

- The ITRS Look into Future (International Technology Roadmap for Semiconductors)
- Hierarchy of Mesoscopic Transport
- NanoMOS Device Modeling
- Gate Leakage Current
- > Engineering High-*k* stack Gate Dielectric
- > Other Leakage Components

he roa	dmap	o into	the	futur	e 201
Year	2003	2004	2005	2006	2007
Feature size (nm)	100	90	80	70	65
DRAM	4G	4G	8G	8G	16G
	2008	2009	2010	2015	2018
Feature size (nm)	57	50	45	25	18
DRAM	16G	16G	32G	64G	128G

7

	Wigner Function Models	
	(1) Density matrix	
	$ ho(x,x';t)=\sum\limits_{j}A_{j}\psi_{j}(x;t)\psi_{j}^{*}(x';t)$	(1)
Wigner Function 1	Its time-evolution (Liouville-von Neumann equation)	
	$i\hbar \frac{\partial ho}{\partial t} = [H, ho] = L ho$	(2)
	where L is the Liouville superoprator.	
	(2) Wigner distribution function	
	Taking the Fourier transform \Rightarrow the Wigner function	
	$f(x, k, t) = \frac{1}{\pi} \int_{-\infty}^{\infty} dy \psi^*(x + y; t) \psi(x - y; t) e^{2iky}$	(3)
	The time evolution of the Wigner function	
	$\frac{\partial f(z,k)}{\partial t} = \frac{-\hbar k}{m^*} \frac{\partial f(z,k)}{\partial x} + \left(\frac{\partial f(z,k)}{\partial t}\right)_C$	
	$-\frac{1}{2\pi\hbar}\int_{-\infty}^{\infty}dk'\left\{2\int_{0}^{\infty}dySin([k-k']y)\left[V\left(z+\frac{y}{2}\right)-V\left(z-\frac{y}{2}\right)\right]\right\}f(z)$:, <i>k'</i>)
	$= \frac{-\hbar k}{m^*} \frac{\partial f}{\partial x} + \sum_{\lambda \neq d} \frac{1}{\lambda!} \frac{\partial^{\lambda} v(x)}{\partial x^{\lambda}} \left(\frac{\hbar}{2i}\right)^{\lambda-1} \frac{\partial^{\lambda} f}{\partial p^{\lambda}}$	(4)
	in the classical limit -+	
	$\frac{\partial f}{\partial t} = \frac{-hk}{m^*} \frac{\partial f}{\partial x} + \frac{\partial v}{\partial x} \frac{\partial f}{\partial p}$	
	$= -v\frac{\partial f}{\partial x} - F\frac{\partial f}{\partial p}$	(5)
	The device is assumed to obey kinetic equation	
	$\frac{\partial f}{\partial t} = \frac{L}{i\hbar}f + Cf$	(6)
	where C is the collision superoperator	
	$Cf(x,k,t) = \int dk' \left[W_{kk'}f(x,k',t) - W_{k'k}f(x,k,t) \right]$	(7)
	where $W_{\mathbf{k}\mathbf{k}'}$ is the transition rate from k' to k , etc.	

Flash Memory Design Tradeoffs

Good engineering of the Nitrogen content can satisfy both the requirements for the program/erase current and the retention current.

The tunneling current satisfies the requirement of Retention Current, Iret ≤ 10E-16 A/cm² for the Nitrogen content of 10%, 20%, and 30%.

The tunneling current satisfies the requirement of Programming/Erase Current, Iprog > 0.1 A/cm^2for the cases with the Nitrogen content of 20%, 30%, 40%, and 50%, respectively.

The tunneling current increases with increasing nitrogen content. If the nitrogen content to fall into 20%-30% range, it will satisfy both the basic requirements for programming and data retention.

The interplay of the barrier height and dielectric constant in the high-k dielectric due to N-incorporation and control may enable us to obtain favorable device parameters. Professor Pinaki Mazumder

Theoretical Formulation: Model

- Contacts
- Spacers
- Quantum Dot Layers
- Inter-region coupling
- Current density per incident phase
- Integration over supplied phases
- Net current per carrier and sum over carriers

Model Virtues

- Implementation based on external storage
 - High computation-to-disk access ratio
 - Small RAM footprint
- Design and provisions for numerical stability
- Model description extensible to systems with other types of symmetry
 - Lateral eigenfunction selection
- Describes large family of device constructions
- Extensible to anisotropic systems with diagonal effective mass tensors

