
1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 1

Abstract—In numerous memory and communication systems,

Bose-Chaudhuri-Hocquenghem (BCH) codes are widely employed

to enhance reliability. One-pass Chase soft-decision decoding

algorithm for BCH code was previously proposed to achieve

significant performance improvement over traditional hard-

decision decoding while not increasing too much computational

complexity. The bottleneck in a conventional one-pass Chase

decoding is the procedure of judging whether an obtained error

locator polynomial is valid. In this paper, a novel algorithm that

can efficiently verify eligibility of each generated error locator

polynomial is proposed. The problem is first reformulated as a

polynomial modulo problem, where repeated squaring can be

employed for further simplification. In order to decrease the

critical path delay and hardware complexity, an efficient

polynomial division algorithm based on polynomial inversion is

also proposed. In addition, a VLSI architecture for the proposed

algorithm is presented. The implemented results show that the

proposed eligibility checking algorithm reduces the gate counts to

only 12% of a conventional polynomial selection algorithm

without introducing any speed penalty. The projected area

reduction achieved in a complete one-pass Chase decoder is

approximately 75%. In addition, post-layout simulation shows

that the proposed algorithm is 20 times more power-efficient than

the conventional method.

Index Terms—BCH codes, error correction code, one-pass

Chase, polynomial inversion, VLSI.

I. INTRODUCTION

 ose-Chaudhuri-Hocquenghem (BCH) codes are one of the

most popular error correction codes (ECC) employed in

numerous memory and communication systems due to

their relatively simple decoding complexity and outstanding

error correction capability. Conventional BCH codes can

correct up to 𝑡 = 𝑑𝑚𝑖𝑛 2⁄ errors, where 𝑑𝑚𝑖𝑛 stands for the

minimum code distance. Hard-decision decoding (HDD)

procedure for BCH codes is well developed. The Berlekamp’s

algorithm is usually employed to find error locator polynomials,

and the Chien search is then utilized to locate each error. To

better utilize soft information or confidence of each bit before

decoding, Chase proposed a soft-decision decoding (SDD)

algorithm that first flips 𝜂 least reliable bits before a

Manuscript received. This work is supported by National Science

Foundation under Grant CCF1421467

conventional HDD [1]. By utilizing soft information, Chase II

algorithm can correct up to 𝑡 + 𝜂 errors.

The most straightforward and the widely adopted way to

implement Chase decoding in hardware is to use existing BCH

HDD circuit iteratively with a control circuitry that generates

different testing patterns [2, 3]. This way, however, becomes

prohibitively expensive when 𝜂 is large since the computational

time grows exponentially with 𝜂. To circumvent this, one-pass

Chase decoding algorithm was proposed in [4]. The original

work is aimed for Reed-Solomon (RS) codes, but it can be

easily adapted for BCH codes. The Berlekamp’s algorithm

needs only to be applied once to obtain one starting error locator

polynomial. Other error locator polynomials corresponding to

different error patterns can then be derived easily from the

starting polynomial by using polynomial update algorithm

outlined in [4]. This is a significant result since the algorithm

turns the exponentially scaled Chase decoding algorithm into a

linearly scaled algorithm, making soft-decision Chase decoding

more attractive.

To implement the one-pass Chase decoding algorithm,

hardware architecture was discussed in [5]. Zeros in the error

locator polynomial corresponding to the flipped bits were taken

out to maintain the order of the polynomial, reducing

computational efforts. In that work, it was stated that most area

and power consumption were spent on the highly parallel Chien

search that runs as fast as the polynomial update block. An

interpolation based Chase decoding algorithm was developed in

[6] to avoid the expensive parallel Chien search. A 2.3 times

higher efficiency was reported in that work.

To better accommodate one-pass Chase decoding algorithm,

an eligibility verification algorithm is proposed in this paper.

The algorithm checks if the obtained error locator polynomial

from the polynomial update algorithm or the Berlekamp’s

algorithm is able to generate a correct error pattern such that the

corrected code is a valid code word. The main motivation of the

proposed algorithm is that an invalid polynomial can be easily

detected without actually finding out all roots of that

polynomial. The problem of checking the eligibility is first

converted into a problem of calculating polynomial modulus.

Calculation of modulus can then be conveniently solved by

repeated squaring. In addition, to further reduce the

computation complexity as well as the critical path delay in a

hardware implementation, a polynomial inversion algorithm is

The authors are with University of Michigan, Ann Arbor, MI 48105 USA

(e-mail:zhengn@umich.edu; mazum@umich.edu)

An Efficient Eligible Error Locator Polynomial

Searching Algorithm and Hardware Architecture

for One-Pass Chase BCH Codes Decoding

Nan Zheng, Student Member, IEEE, and Pinaki Mazumder, Fellow, IEEE

B

1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 2

proposed. A Hardware architecture and complexity analysis for

the proposed algorithm are provided in Section III. In Section

IV, a design example is presented. Compared to the

conventional exhaustive searching, the proposed algorithm

achieves a reduction of 88% in gate counts.

II. ALGORITHM

It has been shown in [7] that sufficient and necessary

conditions for an error locator polynomial to locate errors such

that a legal (not necessarily correct) word can be recovered are

as following:

1) The error locator polynomial 𝛬(𝑥) has exactly 𝑒 distinct

non-zero roots in GF(2m).

2) 𝐿𝛬 = 𝑒, where 𝐿𝛬 is the length of a linear feedback shift

register (LFSR) described by 𝛬(𝑥).

It is also known that 𝑑Λ ≤ LΛ [8], where 𝑑Λ is the degree of

the polynomial 𝛬(𝑥). Consequently, the process of verifying an

error locator polynomial can be divided into two cases:

1) If 𝑑𝛬 ≠ 𝐿𝛬, then the error locator polynomial is not a valid

one.

2) If 𝑑𝛬 = 𝐿𝛬, then check whether the number of distinct non-

zero roots of 𝛬(𝑥) is equal to 𝑑𝛬. If they are not equal, then the

error locator polynomial is not a valid one.

The condition 𝑑Λ = 𝐿Λ can be easily checked by identifying

the location of the first non-zero coefficient in Λ(𝑥) .

Furthermore, it is found in simulation that this condition is

satisfied in most of the time even when the error locator

polynomial is not a correct one. Therefore, counting the number

of roots that Λ(𝑥) has is the key to determine whether the

obtained error locator polynomial is valid.

Zero root in Λ(𝑥) can be identified by checking whether Λ0

is zero. Λ(𝑥) with a zero root is discarded right away without

further processing. Therefore, in the remainder of this paper, it

is assumed that Λ(𝑥) does not have a root that is equal to zero.

An auxiliary polynomial 𝑑(𝑥) is defined according to (1),

where the operator 𝑔𝑐𝑑(𝑎, 𝑏) stands for finding the greatest

common divisor of 𝑎 and 𝑏. Since 𝑥2𝑚
− 𝑥 has all the elements

in GF(2m) as its roots [9], it can be shown that the degree of

𝑑(𝑥) is equal to the number of roots that Λ(𝑥) has.

𝑑(𝑥) ∶= 𝑔𝑐𝑑(𝑥2𝑚
− 𝑥, Λ(𝑥)) (1)

Euclidean’s algorithm can be employed here to obtain a

further simplified expression, as shown in (2).

𝑑(𝑥) = 𝑔𝑐𝑑 ((𝑥2𝑚
− 𝑥) mod Λ(𝑥), Λ(𝑥)) (2)

Following (2), it can be proven that the sufficient and

necessary condition for Λ(𝑥) to have 𝑑Λ distinct non-zero roots

in GF(2m) is

𝑥2𝑚
 mod Λ(𝑥) = 𝑥 (3)

(3) is too expensive to be computed directly when 𝑚 is large.

Fortunately, squaring and multiply [10] can be utilized here to

save a significant amount of computational labors. In addition,

since 2𝑚 is a power of 2, what we really need is just repeated

squaring (that is, not even multiply). More specifically, we can

calculate 𝑥2𝑚
 iteratively as following. Starting from the trivial

case

𝑥2⌊log2(𝑑Λ−1)⌋
 mod Λ(𝑥) = 𝑥2⌊log2(𝑑Λ−1)⌋

 (4)

We then can compute 𝑥2𝑖+1
 mod Λ(𝑥) from 𝑥2𝑖

 mod Λ(𝑥)

as

𝑥2𝑖+1
 mod Λ(𝑥) = 𝑓𝑖(𝑥) mod Λ(𝑥) (5)

where

𝑓𝑖(𝑥) = (𝑥2𝑖
 mod Λ(𝑥))

2

 (6)

By doing this, only 𝑚 − ⌊log2(𝑑Λ − 1)⌋ polynomial modulo

operations are needed to compute 𝑥2𝑚
 mod Λ(𝑥) . Each

polynomial modulo operation is at most of order 𝑡.

To carry out modulo operation, an old school long division

can be employed. Each modulo operation takes about 𝑑Λ
2

multiplications. One problem with this straightforward

implementation is that the critical path is long, as will be shown

in Section III.

Considering that divisors in all modulo operations are Λ(𝑥)

(see (2) – (6)), it is worth spending some efforts on converting

Λ(𝑥) into a form with which the division in the following stages

can be performed more efficiently. Inspired by the algorithm in

[11], we propose the following polynomial inversion algorithm

to help improve the efficiency and critical path delay of the

polynomial division.

Let Λ𝑟(𝑥) represent the polynomial with coefficients

arranged in a reverse order of Λ(𝑥). That is, Λ𝑟(𝑥) = Λ0𝑥𝑑Λ +
Λ1𝑥𝑑Λ−1 + ⋯ + Λ𝑑Λ

. Similar notations apply for other

polynomials. Then it can be shown that the reverse quotient

polynomial can be computed as

𝑞𝑖
𝑟(𝑥) = Λ̂𝑟(𝑥)𝑓𝑖

𝑟(𝑥) mod 𝑥𝑑Λ−1 (7)

where Λ̂𝑟(𝑥) is defined as the inverse polynomial of Λ𝑟(𝑥) such

that

Λ𝑟(𝑥)Λ̂𝑟(𝑥) = 1 mod 𝑥𝑑Λ−1 (8)

Λ̂𝑟(𝑥) can be conveniently computed through an iterative

algorithm. Let Λ̂𝑖
𝑟(𝑥) be the polynomial such that

Λ𝑟(𝑥)Λ̂𝑖
𝑟(𝑥) = 1 𝑚𝑜𝑑 𝑥𝑖, then it can be shown that by setting

Fig. 1. Comparison of error correction performance of HDD, SDD with

exhaustive polynomial search, and SDD with the proposed eligibility checking

algorithm. The BCH code used here is a (4200, 4096) code over GF(213).

6.0 6.2 6.4 6.6 6.8 7.0 7.2

10
-7

10
-6

10
-5

10
-4

10
-3

B
E

R

E
b
/N

0
 (dB)

 HDD

 SDD with Exhaustive search

 SDD with Proposed elegibility check

1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 3

the initial condition and iterative updating equation as (9) and

(10), one can obtain Λ̂𝑟(𝑥).

Λ̂1
𝑟 (𝑥) = Λ𝑑Λ

−1 (9)

Λ̂𝑖
𝑟(𝑥) = Λ𝑟(𝑥)(Λ̂𝑗

𝑟(𝑥))
2

mod 𝑥𝑖 (10)

where 𝑗 ≥ ⌈𝑖 2⁄ ⌉.
It is noted that in (10), only unknown coefficients need to be

calculated. The process of computing Λ̂𝑟(𝑥) takes one

inversion,
𝑑Λ−1

2
 squaring,

(𝑑Λ−1)2

4
+

𝑑Λ−1

2
 multiplication and

(𝑑Λ−1)2

4
−

𝑑Λ−1

2
 addition when 𝑑Λ − 1 is a power of two. As will

be shown in Section III, computational complexity of deriving

Λ̂𝑟(𝑥) is much less than the complexity of computing (5).

Furthermore, pre-computing Λ̂𝑟(𝑥) can actually save efforts for

computing (5).

One thing should be noted is that derivation of the proposed

algorithm implicitly assumes that the BCH code is not

shortened. Therefore, the proposed algorithm is not rigorously

applicable to shortened BCH codes. It is theoretically possible

for the error locator polynomial of a shortened BCH code to

have the correct number of roots over 𝐺𝐹(2𝑚), yet one or more

of these roots are not in the valid range. In this case, the

proposed algorithm fails to detect the invalid error locator

polynomial, whereas the exhaustive Chien search is still able to.

Simulation, however, shows that probability of this malfunction

is unnoticeably low. Therefore, we argue that the proposed

algorithm can be applied to a shortened BCH code for practical

purposes.

III. VLSI ARCHITECTURE

Even though the proposed algorithm can be used for a

polynomial with an arbitrary degree, it is, in practice, enough to

check polynomials with a degree of 𝑡 . By doing this, the

hardware complexity can be significantly reduced without

noticeable performance degradation. Fig. 1 compares the

performance achieved by a SDD employing the proposed

eligibility verification algorithm with the performance of a

SDD using direct polynomial search and the performance of a

HDD. In the proposed eligibility checking algorithm, 𝑑Λ is set

to 𝑡. That is, the verification process only runs on polynomials

with a degree of 𝑡. For polynomials with degrees less than 𝑡,

they are adopted as valid solutions. It is shown in the figure that,

the proposed eligibility verification algorithm can effectively

identify valid error locator polynomials. Performance of the

proposed algorithm is degraded neither by applying the

algorithm to a shortened BCH code nor by only running

verification on polynomials with degree of 𝑡.

A VLSI architecture of the proposed eligibility checking

algorithm is shown in Fig. 2. There are three main blocks: block

I and II are for polynomial multiplication and block III is used

for polynomial inversion. Proper pipelining can be applied to

locations marked with arrows in order to improve throughput of

the system.

1

0
 1

 mod ˆ

dr

i

r xxfx xqxxf ii
 xqi xri 2

 xf r

i 1 1z xf r

0

1

0
 ir

j

r xxx mod ˆ
2

1

d

 xr

î
1z

1

0
1z

1z x
 xr̂

1

0

I II

III

Valid

Fig. 2. A VLSI architecture of the proposed eligibility checking algorithm. Block I and II conduct multiply and modulo operations, and Block III conducts
polynomial inversion operation.

TABLE I

SUMMARY OF HARDWARE COMPLEXITY OF THE PROPOSED ELIGIBILITY VERIFICATION CIRCUIT

 I II III

of multiplier
𝑡(𝑡 + 2)

4

(𝑡 − 1)(𝑡 + 2)

2

𝑡

2

of adder
𝑡(𝑡 − 2)

4

𝑡(𝑡 − 1)

2

𝑡

2
− 1

Critical path delay 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2 (
𝑡 − 1

2
) 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2(𝑡 − 1) 𝐷𝑚𝑢𝑙 + 𝐷𝑎𝑑𝑑 × log2 (

𝑡

2
)

of cycles 𝑚 − ⌊log2(𝑡 − 1)⌋ 𝑚 − ⌊log2(𝑡 − 1)⌋ 𝑡

1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 4

There are mainly three finite filed operations shown in Fig. 2

besides the standard multiplex, delay and compare operations.

The first operation is subtracting polynomials in a finite field.

This operation can be done by simply doing bitwise XOR

operations on each coefficient of the two polynomials. The

second operation is squaring a polynomial in a finite field,

which can be achieved by squaring each coefficient of the

polynomial. The third operation is to multiply and modulo

polynomials. This is the main operation in the proposed

algorithm. It can be formulated as a matrix-vector

multiplication where the matrix is a Toeplitz matrix. Thanks to

a unique property of Toeplitz matrices, the multiplication-and-

modulo operation can be efficiently conducted by employing

circuit shown in Fig. 3. In Fig. 3, diagonal multipliers share the

same multiplicands 𝑏𝑖. Multipliers at the same columns share

the same multipliers 𝑎𝑖 . Products at the same row are then

added by a XOR tree to get the final results 𝑐𝑖. Since a finite

field multiplication can be expressed as a matrix-vector

multiplication, matrices associated with the shared

multiplicands only need to be calculated once and distributed

along the diagonals, reducing gate counts and the critical path

delay.

Hardware complexity of the main blocks in the proposed

eligibility checking circuit is summarized in Table I. The

proposed circuit has an area-latency product on the order of

(𝑚 − log2(𝑡))𝑡2. This is much less than 𝑛𝑡, the area-latency

product of a conventional exhaustive search. Area-latency

product is defined as the product of the number of multipliers

and the number of clock cycles needed to complete the task. It

serves as a quick estimation of how the complexity of the circuit

grows with the size of the problem. The reason that only finite

field multipliers are counted is that they dominate the area of

the circuit. To give an immediate comparison, gate count ratio

between the proposed algorithm and the conventional method

is less than (𝑛 − 𝑘) 𝑛⁄ , which is the redundancy ratio of an error

correction code. The redundancy ratio in most memory system

is much less than one. Even though the employed non-constant

multiplier takes larger area than the constant multiplier

employed in the Chien search, the saving on area-latency

product is still significant, as will be shown in Section IV. In

addition, the diagonal-sharing technique mentioned above also

helps reduce the gate counts effectively.

In addition, compared to the straightforward implementation

with long division that requires (𝑚 − log2(𝑡))𝑡2 multipliers,

the proposed algorithm only needs approximately
3

4
(𝑚 −

log2(𝑡))𝑡2 multipliers, reducing gate counts by roughly 25%.

This saving is achieved by pre-computing the inverse

polynomial Λ̂𝑟(𝑥).

IV. DESIGN EXAMPLE

In this section, the proposed eligibility checking circuit is

implemented for a (4200, 4096) code over GF(213). Inversion

of Λ𝑑Λ

−1 and block III are pipelined with block II and III. The

process of eligibility verification takes 11 clock cycles.

Comparisons of gate counts and critical path delay are

summarized in Table II. In this design example, the finite field

multiplier and squaring circuit proposed in [12] are used. The

multiplier in [12] is not the optimal choice in terms of gate

counts. It is adopted in our design example because of its

simplicity. More sophisticated multipliers such as those in [13]

can be employed to further reduce the gate counts. In the table,

numbers of flip-flops are directly read out from the synthesized

netlists, and combinational gate counts reported by the

employed synthesis tool are converted to equivalent NAND2

gate counts for comparison.

As shown in the table, gate counts of the proposed eligibility

checking circuit are only around 12% of the exhaustive Chien

TABLE II

COMPARISON OF HARDWARE COMPLEXITY AND CRITICAL PATH DELAY

Algorithm Sub-block NAND2 Flip-Flops Critical path delay

Proposed Algorithm w/ polynomial

inversion

Polynomial Inversion 634 94 𝐷𝐴𝑁𝐷 + 6𝐷𝑋𝑂𝑅

Polynomial

Multiplication
39K 104 2𝐷𝐴𝑁𝐷 + 13𝐷𝑋𝑂𝑅

Total 46K 453 2𝐷𝐴𝑁𝐷 + 13𝐷𝑋𝑂𝑅

Exhaustive polynomial search 416K 485 6𝐷𝐴𝑁𝐷 + 6𝐷𝑋𝑂𝑅

c0

c1

c2

c3

cl

a0 a1

bl

a2 a3 al

bl-1 bl-2 bl-3 b0

Fig. 3. Diagram of the proposed polynomial multiplication array. Same

multiplicands 𝑏𝑖 are shared along diagonals, and multipliers 𝑎𝑖 are shared

along columns. Multiplication results 𝑐𝑖 are obtained by adding each row with

XOR trees.

1549-7747 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2016.2581587, IEEE
Transactions on Circuits and Systems II: Express Briefs

 5

search. This number can be further projected to estimate the

overall saving on area of the decoder. In [5], it is shown that the

polynomial searching block occupies an area that is 85% of the

total area of the decoder. Therefore, it is estimated that the

proposed eligibility verification circuit can reduce the area of

the one-pass Chase decoder by 75% while having a similar

performance. Furthermore, thanks to the polynomial inversion

step, the critical path delay of the proposed circuit is reduced to

a value similar to the one of the Chien search.

The proposed design and the conventional Chien search

block are synthesized in 65 nm technology using Synopsys

Design Compiler. The synthesized designs are then

automatically placed and routed with Cadence Encounter.

Areas of the obtained layouts are reported in Table III. Netlists

obtained after place and route are simulated using Synopsys

Finesim with extracted interconnect parasitics. Power

consumption and critical path delay are simulated. The

maximum clock frequency reported in Table III is calculated

according to the simulated critical path delay with a 10%

margin. As noted from Table III. The proposed eligibility

checking circuit is 20 times more power-efficient than the

conventional exhaustive Chien search. This number is larger

than the area saving ratio. This is mainly because conventional

Chien search has a larger activity factor.

TABLE III

SUMMARY OF THE PROPOSED DESIGN

 This work Conventional

exhaustive Chien

search

Equivalent NAND2

gate count

49K 418K

Area after place and

route

67,600 µm2 640,000 µm2

Power consumption

@ 1.2 V & 400MHz

21.9 mW 408 mW

Maximum clock

frequency

568 MHz 455 MHz

V. CONCLUSIONS

In this paper, we present a novel eligibility verification

algorithm aiming to avoid the area and power consumption

penalty incurred by the parallel Chien search in a conventional

one-pass Chase soft-decision BCH decoder. The proposed

algorithm can effectively check the correctness of a derived

error locator polynomial by counting the number of roots it has.

The root-counting problem is transformed into a polynomial

modulo problem, which can be efficiently solved by repeated

squaring. In addition, an iterative polynomial inversion

algorithm is presented to reduce the area and the critical path

delay. A hardware architecture for the proposed algorithms is

also presented in this paper. Hardware complexity is carefully

examined. A design example is implemented for a (4200, 4096)

code over GF(213). The obtained gate counts and critical path

delay are compared with a conventional design. Our newly

proposed design achieves more than 88% area reduction while

having a similar critical path delay. This translates into a 75%

reduction in the overall decoder area. The proposed design is

also placed and routed. The transistor-level simulation shows

that, with a similar critical path delay compared to the

conventional method, a 95% power saving is achieved.

ACKNOWLEDGEMENT

We would like to thank Dr. Jyrki Lahtonen for inspiring

discussion on the eligibility verification algorithm. We are also

grateful to Dr. Jiangli Zhu for discussion on the conventional

implementation of a one-pass Chase soft-decision BCH decoder

in [5]. We would also like to thank anonymous reviewers for

their valuable comments.

REFERENCES

[1] D. Chase, "Class of algorithms for decoding block codes with

channel measurement information," Information Theory, IEEE

Transactions on, vol. 18, pp. 170-182, 1972.

[2] Y. Chia-Hsiang, H. Ting-Ying, L. Mao-Ruei, and U. Yeong-Luh,
"A 5.4 µW Soft-Decision BCH Decoder for Wireless Body Area

Networks," Circuits and Systems I: Regular Papers, IEEE

Transactions on, vol. 61, pp. 2721-2729, 2014.
[3] L. Yi-Min, C. Chih-Lung, H.-C. Chang, and L. Chen-Yi, "A 26.9 K

314.5 Mb/s Soft (32400,32208) BCH Decoder Chip for DVB-S2

System," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 2330-
2340, 2010.

[4] W. Yingquan, "Fast Chase Decoding Algorithms and Architectures
for Reed-Solomon Codes," Information Theory, IEEE Transactions

on, vol. 58, pp. 109-129, 2012.

[5] Z. Xinmiao, Z. Jiangli, and W. Yingquan, "Efficient one-pass chase
soft-decision BCH decoder for multi-level cell NAND flash

memory," in Circuits and Systems (MWSCAS), 2011 IEEE 54th

International Midwest Symposium on, 2011, pp. 1-4.
[6] Z. Xinmiao, "An Efficient Interpolation-Based Chase BCH

Decoder," Circuits and Systems II: Express Briefs, IEEE

Transactions on, vol. 60, pp. 212-216, 2013.
[7] I. Giacomelli, "Improved Decoding Algorithms for Reed-Solomon

Codes," arXiv preprint arXiv:1310.2473, 2013.

[8] W. Yingquan, "New List Decoding Algorithms for Reed-Solomon
and BCH Codes," Information Theory, IEEE Transactions on, vol.

54, pp. 3611-3630, 2008.

[9] D. Costello and S. Lin, "Error control coding," New Jersey, 2004.
[10] J.-P. Deschamps, Hardware implementation of finite-field

arithmetic: McGraw-Hill, Inc., 2009.

[11] M. Sudan, "Algebra and Computation," Cambidge, MA,2012.
Available:

http://people.csail.mit.edu/madhu/ST12/scribe/lect06.pdf

[12] Z. Xinmiao and K. K. Parhi, "Fast factorization architecture in soft-

decision Reed-Solomon decoding," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 13, pp. 413-426, 2005.

[13] A. Halbutogullari and C. K. Koc, "Mastrovito multiplier for general
irreducible polynomials," IEEE Transactions on Computers, vol.

49, pp. 503-518, 2000.

