Circuit Behavior Modeling and Compact Testing
Performance Evaluation
Jih-Shyr Yih and Pinaki Mazumder

Abstract — This study suggests a realistic modeling of circuit output error patterns with random test inputs. The model can then be used as the basis for accurate evaluation of the probability of aliasing in compact testing. For several example compression techniques, the following aspects are investigated: 1) identification of the error patterns which cause aliasing, 2) asymptotic effectiveness analysis, and 3) comparative simulation study with a limited amount of random test vectors applied.

I. INTRODUCTION

DATA compression techniques have been introduced to reduce long test responses into short pieces of information called signatures. Fault detection is done by comparing the compressed signature produced by the circuit under test to the predetermined fault-free signature. Testing of this kind is usually referred to as compact testing. But due to the information lost through data compression, some error responses may be mapped to the fault-free signature, thus causing faulty circuits to escape detection. This problem is called aliasing.

With known deterministic test sets, Hayes [1] and Fujiwara and Kinoshita [2] have proposed several methods to arrange test sequences by which the compact testing fault coverage can be as good as the conventional test methods. That is, the ordering of the test inputs will make it impossible for output error patterns to be compressed into the fault-free signature. As for the nondeterministic counterpart, it is understood that not all detectable faults may be covered by the random test patterns in the first place, not to mention the further degradation caused by the data compression. Therefore, the quality of the fault detection achieved by a compression method is of practical interest.

Recently most research interests regarding compact testing have been directed toward testing by feedback shift registers. Frohwerk first performed probabilistic analysis based on the assumption of total randomness in circuit test outputs [3]. If the shift register length is m-bit long, this assumption suggests that, regardless of the polynomial divider used, the chance of not detecting a fault is always \(2^{-m}\). David constructed a proof for the polynomial divider of the form \(x^m + 1\), showing that, when the number of test patterns applied is much greater than the length of the shift register \(m\), the probability for failing to detect a fault is \(2^{-m}\) even if all the test output patterns are not equally likely [4]. Smith presented two special types of error patterns, burst errors and errors due to repeated-use faults [5]. However, the same result was obtained for these two types of error patterns.

In this study, we have performed a more realistic analysis based on two probability numbers, \(p_1\) and \(p_2\), as characterization factors which take care of both the circuit's functional and faulty behaviors. \(p_1\) is the probability for a combinational circuit to have a 1 output each time a random input is applied, and \(p_2\) is the probability for an output bit to be in error. The \(p_1\) characteristic is a constant associated with the circuit's functional definition, and is generally known as the syndrome [6], while a circuit may have different \(p_2\) characteristics depending on the fault conditions. In fact, for any \(n\)-input combinational circuit, \(p_1\) can be calculated once the function is known. Let the test set of a fault be defined as \(\{x_1|x\}\), a test pattern which can cause an error in output. If the fault is associated with a test set of size \(m\), then \(p_2 = m/2^n\). Thus, \(p_2\) can also serve as a measure of difficulty to detect the fault \(f\). Note that the existence rather than the calculation of these two characteristics is emphasized. We are interested in observing the effectiveness of a compression technique over a wide range of faulty circuits having different characteristics. The two factors can be used in asymptotic analysis to find out the achievable rate of fault detection by a particular technique with an infinite amount of random test vectors applied. Moreover, they can be used to generate a spectrum of error test output patterns of practical length to examine the effectiveness of a particular compression technique.

II. DATA COMPRESSION BY CHECK SUM FUNCTIONS

Some early developed data compression techniques include ones counting, which uses the number of ones in an output stream as the signature, and transition counting, which keeps track of the number of bit value transitions, i.e., if the next bit is different from the current one, a transition is counted [1].

A. Ones Counting

Let a test response \(R\) with length \(k\) be represented by \(R = r_1 r_2 \cdots r_k\), where \(r_i = \{0, 1, D\}\). For ones counting, each error bit in the test outputs is capable of affecting the count by 1, i.e., a \(D\) bit will increase the count by 1 and a \(D\) bit will decrease the count by 1. An error response with as many \(D\)'s and \(D\)'s will not be detected.

In terms of \(p_1\) and \(p_2\), the probability for an output bit to be \(D\) is \((1-p_1) p_2\) and the probability for an output bit to be \(D\) is \(p_1 p_2\). Let \(k\) be the length of the test response, and \(P_a\) the probability of aliasing. We found

\[
P_a = \sum_{\text{even } m', 0 < m' < k} C_{m'/2}^k C_{k-m'/2} \left[\left(1-p_1\right)p_2\right]^{m'/2} p_1^{k-m'/2}.
\]

Manuscript received June 29, 1989; revised June 20, 1990.

The authors are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 9038974.

0018-9200/91/0100-0062$01.00 © 1991 IEEE
we claim that ones counting has a maximum probability of
will increase as
bits expected and the fact that (1
response follows a binomial distribution with the probability
[(1-p1)p2]kp2/2.

Since the factor
ne
decreases as the circuit output characteristic
decreases in transition counting also decreases as the number of expected error periods in the output stream increases.

The error periods are interleaved with error-free periods, the number of error periods is maximized when \(E(x)+E(y) \) is minimized. It is not hard to find that the minimum of \(E(x)+E(y) \) happens at \(p_2=1/2 \), i.e., \(P_2 \) is minimized at \(p_2=1/2 \).

C. Data Compression by Polynomial Divisions

Let the fault-free circuit test output stream \(Z \) be composed of \(k \) bits, \(Z = z_1z_2 \cdots z_k \). A binary polynomial \(Z(x) \) can be constructed to represent \(Z \) by using \(z_i \) as the coefficient of the term \(x^{i-1} \), i.e., \(Z(x) = z_1x^{k-1} + z_2x^{k-2} + \cdots + z_k \). Now let the bit stream \(E \) be defined as an output error pattern when some fault is present during the test. \(E(y) \) is defined as the faulty test output stream.

The essential idea of compaction is to choose a binary polynomial \(P(x) \) as the divisor and use the remainder \(R(x) \) of \(Z(x)/P(x) \) as the signature. The detection of fault \(f \) is done by comparing the remainders of \(Z(x)/P(x) \) and \(Z(x)+E(x)/P(x) \). \(Z(x)/P(x) \) and \(Z(x)+E(x)/P(x) \) have the same remainder if and only if \(E(x) \) is a multiple of \(P(x) \). Consequently, fault detection using the polynomial division compression technique is independent of \(p_1 \).

In order to study the relation between \(p_2 \) and \(E(x)/x \) as a multiple of \(P(x) \), let us begin with the implementation of polynomial divisions. Let \(P(x) = a_0x^d + a_1x^{d-1} + \cdots + a_d \), where the \(a_i \)'s are binary numbers and \(a_0 = 1 \). The divider \(P(x) \) can be implemented as a shift register depicted in Fig. 1. The memory cells of the shift register are all set to zero initially. The dividend stream is shifted in serially as the input, and the quotient stream will be shifted out serially as the output. The coefficients of the remainder polynomial \(R(x) \), \(R(x) = r_1x^{d-1} + r_2x^{d-2} + \cdots + r_d \), will be left in the corresponding memory cells after the dividend stream is exhausted.

Let us start with a feedback shift register of the simplest kind for analysis, \(P(x) = x^2 + 1 \), which is shown in Fig. 2(a). Let the value of memory cell \(i \) after \(k \) shifts be \(C_i(k) \). The logic expression which determines \(C_i(k) \) is described recursively as below:

\[
C_i(k) = \begin{cases}
 z_{k-i+1} \oplus C_i(k-d) & \text{if } k > d \\
 z_{k-i+1} & \text{if } i \leq k < d \\
 0 & \text{otherwise}
\end{cases}
\]

In other words,

\[
C_i(k) = z_{k-i} \oplus z_{k-d-i} \oplus \cdots \\
C_{i+1}(k) = z_{k-i} \oplus z_{k-d-i} \oplus \cdots \\
\vdots \\
C_{d}(k) = z_{k-d} \oplus z_{k-2d} \oplus \cdots
\]

<table>
<thead>
<tr>
<th>Left neighbor</th>
<th>Starting error bit</th>
<th>Ending error bit</th>
<th>Right neighbor</th>
<th>Effect to the count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+2</td>
</tr>
</tbody>
</table>

TABLE I

THE RELATION BETWEEN ERROR BIT STREAMS AND THE TRANSITION COUNT

We claim that transition counting has the minimum \(P_2 \) when \(p_2 = 1/2 \). To prove this, let \(x \) be the length of an error period. \(x \) follows a geometric distribution with the probability of success being \(1 - p_2 \). Thus, we have the expected value of \(x \), \(E(x) = p_2/(1-p_2) \). Likewise, if \(y \) is the length of an error-free period, we have the expected value of \(y \), \(E(y) = (1-p_2)/p_2 \). Based on the fact that \(P_2 \) decreases in ones counting as the number of error bits increases, similarly \(P_2 \) in transition counting also decreases as the number of expected error periods in the output stream increases. Since the error periods are interleaved with error-free periods, the number of error periods is maximized when \(E(x)+E(y) \) is minimized. It is not hard to find that the minimum of \(E(x)+E(y) \) happens at \(p_2 = 1/2 \), i.e., \(P_2 \) is minimized at \(p_2 = 1/2 \).
III. SIMULATION STUDIES

In order to examine the effectiveness of compact testing methods with a limited number of random test patterns applied, 2000 circuit output patterns ranging from 1 to 64 in length were generated for the experiment. For each test output stream, signatures by ones counting, transition counting, and signature analysis are generated for fault detection to estimate the probabilities of aliasing.

Fig. 3 shows that each probability of aliasing curve seems to be converging to a certain small number, which implies that when an excessive amount of test patterns is applied it makes relatively little difference which test method is used. But the performance can be significantly different when the number of test patterns is in the magnitude of tens. From this study, it is clear that signature analysis is the best of the three. Ones counting and transition counting rank second and third, respectively.

As is indicated in the analysis, the performance of signature analysis is independent of the p_1 characteristic. In contrast, p_1 has a significant effect on ones counting and transition counting. In this simulation when p_1 is set to be 0.2 instead of 0.5, i.e., with each fault-free output bit value tending to be 0, the probabilities of aliasing of ones counting and transition counting decrease sharply. In investigating the effect of the p_2 characteristic, ones counting and signature analysis perform consistently as p_2 gets larger, i.e., it is easier to detect a fault if more error hits occur in the test outputs. But this is not the case for transition counting. The performance of transition counting tends to be optimal at $p_2 = 0.5$ and deteriorates as p_2 gets greater or smaller.

IV. CONCLUSION

In this study, we found that the type of check-sum compression is more likely to cause signature aliasing than the type of polynomial division. The performance of a check-sum technique is affected by both the circuit syndrome and the fault to be detected, thus showing large variance in the effectiveness of fault detection. Among them, transition counting is found to be worse than the simpler ones counting. On the other hand, the performances of polynomial divisions realized by feedback shift registers are more desirable, since they are independent of the circuit syndrome, and are asymptotically independent of the fault condition as well.

The model of circuit error output patterns discussed here is useful as a basis for examining the performance of feedback shift registers with respect to the number of random test outputs.
Fig. 3. Performance evaluation of three compression techniques.
inputs applied in practice, which can lead to the efficient use of random testing.

Acknowledgment
The authors would like to thank Prof. J. P. Hayes for his insightful comments and constructive criticism that considerably improved the content and readability of this article.

References

A Rad-Hard, Low-Noise, High-Speed, BiFET Charge Preamplifier for Warm Liquid Calorimetry in the SSC

Kuok-Young Ling, Peter M. Van Peteghem, Sang-Yong Lee, Hain-Ching Liu, and Hector Sanchez

Abstract—A fully integrated BiFET charge preamplifier is described which meets the specifications imposed by the Superconducting Super collider (SSC): a rise time under 100 ns, total noise less than 1000 electrons rms, and power consumption below 80 mW. It has been designed for a detector capacitance of 10 pF and tested up to a total gamma dose of 1.44 Mrd and neutron fluence of \(2 \times 10^{13}\) n/cm\(^2\). An industrial junction-isolated BiFET process with an 80-MHz \(f_T\) for the P-JFETs, 260 MHz for the n-p-n's, and 10 MHz for the p-n-p's was utilized to implement the preamplifier circuit.

I. INTRODUCTION

The core of particle physics experiments, conducted to observe and study the characteristics of elementary particles, involves high-energy proton-proton beam collisions inside a collider. Secondary emission from a collision is traced in a calorimeter containing a large number of capacitive detectors. The trajectory of the subatomic particles can be reconstructed by detecting the ionization charges created as these particles traverse the calorimeter. The nature and properties of these particles can thus be determined. Consequently, one of the most crucial components of the front-end electronics is the charge preamplifier, which detects and converts a charge into a (low-impedance) voltage signal. Fig. 1 shows a typical circuit configuration of such a charge-sensitive amplifier system. The detector, represented by capacitor \(C_D\), is connected to the charge preamplifier through the high-voltage decoupling capacitor \(C_C\) since \(V_{BIAS}\) is usually several kilovolts.

The Superconducting Super collider (SSC) imposes very challenging specifications on the charge preamplifier. The collision rate will be in the order of 60 MHz. A preamplifier rise time not exceeding 100 ns [1] provides a reasonable trade-off between the time resolution of successive events and the total rms noise. Such a requirement necessitates mounting the preamplifiers directly on the detectors [2], [3]. As a result, the preamplifiers will receive high levels of nuclear radiation. Annual total gamma dose of 100 kr and neutron fluence in the order of \(10^{12}\) n/cm\(^2\) are expected, depending upon the locations of the detectors [4]. In addition, the total noise should be kept under 1000 electrons rms, since the collected charge can be as low as 4000 equivalent electrons. Power dissipation is a serious concern due to the large number of preamplifiers that are needed; a power consumption of 80 mW per channel is deemed reasonable [1].

In this paper, a new monolithic BiFET charge preamplifier [5] is described which meets the specifications imposed by the SSC: a rise time under 100 ns, total noise less than 1000 electrons rms, and power consumption below 80 mW. It has been designed for a detector cell of 10 pF for warm liquid calorimetry experiments [3] and tested up to a total gamma dose of 1.44 Mrd, at a dose rate of 40 rd/s, and neutron fluence of \(2 \times 10^{13}\) n/cm\(^2\).