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Abstract—In numerous memory and communication systems, 

Bose-Chaudhuri-Hocquenghem (BCH) codes are widely employed 

to enhance reliability. One-pass Chase soft-decision decoding 

algorithm for BCH code was previously proposed to achieve 

significant performance improvement over traditional hard-

decision decoding while not increasing too much computational 

complexity. The bottleneck in a conventional one-pass Chase 

decoding is the procedure of judging whether an obtained error 

locator polynomial is valid. In this paper, a novel algorithm that 

can efficiently verify eligibility of each generated error locator 

polynomial is proposed. The problem is first reformulated as a 

polynomial modulo problem, where repeated squaring can be 

employed for further simplification. In order to decrease the 

critical path delay and hardware complexity, an efficient 

polynomial division algorithm based on polynomial inversion is 

also proposed. In addition, a VLSI architecture for the proposed 

algorithm is presented. The implemented results show that the 

proposed eligibility checking algorithm reduces the gate counts to 

only 12% of a conventional polynomial selection algorithm 

without introducing any speed penalty. The projected area 

reduction achieved in a complete one-pass Chase decoder is 

approximately 75%. In addition, post-layout simulation shows 

that the proposed algorithm is 20 times more power-efficient than 

the conventional method. 

 
Index Terms—BCH codes, error correction code, one-pass 

Chase, polynomial inversion, VLSI. 

 

I. INTRODUCTION 

 ose-Chaudhuri-Hocquenghem (BCH) codes are one of the 

most popular error correction codes (ECC) employed in 

numerous memory and communication systems due to 

their relatively simple decoding complexity and outstanding 

error correction capability. Conventional BCH codes can 

correct up to 𝑡 = 𝑑𝑚𝑖𝑛 2⁄  errors, where  𝑑𝑚𝑖𝑛  stands for the 

minimum code distance. Hard-decision decoding (HDD) 

procedure for BCH codes is well developed. The Berlekamp’s 

algorithm is usually employed to find error locator polynomials, 

and the Chien search is then utilized to locate each error. To 

better utilize soft information or confidence of each bit before 

decoding, Chase proposed a soft-decision decoding (SDD) 

algorithm that first flips 𝜂  least reliable bits before a 
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conventional HDD [1]. By utilizing soft information, Chase II 

algorithm can correct up to 𝑡 + 𝜂 errors. 

The most straightforward and the widely adopted way to 

implement Chase decoding in hardware is to use existing BCH 

HDD circuit iteratively with a control circuitry that generates 

different testing patterns [2, 3]. This way, however, becomes 

prohibitively expensive when 𝜂 is large since the computational 

time grows exponentially with 𝜂. To circumvent this, one-pass 

Chase decoding algorithm was proposed in [4]. The original 

work is aimed for Reed-Solomon (RS) codes, but it can be 

easily adapted for BCH codes. The Berlekamp’s algorithm 

needs only to be applied once to obtain one starting error locator 

polynomial. Other error locator polynomials corresponding to 

different error patterns can then be derived easily from the 

starting polynomial by using polynomial update algorithm 

outlined in [4]. This is a significant result since the algorithm 

turns the exponentially scaled Chase decoding algorithm into a 

linearly scaled algorithm, making soft-decision Chase decoding 

more attractive.  

To implement the one-pass Chase decoding algorithm, 

hardware architecture was discussed in [5]. Zeros in the error 

locator polynomial corresponding to the flipped bits were taken 

out to maintain the order of the polynomial, reducing 

computational efforts. In that work, it was stated that most area 

and power consumption were spent on the highly parallel Chien 

search that runs as fast as the polynomial update block. An 

interpolation based Chase decoding algorithm was developed in 

[6] to avoid the expensive parallel Chien search. A 2.3 times 

higher efficiency was reported in that work. 

To better accommodate one-pass Chase decoding algorithm, 

an eligibility verification algorithm is proposed in this paper. 

The algorithm checks if the obtained error locator polynomial 

from the polynomial update algorithm or the Berlekamp’s 

algorithm is able to generate a correct error pattern such that the 

corrected code is a valid code word. The main motivation of the 

proposed algorithm is that an invalid polynomial can be easily 

detected without actually finding out all roots of that 

polynomial. The problem of checking the eligibility is first 

converted into a problem of calculating polynomial modulus. 

Calculation of modulus can then be conveniently solved by 

repeated squaring. In addition, to further reduce the 

computation complexity as well as the critical path delay in a 

hardware implementation, a polynomial inversion algorithm is 
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proposed. A Hardware architecture and complexity analysis for 

the proposed algorithm are provided in Section III. In Section 

IV, a design example is presented. Compared to the 

conventional exhaustive searching, the proposed algorithm 

achieves a reduction of 88% in gate counts. 

II. ALGORITHM 

It has been shown in [7] that sufficient and necessary 

conditions for an error locator polynomial to locate errors such 

that a legal (not necessarily correct) word can be recovered are 

as following: 

 

1) The error locator polynomial 𝛬(𝑥) has exactly 𝑒 distinct 

non-zero roots in GF(2m). 

2) 𝐿𝛬 = 𝑒, where 𝐿𝛬 is the length of a linear feedback shift 

register (LFSR) described by 𝛬(𝑥). 

 

It is also known that 𝑑Λ ≤ LΛ [8], where 𝑑Λ is the degree of 

the polynomial 𝛬(𝑥). Consequently, the process of verifying an 

error locator polynomial can be divided into two cases:  

 

1) If 𝑑𝛬 ≠ 𝐿𝛬, then the error locator polynomial is not a valid 

one. 

2) If 𝑑𝛬 = 𝐿𝛬, then check whether the number of distinct non-

zero roots of 𝛬(𝑥) is equal to 𝑑𝛬. If they are not equal, then the 

error locator polynomial is not a valid one.  

 

The condition 𝑑Λ  = 𝐿Λ can be easily checked by identifying 

the location of the first non-zero coefficient in Λ(𝑥) . 

Furthermore, it is found in simulation that this condition is 

satisfied in most of the time even when the error locator 

polynomial is not a correct one. Therefore, counting the number 

of roots that Λ(𝑥)  has is the key to determine whether the 

obtained error locator polynomial is valid.  

Zero root in Λ(𝑥) can be identified by checking whether Λ0 

is zero. Λ(𝑥) with a zero root is discarded right away without 

further processing. Therefore, in the remainder of this paper, it 

is assumed that Λ(𝑥) does not have a root that is equal to zero.  

An auxiliary polynomial 𝑑(𝑥) is defined according to (1), 

where the operator 𝑔𝑐𝑑(𝑎, 𝑏)  stands for finding the greatest 

common divisor of 𝑎 and 𝑏. Since 𝑥2𝑚
− 𝑥 has all the elements 

in GF(2m) as its roots [9], it can be shown that the degree of 

𝑑(𝑥) is equal to the number of roots that Λ(𝑥) has. 

𝑑(𝑥) ∶= 𝑔𝑐𝑑(𝑥2𝑚
− 𝑥, Λ(𝑥)) (1) 

Euclidean’s algorithm can be employed here to obtain a 

further simplified expression, as shown in (2). 

𝑑(𝑥)  = 𝑔𝑐𝑑 ((𝑥2𝑚
− 𝑥) mod Λ(𝑥), Λ(𝑥)) (2) 

Following (2), it can be proven that the sufficient and 

necessary condition for Λ(𝑥) to have 𝑑Λ distinct non-zero roots 

in GF(2m) is 

𝑥2𝑚
 mod Λ(𝑥) = 𝑥 (3) 

(3) is too expensive to be computed directly when 𝑚 is large. 

Fortunately, squaring and multiply [10] can be utilized here to 

save a significant amount of computational labors. In addition, 

since 2𝑚 is a power of 2, what we really need is just repeated 

squaring (that is, not even multiply). More specifically, we can 

calculate 𝑥2𝑚
 iteratively as following. Starting from the trivial 

case 

𝑥2⌊log2(𝑑Λ−1)⌋
 mod Λ(𝑥) = 𝑥2⌊log2(𝑑Λ−1)⌋

 (4) 

We then can compute 𝑥2𝑖+1
 mod Λ(𝑥) from 𝑥2𝑖

 mod Λ(𝑥) 

as 

𝑥2𝑖+1
 mod Λ(𝑥) = 𝑓𝑖(𝑥) mod Λ(𝑥) (5) 

where  

𝑓𝑖(𝑥) = (𝑥2𝑖
 mod Λ(𝑥))

2

 (6) 

By doing this, only 𝑚 − ⌊log2(𝑑Λ − 1)⌋ polynomial modulo 

operations are needed to compute 𝑥2𝑚
 mod Λ(𝑥) . Each 

polynomial modulo operation is at most of order 𝑡. 

To carry out modulo operation, an old school long division 

can be employed. Each modulo operation takes about 𝑑Λ
2  

multiplications. One problem with this straightforward 

implementation is that the critical path is long, as will be shown 

in Section III.  

Considering that divisors in all modulo operations are Λ(𝑥) 

(see (2) – (6)), it is worth spending some efforts on converting 

Λ(𝑥) into a form with which the division in the following stages 

can be performed more efficiently. Inspired by the algorithm in 

[11], we propose the following polynomial inversion algorithm 

to help improve the efficiency and critical path delay of the 

polynomial division. 

Let Λ𝑟(𝑥)  represent the polynomial with coefficients 

arranged in a reverse order of Λ(𝑥). That is, Λ𝑟(𝑥) = Λ0𝑥𝑑Λ +
Λ1𝑥𝑑Λ−1 + ⋯ + Λ𝑑Λ

. Similar notations apply for other 

polynomials. Then it can be shown that the reverse quotient 

polynomial can be computed as 

𝑞𝑖
𝑟(𝑥) = Λ̂𝑟(𝑥)𝑓𝑖

𝑟(𝑥) mod 𝑥𝑑Λ−1 (7) 

where Λ̂𝑟(𝑥) is defined as the inverse polynomial of Λ𝑟(𝑥) such 

that 

Λ𝑟(𝑥)Λ̂𝑟(𝑥) = 1 mod 𝑥𝑑Λ−1 (8) 

Λ̂𝑟(𝑥)  can be conveniently computed through an iterative 

algorithm. Let Λ̂𝑖
𝑟(𝑥)  be the polynomial such that  

Λ𝑟(𝑥)Λ̂𝑖
𝑟(𝑥) = 1 𝑚𝑜𝑑 𝑥𝑖, then it can be shown that by setting 

 
Fig. 1. Comparison of error correction performance of HDD, SDD with 

exhaustive polynomial search, and SDD with the proposed eligibility checking 

algorithm. The BCH code used here is a (4200, 4096) code over GF(213).  
 

6.0 6.2 6.4 6.6 6.8 7.0 7.2

10
-7

10
-6

10
-5

10
-4

10
-3

B
E

R

E
b
/N

0
 (dB)

 HDD

 SDD with Exhaustive search 

 SDD with Proposed elegibility check



1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 3 

the initial condition and iterative updating equation as (9) and 

(10), one can obtain Λ̂𝑟(𝑥). 

Λ̂1
𝑟 (𝑥) = Λ𝑑Λ

−1  (9) 

Λ̂𝑖
𝑟(𝑥) = Λ𝑟(𝑥)(Λ̂𝑗

𝑟(𝑥) )
2

mod 𝑥𝑖 (10) 

where 𝑗 ≥ ⌈𝑖 2⁄ ⌉. 
It is noted that in (10), only unknown coefficients need to be 

calculated. The process of computing Λ̂𝑟(𝑥) takes one 

inversion, 
𝑑Λ−1

2
 squaring, 

(𝑑Λ−1)2

4
+

𝑑Λ−1

2
 multiplication and 

(𝑑Λ−1)2

4
−

𝑑Λ−1

2
 addition when 𝑑Λ − 1 is a power of two. As will 

be shown in Section III, computational complexity of deriving 

Λ̂𝑟(𝑥)  is much less than the complexity of computing (5). 

Furthermore, pre-computing Λ̂𝑟(𝑥) can actually save efforts for 

computing (5). 

One thing should be noted is that derivation of the proposed 

algorithm implicitly assumes that the BCH code is not 

shortened. Therefore, the proposed algorithm is not rigorously 

applicable to shortened BCH codes. It is theoretically possible 

for the error locator polynomial of a shortened BCH code to 

have the correct number of roots over 𝐺𝐹(2𝑚), yet one or more 

of these roots are not in the valid range. In this case, the 

proposed algorithm fails to detect the invalid error locator 

polynomial, whereas the exhaustive Chien search is still able to. 

Simulation, however, shows that probability of this malfunction 

is unnoticeably low. Therefore, we argue that the proposed 

algorithm can be applied to a shortened BCH code for practical 

purposes.   

III. VLSI ARCHITECTURE 

Even though the proposed algorithm can be used for a 

polynomial with an arbitrary degree, it is, in practice, enough to 

check polynomials with a degree of 𝑡 . By doing this, the 

hardware complexity can be significantly reduced without 

noticeable performance degradation. Fig. 1 compares the 

performance achieved by a SDD employing the proposed 

eligibility verification algorithm with the performance of a 

SDD using direct polynomial search and the performance of a 

HDD. In the proposed eligibility checking algorithm,  𝑑Λ is set 

to 𝑡. That is, the verification process only runs on polynomials 

with a degree of 𝑡. For polynomials with degrees less than 𝑡, 

they are adopted as valid solutions. It is shown in the figure that, 

the proposed eligibility verification algorithm can effectively 

identify valid error locator polynomials. Performance of the 

proposed algorithm is degraded neither by applying the 

algorithm to a shortened BCH code nor by only running 

verification on polynomials with degree of 𝑡. 

A VLSI architecture of the proposed eligibility checking 

algorithm is shown in Fig. 2. There are three main blocks: block 

I and II are for polynomial multiplication and block III is used 

for polynomial inversion. Proper pipelining can be applied to 

locations marked with arrows in order to improve throughput of 

the system.  
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Fig. 2. A VLSI architecture of the proposed eligibility checking algorithm. Block I and II conduct multiply and modulo operations, and Block III conducts 
polynomial inversion operation. 

 
TABLE I 

SUMMARY OF HARDWARE COMPLEXITY OF THE PROPOSED ELIGIBILITY VERIFICATION CIRCUIT 

 

 I II III 

# of multiplier 
𝑡(𝑡 + 2)

4
 

(𝑡 − 1)(𝑡 + 2)

2
 

𝑡

2
 

# of adder 
𝑡(𝑡 − 2)

4
 

𝑡(𝑡 − 1)

2
 

𝑡

2
− 1 

Critical path delay 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2 (
𝑡 − 1

2
) 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2(𝑡 − 1) 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2 (

𝑡

2
) 

# of cycles 𝑚 − ⌊log2(𝑡 − 1)⌋ 𝑚 − ⌊log2(𝑡 − 1)⌋ 𝑡 
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There are mainly three finite filed operations shown in Fig. 2 

besides the standard multiplex, delay and compare operations. 

The first operation is subtracting polynomials in a finite field. 

This operation can be done by simply doing bitwise XOR 

operations on each coefficient of the two polynomials. The 

second operation is squaring a polynomial in a finite field, 

which can be achieved by squaring each coefficient of the 

polynomial. The third operation is to multiply and modulo 

polynomials. This is the main operation in the proposed 

algorithm. It can be formulated as a matrix-vector 

multiplication where the matrix is a Toeplitz matrix. Thanks to 

a unique property of Toeplitz matrices, the multiplication-and-

modulo operation can be efficiently conducted by employing 

circuit shown in Fig. 3. In Fig. 3, diagonal multipliers share the 

same multiplicands 𝑏𝑖. Multipliers at the same columns share 

the same multipliers 𝑎𝑖 . Products at the same row are then 

added by a XOR tree to get the final results 𝑐𝑖. Since a finite 

field multiplication can be expressed as a matrix-vector 

multiplication, matrices associated with the shared 

multiplicands only need to be calculated once and distributed 

along the diagonals, reducing gate counts and the critical path 

delay.  

Hardware complexity of the main blocks in the proposed 

eligibility checking circuit is summarized in Table I. The 

proposed circuit has an area-latency product on the order of  

(𝑚 − log2(𝑡))𝑡2. This is much less than 𝑛𝑡, the area-latency 

product of a conventional exhaustive search. Area-latency 

product is defined as the product of the number of multipliers 

and the number of clock cycles needed to complete the task. It 

serves as a quick estimation of how the complexity of the circuit 

grows with the size of the problem. The reason that only finite 

field multipliers are counted is that they dominate the area of 

the circuit. To give an immediate comparison, gate count ratio 

between the proposed algorithm and the conventional method 

is less than (𝑛 − 𝑘) 𝑛⁄ , which is the redundancy ratio of an error 

correction code. The redundancy ratio in most memory system 

is much less than one. Even though the employed non-constant 

multiplier takes larger area than the constant multiplier 

employed in the Chien search, the saving on area-latency 

product is still significant, as will be shown in Section IV. In 

addition, the diagonal-sharing technique mentioned above also 

helps reduce the gate counts effectively.  

In addition, compared to the straightforward implementation 

with long division that requires (𝑚 − log2(𝑡))𝑡2  multipliers, 

the proposed algorithm only needs approximately 
3

4
(𝑚 −

log2(𝑡))𝑡2 multipliers, reducing gate counts by roughly 25%. 

This saving is achieved by pre-computing the inverse 

polynomial Λ̂𝑟(𝑥). 

IV. DESIGN EXAMPLE 

In this section, the proposed eligibility checking circuit is 

implemented for a (4200, 4096) code over GF(213). Inversion 

of Λ𝑑Λ

−1  and block III are pipelined with block II and III. The 

process of eligibility verification takes 11 clock cycles.  

Comparisons of gate counts and critical path delay are 

summarized in Table II. In this design example, the finite field 

multiplier and squaring circuit proposed in [12] are used. The 

multiplier in [12] is not the optimal choice in terms of gate 

counts. It is adopted in our design example because of its 

simplicity. More sophisticated multipliers such as those in [13] 

can be employed to further reduce the gate counts. In the table, 

numbers of flip-flops are directly read out from the synthesized 

netlists, and combinational gate counts reported by the 

employed synthesis tool are converted to equivalent NAND2 

gate counts for comparison.  

As shown in the table, gate counts of the proposed eligibility 

checking circuit are only around 12% of the exhaustive Chien 

TABLE II 

COMPARISON OF HARDWARE COMPLEXITY AND CRITICAL PATH DELAY 

Algorithm  Sub-block NAND2 Flip-Flops Critical path delay 

Proposed Algorithm w/ polynomial 

inversion 

Polynomial Inversion 634 94 𝐷𝐴𝑁𝐷 + 6𝐷𝑋𝑂𝑅  

Polynomial 

Multiplication 
39K 104 2𝐷𝐴𝑁𝐷 + 13𝐷𝑋𝑂𝑅  

Total 46K 453 2𝐷𝐴𝑁𝐷 + 13𝐷𝑋𝑂𝑅  

Exhaustive polynomial search  416K 485 6𝐷𝐴𝑁𝐷 + 6𝐷𝑋𝑂𝑅  
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Fig. 3. Diagram of the proposed polynomial multiplication array. Same 

multiplicands 𝑏𝑖  are shared along diagonals, and multipliers 𝑎𝑖  are shared 

along columns. Multiplication results 𝑐𝑖 are obtained by adding each row with 

XOR trees. 
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search. This number can be further projected to estimate the 

overall saving on area of the decoder. In [5], it is shown that the 

polynomial searching block occupies an area that is 85% of the 

total area of the decoder. Therefore, it is estimated that the 

proposed eligibility verification circuit can reduce the area of 

the one-pass Chase decoder by 75% while having a similar 

performance. Furthermore, thanks to the polynomial inversion 

step, the critical path delay of the proposed circuit is reduced to 

a value similar to the one of the Chien search. 

The proposed design and the conventional Chien search 

block are synthesized in 65 nm technology using Synopsys 

Design Compiler. The synthesized designs are then 

automatically placed and routed with Cadence Encounter. 

Areas of the obtained layouts are reported in Table III. Netlists 

obtained after place and route are simulated using Synopsys 

Finesim with extracted interconnect parasitics. Power 

consumption and critical path delay are simulated. The 

maximum clock frequency reported in Table III is calculated 

according to the simulated critical path delay with a 10% 

margin. As noted from Table III. The proposed eligibility 

checking circuit is 20 times more power-efficient than the 

conventional exhaustive Chien search. This number is larger 

than the area saving ratio. This is mainly because conventional 

Chien search has a larger activity factor.  

 
TABLE III 

SUMMARY OF THE PROPOSED DESIGN 

 
 This work Conventional 

exhaustive Chien 

search 

Equivalent NAND2 

gate count 

49K 418K 

Area after place and 

route 

67,600 µm2 640,000 µm2 

Power consumption 

@ 1.2 V & 400MHz 

21.9 mW 408 mW 

Maximum clock 

frequency 

568 MHz 455 MHz 

 

V. CONCLUSIONS 

In this paper, we present a novel eligibility verification 

algorithm aiming to avoid the area and power consumption 

penalty incurred by the parallel Chien search in a conventional 

one-pass Chase soft-decision BCH decoder. The proposed 

algorithm can effectively check the correctness of a derived 

error locator polynomial by counting the number of roots it has. 

The root-counting problem is transformed into a polynomial 

modulo problem, which can be efficiently solved by repeated 

squaring. In addition, an iterative polynomial inversion 

algorithm is presented to reduce the area and the critical path 

delay. A hardware architecture for the proposed algorithms is 

also presented in this paper. Hardware complexity is carefully 

examined. A design example is implemented for a (4200, 4096) 

code over GF(213). The obtained gate counts and critical path 

delay are compared with a conventional design. Our newly 

proposed design achieves more than 88% area reduction while 

having a similar critical path delay. This translates into a 75% 

reduction in the overall decoder area. The proposed design is 

also placed and routed. The transistor-level simulation shows 

that, with a similar critical path delay compared to the 

conventional method, a 95% power saving is achieved. 
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