven complex digi-
tal circuits for solving the problem by hardware. The per-
formance of neural algorithms has been compared with
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RM by running these algorithms with rcpairable fault pat-
terns and examining what percentages of these fault pat-
terns can be repaired by them. The simulation studies
made in this paper demonstrate that a neural network us-
ing a hill-climbing (HC) capability provides a fast and
good solution for a repairable array. The technique is im-
plemented within the chip by an electronic neural net-
work, and it promises to be a potential application area
for neural networks.

Historically, the memory repair problem dates back to
the evolution of 64 Kbit DRAM’s in the late 1970’s [25],
when, to improve the chip yield, two or three extra rows
and extra columns were added to each quadrant consisting
of 64 Kbit subarray of memory cells. Simple greedy [2],
[28] and exhaustive search | 1] algorithms were developed
to rcpair the faulty memory subarrays. Since the search
space was very small for such problem sizes, all these
algorithms provided high throughput in memory diagnosis
and repair. But as the memory size has increased to sev-
eral megabits over the last few years, the defect patterns
have become sufficiently complex and the search space
has grown extensively. The problem of memory repair has
been shown to be NP-complete [9]. [14] by demonstrating
that the repair problem is transformablc in polynomial
time to the Constrained Clique problem in a bipartite
graph. A number of hcuristic algorithms, such as branch-
and-bound [14], approximation [14], best-first search
[10], and others [15], [29], recently have been proposed
to solve the memory array repair problem. The two key
limitations of these algorithms are a) that their worst-case
complexities are nearly exponential and b) they are not
readily implementable within the chip for BISR. These
algorithms are generally written in a high-level program-
ming language and are executable on gencral-purpose
computers. This paper addresses two fundamental aspects
of the memory repair problem: how to devise efficient al-
gorithms so that the overall production throughput im-
proves along with the chip yield, and how to generate such
repair algorithms in hardware so that they can be applicd
to repairing memorics, embedded within the VLSI chips.
The contribution of this paper is to demonstrate how to
solve the array repair problem by using neural networks,
and how to implement a BISR scheme in hardware. A
neural nctwork can produce solutions by the collective
computing of its neuron processors with far faster speed
than the abovementioned sequential algorithms running on
conventional computers. Since these neural processors are
simple threshold devices. the basic computing step of
neural nets is comparablc to the on-off switching of a
transistor [7], [8], 122], [24]. Another potential advantage
of using neural networks is that they arc robust and fault-
tolerant in the sense that they may compute correctly cven
if some components fail and/or the exciting signals are
partially corrupted by noise. Thus the reliability of the
self-repair circuit using electronic neural networks is very
high. This has been experimentally verified in Section VI.

This paper has been organized as follows: Section II
provides a brief overview of the neural network modecl
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and its dynamic behavior. Scction III provides a formal
framework for the memory repair problem using the con-
cepts of neural net computation. Two algorithms are de-
veloped by programming the synaptic weight matrix of
the neural net. The first algorithm is greedy, and starting
from any random configuration (i.e., arbitrary neuron
states), it can solve the problem by monotonically reduc-
ing the energy function of the neural net. The second al-
gorithm uses the HC technique to yield a near-optimum
solution. Section IV gives the simulation results of the
neural net algorithms. From the simulation experiments,
it is seen that the neural net algorithms are superior to the
RM algorithm. An electronic implementation of neural
networks is demonstrated in Section V. The intrinsic fault-
tolerant ability of a ncural net is studied in Section VI.
The yield improvement and hardware overhcad caused by
the neural-net self-repair circuitry are examined in Sec-
tion VIL

IT. NEtraL NET COMPUTATION MODEL

The earliest mathematical formalization of the human
nervous system can be found in the work by McCulloch
and Pitts [19], where it was modeled as a set of neurons
(computation elements) interconnected by syrapses
(weighted links). Each ncuron in the model is capable of
receiving impulses as input from and firing impulses as
output to potentially all neurons in the network. The out-
put function of a neuron depends on whether the total
amount of input cxcitation received exceeds its predeter-
mined threshold value 6, or not. The state of neuron { is
represented by an all-or-none binary valuc s;, with s; = 0
being a nonfiring condition and 5; = 1| denoting an im-
pulse-firing condition. Note that one may represent a non-
zero threshold by applying an external impulse bias b, to
the neuron i with b, = 6,.

Interactions between two difterent ncurons occur
through a synapse serving as a duplex communication
channel. The signals passing through the synapse in both
directions are considercd independent. Moreover, the sig-
nal traveling from neuron i to neuron j is amplified by a
weight factor wy,, i.e., if the impulses fired by a neuron
correspond to a unit influence, then a firing neuron i pro-
duces w;;, amount of influence to neuron ;.

Now, let s; denote neuron /'s next state value. From the
above description one can represent the neural nct state
transition function as follows:

0, if% w,s, < 6,
si =11, if 2 w;s; > 6
/

i otherwise.

Actually, in the human nervous system or any other
biological implementations, neural networks make smooth
continuous transitions when thc neurons change their
states. Therefore. we assume that neurons which receive
a larger influence in magnitude will have a faster state
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transition. Ncuron processors are expected o operate in
an asynchronous and random fashion.

Following the description of the behavior of an individ-
ual neuron, let us look at the overall network state tran-
sition behavior. First. a network state is denoted by the
vector of neuron state variables. Given a network state
vector X = (xy, vy, - - L xy). Xs called a fixed poine f
and only if x/ — x, for all i's. That is. of all the possible
2Y states of a neural net. only the fixed points are consid
ered stable. If the current network state is not one of the
fixed points, the neural net cannot maintain the present
state. @ne immediate question about the network behavior
could concern the state convergence: starting with an ar-
bitrary statc, will the network eventually reach a fixed
point? To answer the question. an cnergy function has
been formulated. First. let us consider the case of an ex-
citatory or positive input to a neuron. According to the
neuron’s functional definttion. this input will encourage
the ncuron to fire impulses. If the neuron is already in the
firing state. this input can be looked upon as negative en-
ergy, since by convention. a system is more stable when
the energy level is lower. Likewisce. an inhibitory or neg
ative input to a neuron in the nonfiring state should also
be considered as negative cnergy. On the other hand.
positive energy is crcated if a firing neuron receives an
inhibitory input or a nonfiring neuron receives an excita-
tory input. since the network 1s potentially destabilized by
the input.

If w;; = 1w, . forall i's and j's. the total energy £
commonly known as the Lyapunov funcuon |1 1]. is given
by

E\\: _

ol —

E > > b5,

i :

Note that the change ol state by neuron ¢ will result in an
absolute decrease of ¥ w5, + f(s;)h, in energy. where
f(s;) = 1ils, = 0.and —1 otherwise. Together with the
fact that the total energy is bounded. the network is guar-
anteed to reach a local minimal energy fixed point [12].

111.

The idea of using a neural network to tackle combina-
torial optimization problems was first proposed by Hop-
field [12]. who designed and fabricated a neural network
for solving the classic Traveling Salesman Problem |S].
The objective (cost) function of a combinatorial optimi-
zation problem can be represented by Lyapunov’s energy
function of the ncural network. and the network’s prop-
erty of convergence from a random initial state to a local
minimal energy state can be utilized to reduce the cost
function of the combinatorial problem. However. the
neural computing approach given in |12} leads only to the
design of a greedy gradient descent (GD) algorithm which
stops searching at the first local minimal solution encoun-
tered: conscquently, the neural network solution is gen-
erally of low quality.

In this section we study the convergence behavior of
neural networks. We demonstrate that more powertul

NEURAL NETWORK SO1LUTTONS
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seurching strategies can be developed by modifying the
simple GD algorithm. By programming the neural net-
work in an appropriate way. we find that the neural nets
are capable of scarching the solution by HC or tunneling.
Thus. the probability of obtaining a globally optimal so-
lution by using neural networks is very high.

A Array Repair Problem Representation

Assume a4 memory array ot size & X N with exactly p
spare rows and ¢ spare columns that can be utilized to
replace the defective rows and columns. Assume an ar-
bitrary tault pattern in which taulty cells randomly occur
on m (< Ny distinet rows and n (< N) distinct columns
of the memory array. such that the compacted subarray of
size m X i contains all relevant rows and columns which
have at least one faulty cell. Let the matrix D) = {d;; } of
size mox o characterize the status of the memory cells.
such that d;;. which corresponds to the cell at row 7 and
column j. is 1 if the cell is faulty. and d;, = 0. otherwise.
Normally. very few cells in the array are faulty. and the
characteristic matrix. 2. 1s highly sparse. A row repair
scheme can be represented as a vector U of m bits. such
that «, = 0 it row 7 is 1o be replaced. otherwise u; = 1. 0
< i < m — 1. A column repair scheme is defined in the
same tashion. and is denoted by a vector V of n bits. The
numbers ot 0°s in U and ¥ must be less than or equal to
p and ¢. respectively. The memory is said to be repairable
it the above constraints are satistied. and essentially the
repair problem is how to determine a pair of U and V.
such that UM DV = 0.

In addition to the characteristic matrix D, let the overall
status of row 7 and column j of the array be characterized
by r.and k. respectively.

() 1 it row / contains defective elements
Fo=

) :

(0. otherwise

(1. if column j contains defective clements

— )

L 0.

To design a neural net tor the memory repair problem.

a neural net of size M = m + nis used. where the states

of the first » neurons are denoted by s,’s. 1 = 7 < m,

and the states of the remaining 7 neurons by s, 's, 1 <

< n. For case of interpretation. the first m neurons are

addressed as row newrons. and the remaining n ncurons

as column newronys. The physical meaning of these ncuron
states are defined as follows:

otherwise.

(; 1. if row J is suggested for replacement
e )LO. otherwise
o ‘\/ 1. it column j is suggested for replacement
kN ZO. otherwise.

- . . ALK . -
I'he cost tunction ¢Y* of the memory repair problem

should represent both the nonfeasible repairing and in-
complete coverage schemes by higher costs. These two
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aspects can be modeled by the following two expressions:

G :A/2[<§;‘Su> -P _+A/2{<I,i152j> -4

G = B/ZLZ. Z. d (1 = 5 )(1 = s5))
=1y =

5

m n

+ % Zl d; (1

j=li=

— sl — s557)

so that the overall cost function is represented as an al-
gebraic sum of C, and G,. In the above expressions, the
values of A and B are empirically decided and as shown
in Section IV, their relative values are critical for obtain-
ing the appropriate percent of successful repairs.

The expression for C, encourages exactly p sparc rows
and ¢ sparc columns to bc uscd in the repair scheme. For
those nonfeasible schemes that require more than the
available spare rows and/or columns, the cost will in-
crease quadratically. If necessary, the optimum usage of
spares can be experimentally attempted by repeating the
search operation with successively reduced amounts of
available spares (i.e., progressively decrementing the
value of p and/or ¢ in the expression for C,), until no
successful repair scheme can be found.

The expression for C, monotonically decreases as more
and more defective cells are covered by the spare rows
and columns. If all defective elements are covered by at
least one spare row or column, the above expression is
then minimized to zero. Unsuccessful repairing schemes
which fail to cover all defective clements will yicld
positive costs. The two double summation terms in C, are
equivalent. As it will be seen later in the expression for
the synaptic weight matrix, this duplication facilitates the
later transformation to ncural net energy functions.

Another cost function can be defined by modifying the
C, expression, i.e.,

m 2 n 2
C=A4/2 <Z. s,,‘> + A2 < ZI s2~,> .
1= 4=

Note that C| is actually a simplified C, with p and ¢ set
to zero. Without considering whether all defects will be
covered or not, the expression for C| prefers repair
schemes with fewer spares used. Intuitively, this way
more efficient repair schemes may be encouraged. But the
new C; + C, combination has a potential danger of hav-
ing a large amount of unsuccessful repair schemes with a
small number of uncovered defects mapped to local min-
ima just because they request less spares. The differences
between the neural networks defined by these two cost
functions will be further illustrated later in the simulation
studies.

B. The Gradient Descent (GD) Approach

It may be recalled that the neural network energy func-
tion is EMY = —1/2 £, Z,w, s;5; — L;s;b;. By rewriting
C"® in the form of EVY, the weights of the interconnect-
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ing synapses and the intensities of the external biases to
neurons can be determined through simple algebraic ma-
nipulations.

But in order to keep the main diagonal of the neural
net’s synaptic weight matrix zero, all A/2 - Ls? terms in
the array repair cost expression are rewritten as A/2 -
Ls,. Since s; € {0, 1}, these two terms are mathematically
equivalent. However, A/2 - Ls; corresponds to self-feed-
back through a synapse of strength —A for all ncurons,
and A/2 - Es; means a bias of —A4 /2 for every neuron.
The resulting neural network is shown as follows:

_A(l - 6”) \1)2,"2/' = —A(] - 6,1)
- -B - d,

Wi =

Wiiaj = -B - dij Wai 1)

blz

(p—1/2) - A+ BLd;
by = (¢ — 1/2) - A + BL.d,

where &;; = 0if i # j, otherwise 1.

In order to illustrate how to construct the synaptic
weight matrix from these values, let us consider a path-
ological defect pattern that consists of 16 faulty cells as
shown in Fig. |. If there are only four spare rows and
four spare columns. a greedy algorithm such as RM can-
not produce a successful repair scheme [1]. The only suc-
cessful allocation of spares for replacement is indicated
in the figure by horizontal and vertical stripes. But due to
the presence of four defects in both row 1 and column 9,
the RM algorithm will be tempted to make thc first two
repairs on them. The algorithm will thereby fail to repair
the memory because. in addition to the available six spare
rows and columns, the algorithm will require two more
columns or rows to cover all the defects along the diag-
onal direction. The neural network algorithm described in
this scction can repair successfully such a defect pattern
by finding the unique solution shown in Fig. 1. For such
a memory fault pattern, the neural net synaptic weights
will be estimated by adjusting A/B = | (the value A =
2 has been chosen empirically and is not critical for the
performance of the algorithm) in the above expressions.
The resulting neural net synaptic weight matrix and the
biases are given in Fig. 2.

C. The Hill-Climbing (HC) Approach

We propose here a neural net with simplified HC be-
havior that provides high-quality solutions similar to the
powerful combinatorial technique, called Simulated An-
nealing [13]. First, let us note that the solutions to the
memory array repair problem are classified as success and
failure. In fact, it is commonly known that all optimiza-
tion problems can be transformed to a series of yes/no
questions [5]. Due to this specific criterion, we do not
consider any random move that may increase the energy
of the system until the move is absolutely necessary, i.e.,
the search has reached an unsuccessful local energy min-
imum. If the current local minimum does not yield a suc-
cessful repair, moves that increase the system energy are
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Fig. 10 A repairable fauldt
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Fig. 2.

allowed by providing negative synaptic feedback 1o neu-
rons themselves. The basic idea is that when the scarch
has reached an unsuccesstul local minimum. we can force
the neural net to make a move by turning on a neuron.
which appears to enter a lower energy state but. in fact.
will increase the system energy duc to the negative self-
feedback. Next. the system is expected to turn off some
other neuron to cnter a new lower cnergy state. thus es-
caping the local minimum cnergy trap. Notice that with
very low probability. it is possible for a neuron to fall into
a loop of alternate on and off states. as it is similarly pos-
sible for simulated annealing o cycle through random
moves. Conscquently, network behavior is not admissible
in the sensc that it is guaranteed to converge to an optimal
solution state. As in simulated anncaling. which uses a
predefined criterion to break the inner loop of optimiza-
tion, a suitable timeout mechanism is necessary tor HC
ncural nets to prevent excessively long searches.

We being the description of the new neural net by giv-
ing the synaptic weights and biases as follows:

wiy = —A Was, = —A
H')"‘:‘/ = -8 (1’/: Woj, = -B - (1/1
bl,’ =p A+ BE, d‘jl b:d’ =g A4+ BE[ d,,.

To examine the neural net. let us assume that A # 0
and B = (. Thus, each row neuron will receive a positive
p - Aamount of bias. and each column neuron will receive
a positive ¢ + A amount of bias. Also. due to B = 0. the
row ncurons are independent of the column neurons, 1.e..

A GD neuaral net.

there are no synaptic connections between the two groups.
Suppose there are p’ < p row neurons that are in firing
states: then cach row neuron will receive a positive {(p —
2" - A amount of influence. and all of them will be ¢n-
couraged to fire. Similarly. if p° > p. all row neurons
will receive a negative (p — p’) - A amount of influence,
and all will tend to turn off.

Next. let us assume that 4 = 0 and B # 0. In this case.
the amount ol influence received by row neuron (¢ is given
by

, \
B2~ Y,
A ! /
i.c.. B times the number of defective elements in row ¢
that would be covered exclusively by a replacement.
Those defective elements in row ¢ that are currently cov-
cred by some column repairs will not contribute any ur-
wencey to force replacement of this row.

Consider the situation where all the spares have been
utilized (hypothetically) for repair, but there is still a sin-
ale defect left uncovered by the current repair scheme. At
this point. the number of defects inside a row or column
1s the only influence on neurons. For the row and column
that contains this yet uncovered defect, a positive total
influence of B will be received by the two corresponding
neurons. After this detect is covered by turning on, say.
the row neuron. which causes the usc of one more spare
row than allowed. all the row neurons will now receive
an additional negative influence of' A due to the extra spare
suggested. [t we choose to have B > A. then the neural
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net will be stuck at the present state, making the repair
scheme unsuccessful. On the other hand, if we have 4 >
B, all the current row spares will cover only one faulty
element exclusively will now receive a nct ncgative influ-
ence equal to | B -- A, thus causing the network to switch
to a new state and give up on the current scheme.

IV. SIMULATION STUDIES

In this section, simulation results are provided to dem-
onstrate the superiority of the proposed neural computing
approach for the problem of automatic array repair. Six
hundred reduced array fault patterns of size 10 x 10
(Case 1) and 20 X 20 (Case 2) randomly generated arrays
with about 10, 15, and 20% faulty elements wcrc used in
the experiments. As was cxplained in Section IlI, these
small size arrays represent the actual defective rows and
columns in large-size memory arrays, some as large as a
few million bits.

The performance of two GD ncural nets GD and GD',
defined by cost functions C; + C> and C; + C,, respec-
tively, are compared. For both 10 X 10 and 20 X 20
arrays, the probabilities of finding a successful repair
scheme versus the ratio B/A are depicted in Fig. 3. By
controlling the value of B/A, the importance of the fault
covcrage over the spare usage can be manipulated.

According to the figure, the effectiveness of GD’ is
largely affected by how 4 and B are selected. When A4 is
set equal to B, no successful repair scheme can be found
by GD’ for any one of the repairable fault pattems, just
as was expected in Section TII. For 10 X 10 arrays, the
percentage of successful repairs improves to about 50%
as B/A increases to 5, and thereafter converges to about
42% . GD' behaves similarly for 20 x 20 arrays. except
that the peak performance happens at about B/A = 12.
Now, let k be the maximum of p and ¢, where p and ¢ are
the maximum numbers of spare rows and columns al-
lowed to form a successful repair scheme. respectively.
The B/A ratio for a peak value to occur is found to be
equal to k. Note that each firing row (column) neuron will
send a —A amount of influence to disable all other row
(column) neurons, and a row or column neuron is c¢n-
couraged to fire by as low as a —B amount of influence
to cover faults in a row or column. In order to allow the
neural net to explore solutions using up to k spare rows
and k spare columns, we must have B < kA to keep up
to k row or column neurons firing at the same timc.

On the other hand. GD shows the advantage of its low
sensitivity to how A and B are selected over the range of
B/A > 1.In a hardware implementation of a neural net-
work chip, the ratio of B/A is likely to vary over a wide
range because of processing parameter variations and the
wide tolerance of resistive elements. Thus the perfor-
mance of the neural network will remain uniform from
chip to chip if GD is implemented as opposcd to GD’,
whose behavior changes dramatically with different val-
ues of B/ A. The percentage of successful repairs obtained
by GD appears to have a peak value of about 50% at 4 =
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B and declines asymptotically to about 42% as B/A in-
creases. It is not surprising that the percentages of suc-
cessful repairs obtained by GD' and GD are converging
to the samc value, since when B is much larger than A4,
the consideration for the spare usage is of little or no ef-
fect, compared with the consideration for fault coverage.

For the second expcriment, the eftectiveness of the RM
algorithm is compared with GD. In order to provide an
equal starting situation, the programmed neural nct is
started with all neuron processors in nonfiring states in-
stead of other random combinations. We will use GD-
zero to denotc this special case of the GD convergence.
The performances of these two algorithms are compared
in Table I. Random defect patterns are gencrated for both
cases, and the algorithms are applicd to repair the faulty
arrays with three different sets of available spares. From
the results it was seen that on average, GD-zero is twice
as successful as RM when the defect pattern is not very
large (represented by Case 1) and few spare rows and col-
umns are used. But GD-zero is about three to five times
more successful when the defect pattern is large (repre-
sented by Case 2) and a relatively large number of spare
rows and columns are used. As for the number of steps
taken to find a repair scheme. it is about the same for both
algorithms.

Second, tradeoffs between the use of two neural com-
puting methods are examined, and the results are shown
in Table II. For each defect pattern, a number of random
trials are performed by each mcthod. Average perfor-
mance rcaches consistency within one hundred random
trials. As is expected, the simulation indicates that the HC
approach is almost perfect in locating a successful repair
scheme for repairable arrays due to its ability to perform
global searches. The probability for the GD to reach a
successful repair in a random trial is about 0.5. The av-
erage number of steps needed by HC is about two to three
times that needed by GD. The runtime for the GD algo-
rithm varies very little over a large number of experi-
ments, but the HC algorithm is found to have a wide var-
iance in the number of steps to execute the search
successfully.

The chances of getting a successful scheme achieved
by the four methods are shown in Fig. 4 as percentages.
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It can be seen that for 10 x 10 arrays HC achicves almost
100% success in all cases. The GD-7ero performs better
than GD where the neurons are randomly turned on at the
initiation of the algorithm. Greedy techniques such as RM
fail to cover more than 67% cases on the average. For 20)
X 20 arrays. RM’s performance deteriorates, and on av-
erage in more than 80% of the cases. it fails to repair the
memory.

To summarize the simulation results. it may be pointed
out that GD is fast in reaching a spare allocation. and has
small variance in the number of search steps. @n the other
hand, the number of search steps used by the HC can vary
widely, depending on the initial random starting states and
how difficult the problem instances are. Bul on average.
the number of search steps needed by HC does not esca-
late exponentially. For four out of six types of scttings.
the average number of search steps for HC is limited to
about twice the number for GD. For the other two types
of settings. the ratios of the average number of search
steps are no worse than four. In fact. it we compare the
equivalenr average number of search steps expected tor

GD ann HC v Avirac: NUSMBER OF SEARCH STees

Case 1 Cuse 2
‘0 of Defeets GD HC GD Hc
10 190 44 91.0 226
15 39.6 14.0 63.0 40.2
20 46.2 226 WY 20.4

the GD approach to attain the same level of success as the
HC approach does within 1% . the HC approach is found
to be more eflicient. The actual numbers can be seen in
Table 1.

V. EiLrcTRONIC [MPLEMENTATION

In this section. we demonstrate how to implement an
electronic neural network that can repair a faulty memory
by using the HC searching strategy. Electronic neural nets
can be built by both analog and digital techniques. Mur-
ray and Smith have discussed their tradeoffs and devel-
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oped a digital ncural net representing thc interactions by
pulse stream of different ratcs [22]. Even though the dig-
ital network has better noise immunity. it requires large
silicon area for its pulse generators and digital multi-
pliers. Analog neural nets using current summing princi-
plcs were developed by Graf er al. [7] and Sivilotti et al.
[24]. Carver Mead’s book on analog VLSI presents the
design strategies for several types of analog ncural sys-
tems [20]. These analog neural nets require small area and
their intrinsic robustness and ability to compute correctly
even in the prescnce of component failures, are particu-
larly useful features for large-scale VLSI implementation.

In this design, a neuron is realized as a difference am-
plifier which produces binary output voltages. The firing
ncuron state is represented by the high voltage output, and
the nonfiring state by the low voltage output. The synaptic
influences between neurons, as well as the biases to ncu-
rons, are represented by electrical currents. Thus, an ex-
citatory influence propagated to a neuron can be realized
by injecting current to the corresponding amplifier input.
Similarly, an inhibitory influence propagated to a ncuron
can be realized by sinking current from the corresponding
amplifier input. As for the synaptic amplification, it is
simulatcd by the branch resistance regulating the amount
of current that passes through.

Note that for the array repair sparc allocation problem
discussed here. all the synaptic weights of the intercon-
nection matrix are negative. Moreover. between two con-
nected neurons, the synaptic weight of the connecting link
can only be one of two different values, —A4 or —B. If we
assume that there are equal numbers of row and column
neurons, an example electronic neural net with eight neu-
rons can be implemented, as shown in Fig. 5.

According to Fig. 5, a neuron fires a negative influence
to another neuron by turning on a transistor which sinks
current from the target neuron's amplifier input. The
amount of current involved is controlled by the size of the
transistor. Note that owing to the assumption that equal
numbers of neurons are reserved for row and column re-
pairs, we are able to divide the interconnection matrix into
four equal parts. It is not hard to find that only the first
and third quadrants, as indicated in Fig. S, need to be
programmed based on the variable memory array defect
pattern. For each programmable link, an additional tran-
sistor controlled by a memory cell is added to the pull-
down transistor. A programmable link can be discon-
nected (connccted) by storing a 0 (1) in the memory cell.

Fig. 6 shows the essential steps in programming the
neural net’s interconnection network. Let the memory ar-
ray defect pattern be given in Fig. 6(a), with faulty cells
represcnted by black dots. Next, by deleting fault-free
rows and columns, a compressed defect pattern is ob-
tained in Fig. 6(b), with a faulty cell denoted by a 1. Then
the compressed defect pattern is used to program the first
quadrant of the neural net interconnection matrix, and the
third quadrant is programmed by the transposed com-
pressed defect pattern, as is shown in Fig. 6(c).

Finally, the possibility of building the neural network
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alongside an embedded memory to achieve this self-repair
purposc is demonstrated by the schematic diagram shown
in Fig. 7.

The design to be discussed assumes that a built-in tester
is available to provide fault diagnosis information. First
of all. the status of each memory row and column is de-
termined after the testing is donc, and this information is
stored in the faulty-row-indicator shift-register (FRISR)
and faulty-column-indicator shift-register (FCISR), with
a faulty row or column indicated by a 1. Then, to com-
press the memory array defect pattern, the detailed defect
pattern of each faulty row is provided to the row-defect-
pattern shift-register (RDPSR) one row at a time. As men-
tioned in Section IlI, the characteristic matrix D is highly
sparse, and the fault pattern can be stored in the form of
a compresscd matrix cach row and column of which will
contain at least one faulty element. This is obtained by
shifting those bits of RDPSR that correspond to the non-
zero bits of FCISR. into the compressed-row-defect-pat-
tern shift-register (CRDPSR). The content of CRDPSR is
then used to program a row (column) in the first (third)
quadrant of the neural net’s interconnection network. The
row (column) address of the quadrant is obtained by
counting the nonzcro bits in the FRISR. The stimulating
biases to the row and column neuron inputs arc gencrated
by counting the total number of faults in each row (col-
umn) in the row (column) fault-count shift-registers. After
a repair scheme is obtained by reading the outputs of the
neuron amplificrs. the information is expanded in reverse
order to the compression of defect patterns, and passed on
to control logic of actual reconfiguration circuits. Nor-
mally, laser zapping [23], [3], focused ion-beam [21], or
electron bcam [6] techniques are used to restructure a
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faulty memory array where the laser or charged beams are
used for blowing out the programmable fuses to discon-
nect the faulty rows and columns. These schemes cannot
be employed in automatic restructuring. Two viable tech-
niques for sclt-restructuring are 1) electronically pro-
grammable amorphous silicon tuses. which can be pro-
grammed by applying a 20-V pulse [27]: and i)
programmable clectronic reconfiguration switches. which
usually impose a small amount of penalties on circuit
speed and arca.

The circuit behavior was verified through SPICLE sim-
ulations. Simulation output for a compressed 4 x 4 defect
pattern with eight defective memory cells is shown in Fig.
& as an cxample. The defects are represented by shaded
squarcs. The initial state of the neural net was zero. i.c..
there was no allocation of spares for any faulty rows or
columns. Since every neuron represents cither a faulty row
or a faulty column in the compressed defecet pattern, to
cover the defects all neurons initially began transition to-
ward the firing state. After 3 ns. the neurons representing
row 2 and column 4 were successtul in competition and
remained in the firing state. This can be explained by the
fact that row 2 and column 4 each have threc defects to
give the corresponding neuron the largest positive bias to-
ward the firing state. All other neurons started to turn off.
due to the mutual discouragement propagated through the
negative synapses. When the remaining ncurons were be-
coming low in activity. the mutual discouragement factor
was also weakening, and the neurons started to move to-

by Compressed detect pattern. (¢) Neural

™ T msmms

0.00 2,00 400 600 800 10.00

Fig. & Exumple memony repair SPICE simulation.

ward the firing state again. This time the ncurons repre-
senting row 4 and column 1 were successful. The other
tour neurons then continucd to the off state. since there
was no remaining defeet to cover and the spares were all
used up.

VI, Nevrair Net BeHavior v Faurr CONDITIONS

Onc unavoidable problem i adding extra hardware tor
BISR is that the extra hardware itself may be subject to
component failures. In this section. we demonstrate the
intrinsic fault-tolerant capability of neural networks as a
reconfiguration control unit in the memory repair circuit.

Three types of component failures have been identified
in ncural networks, namcly synapse-stuck faults, bias
fluctuations. and neuron-stuck faults to serve as the fault
model. For cach faulty svnapse. either of the synaptic
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weights w;; or wj; can be assumed to be stuck-at-x, where
X is a positive number in the range of synaptic strength
valucs. duc to transistor-stuck faults or defective memory
cells that control the programmable synapses. Faulty bias
generators are modeled to fluctuate within one unit of the
predetermined biases, and faulty neurons will have stuck-
at-firing or stuck-at-nonfiring statcs.

Rathcr than rendering the entire neural network useless,
these faults will only reshape the energy (cost) distribu-
tion over the set of spare allocation schemes. Allocation
schemes, which correspond to complete covers of all de-
fective memory cells, may no longer be mapped to ac-
ccptable local energy minima, thus prolonging the search
for an acceptable solution. On the other hand, incomplete
allocation schemes may be mapped to false acceptable lo-
cal energy minima, causing the neural net to stop scarch-
ing without success.

Identical memory defect patterns prepared in Section
IV are used here. Random faults are incrementally in-
jected into a HC type of neural net to examine the achiev-
able percentages of repairs for repairable defect patterns.
To distinguish the degrees of seriousness among ditferent
types of faults, we inject only faults of the same type. The
simulation results are shown in Fig. 9.

The results indicatc that a small number of synapse-

stuck faults, up to five in the 20-neuron network and ten
in the 40-neuron network, have almost no effect on the
average performance. But the bias fluctuation faults and
the ncuron-stuck faults cause the average percentage of
repairs out of repairable defect patterns to decrease stead-
ily to zero when over one-fourth of total neurons are af-
fected. The difference between a bias fluctuation fault and
a neuron-stuck fault is in the amount of influence given
to a particular faulty row or column for repair. While a
bias fluctuation fault will encourage or discourage the cor-
responding row or column substitution slightly by one unit
of influence. a neuron-stuck fault will actually insist the
substitution be made.

VIIL.

In this section, a quantitative analysis of yield enhance-
ment duc to ncural network’s self-repair capability is
done. Faults are injected into memory arrays, spares, and
neural networks to compute the resulting yicld. The
overhead of the self-repair logic is also estimated.

A well-known yicld formula due to Stapper |25], [26]
is used here to calculate the original yield. ¥, without the
neural-net-controlled self-repair,

Yo = (1 + A8/a)™°

where ¢ is the defect density. A4 is thc memory array area,
and « is some clustering factor of the defects. Let P, be
the probability function for a defect pattern to be repair-
able with respect to the remaining fault-free spares and
the fault condition of the self-repair circuitry, and B be
the area of overhead. Then, the yield, Yy, with neural-
net-controlled sclf-repair can be calculated as tollows:

Yv=Yy+ U - Y)P,.

YiELD ANALYSIS

where
Yo=11+ A+ Bd/a]™ "

By minor algebraic manipulation, it can be scen that

Il

\ u

y = ( (! )
* T\l + B, o)

If « = 1 then, the new yield formula can be simplified
to
I — P)Y,
va — P, + ( Pr) ().
1 + BéY,

We used 256 x 256 (64-Kbit) memory arrays for sim-
ulation with o« = 1 and 46 = 0.25. 0.5, 1, 2, 3, 4, so
that Yy = 80%, 66.7%. 50%, 33.3%, 25%, and 20%,
respectively. Six hundred memory arrays, each with at
least one defect, are generated accordingly. For each set
of memory arrays, up to four spare rows and four spare
columns were provided to cxaminc the neural net repair-
ability with respect to the number of available spares. The
spares and the neural net components are all subject to the
same degree of defect density as the memory array. The
resulting function values of P, are shown in Fig. 10. Fi-
nally, the corresponding calculated yields are given in Fig.
I1.
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According to the schematic diagram shown in Fig. 7.
except for the FC/RISR and the RDPSR. which arc pro-
portional to the dimension of the memory array. the com-
plexity of the remaining self-repair logic basically de-
pends on the dimensions of the compressed defect
patterns. For instance. an m X n compressed defect pat
tern will requirc a neural net of 2 + 1 neurons. Since the
meanand variance of the number of faulty columns (rows)
can be calculated according to the fault distribution func-
tion, an cstimate on the required ncural net size can be
easily made to accommodate nearly all possible com-
pressed defect patterns. For the case ol 256 x 256 (64K)
memory arrays with A6 as high as 4. it is a near-certainty
that the compressed array will not be larger than 10 x 10
Given an N X N DRAM. lct the size of the maximum
compressed memory defect pattern be #~ An itemized ac-
count of the dynamic memory array and self-repair hard-
ware based on transistor count is given in Table IV, and
the percentages of overhead are listed in Table V for var-
tous memory and neural net sizes. As indicated by the
results, the overhead is insignificant. compared with the
yield improvement. and the overhead can be cven smaller
if static RAM's. with 6" transistors in the memory ar-
ray, are considered. Here the overhead of the BIST circuit
18 not included. Typically this overhead is very low (about
28 flip-flops and ten gates for a 256-K RAM). as shown
in Mazumder's earlicr papers [16]. [17].
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Memor cells 4N
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Column decoder 2N
Seise anmp’s 6N
Fatdty column indicator SR KN

Fan'ty row indicator SR LAY
Row detect pattern $R 8N
Row fault count SR 8riog n
Column fault count SR 8 log n

RAM word line countes Xlogn
Compressed row defect pattern SR 8n
Programmate synapses SRS lon”
Non-programuniah.e sy nupses o’
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TABLE V
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no= 38 no=12 n =16 n =20
\' = 256 (64 Kbit: 31 S 66 6.35 7.20)
\' = 512256 Kbity 246 259 2.76 2.97
A\ 1.20 .22 1.28 1.33

= 1024 (1 Mbin

VI

The biological nervous system’s ability to solve per-
ceptual optimization problems is imitated here to tackle
the VLSI array repair problem. In contrast to the current
sequential repair algorithms. which run slowly on the
conventional digital computers. the neural network’s col-
lective computational property provides very fast solu-
tions. Methods to transtorm the problem instance into
neural network computation model are demonstrated in
detail. Of the two types of neural nets studied in this pa-
per. the GD neural network has been found to be two to
four times better than the RM algorithm in obtaining suc-
cessful repair schemes. The GD minimizes the energy
function of the network only in the locality of the starting
cnergy value. The performance of the neural network is
further improved by introducing an HC technique that al-
lows the search to escape the traps of local minima. By
gencrating random defect patterns and experimenting with
a large number of arrays. it is seen that the HC algorithm
tinds a solution in a rcpairable memory array with near
certainty (with a prohability of .98 or more), For the
same fault patterns. simple commercial algorithms, like
RM. can yield feasible solutions for only 20% of the pat-
terns. On the average. about twice as many search steps
are used by the HC as opposed to GB.

Both the HC and GD necural networks can be imple-
mented in hardware using very small overhead, typically
less than 3% it the memory size is 256 Kbit or more. The
payoft of this BISR approach is very high: the VLSI chip
vield can increase from 10% without the BISR circuit to
about 100% by using the proposed neural nets. The paper
also proves that the neural networks are much more robust
and fault-toferant than the conventional logic circuits. and

Final REMARKS
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thercby are ideally suited for self-repair circuits. The pro-
posed designs of neural networks can operate correctly
even in the presence of multiple faulty synaptic circuit
elements, and as more numbers of neurons become per-
mancntly stuck to a firing or a nonfiring state, the net-
works gracefully degrade in their abilities to repair faulty
arrays.

The paper shows how to solve a vertex-cover problem
of graph theory, generally known to be an intractable
problem, by using neural networks. A large number of
problems in other domains, which can be modeled in sim-
ilar graph-theoretic terms, can also be solved by the
neural-nctwork designs discussed in this paper. In the
mcemory repair problem, an entire row or column is re-
placed to eliminate a defective cell. Such an approach is
easy to implement and is cost-cffcctive in redundant mem-
ory designs because the cells are very small in size. But
a largc class of array networks in systolic and arithmetic
logic circuits employ a different strategy where a defcc-
tive cell is exactly replaced by a spare or redundant cell.
An appropriate graph model for such an array repair prob-
lem will be to construct a maximum matching of pairs
between the vertices of a bipartite graph representing the
set of faulty cells and the set of available sparc cells. The
technique described in this papcr can be extended to soive
the maximum matching algorithm by neural networks
[18].

The overall goal of the proposed BISR circuits is to
improve the chip yield by reconfiguring thc faulty com-
ponents at the time of chip fabrication, and also to extend
the lifc span of the chip by automatically testing and re-
pairing it whenever a failure is detected during the chip’s
normal operation. In space, avionics, and occanic appli-
cations where manual maintenance, namely field testing
and replacement, is not feasible, such an auto-repair tech-
nique will be very useful in improving the reliability and
survivability of computer and communication equipment.
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