Technology and Layout-Related Testing of Semiconductor RAMs

Prof. Pinaki Mazumder

The University of Michigan Ann Arbor, MI 48109 Phone: 313-763-2107 mazum@eecs.umich.edu

RAM Research Overview

Circuit	Test	Error	Self	Compiler
Techniques	Algorithms	Correction	Repair	
 DFT for DRAM DFT for CAM DFT for random test BIST for RAM BIST for CAM ASIC for memory testing 	 Parallel PSF Parallel parametric tests Parallel stress tests Tests for embedded CAMs Tests for device-related faults (HEMT) Board-level testing 	 Double-bit ECC Parallel signature analyzer based ECC Projective geometric code Radiation study Reliability analysis 	 Pseudo-analog adaptive circuits for self-repair Digital adaptive circuits for self- repair 	 RAM compiler Self-testing Self-repair ROM compiler Self-testing Self-repair

- Books written by P. Mazumder
 - Testing and Testable Design of High-Density RAM, 1996
 Fault Tolerance of RAM, 1998
- *****

Outline of the Talk

- RAM Fault models / test complexity
- DRAM Technology-related faults/tests
- DRAM soft errors
- BIST for embedded memories
- Random-pattern testing
- SRAM test techniques
 - Techniques for cell-related faults
 - Techniques for device-related faults
- Conclusion

Issues Addressed

- What testing problems we encounter in giga-bit DRAMs.
- How to test technology-related faults.
- How to design BIST for embedded RAMs.
- How to test small-size memories by random patterns.
- How soft-error occurs in DRAM and what ECC.
- What type of technology-related faults occur in SRAMs due to masking and parametric defects and how to test them.
- What type of technology-related faults occur in SRAMs due to device scattering, and how to test them.

Fault Model for RAM

Conventional Test Algorithms

Non-march Tests

- Checkerboard
- Galpat/Ping-Pong
- GalCol
- GalRow
- Walking 1/0
- Butterfly
- Sliding Diagonal
- Divide and Conquer

March Tests

- MSCAN
- ATS
- Marching 1/0
- MATS++

 $\rightarrow O(N) \approx 4N$ $\rightarrow O(N^{2})$ $\rightarrow O(N^{1.5})$ $\rightarrow O(N^{1.5})$ $\rightarrow O(N^{2})$ $\rightarrow O(N \log N)$ $\rightarrow O(N^{1.5})$ $\rightarrow O(N^{1.5})$ $\rightarrow O(N^{1.5})$

 $\rightarrow 4N$

 $\rightarrow 4N$

- Stuck-at faults
- Transition faults
- Coupling faults

- $\rightarrow \frac{14N \ [\Uparrow(w_0), \, \Uparrow(r_0, w_1, r_1), \, \Downarrow(r_1, w_0, r_0), \, \Uparrow(w_1), \, (r_1, w_0, r_0), \, (r_1, w_0, r_0), \, (r_1, w_1, r_1)]}{\Uparrow(r_1, w_0, r_0), \, (r_0, w_1), \, (r_1, w_0, r_0)]}$
- MARCH-X (6N), MARCH-C (11N), MARCH-A (15N), MARCH-Y (8N), MARCH-B (17N)
- 3-Coupling Faults $\rightarrow 4N\log N + 18N$
- Moving Inversion (MOVI) $\rightarrow N \log N$

Time Required for Testing RAMs

Tests	4M (1994)	16M (1996)	64M (1998)	256M (2000)	1G (2002)	4G (2004)
3-Cou- pling	2m 28s	10m 45s	46m 35s	3h 21m	14h 20m	2d 13h
MARCH	2.1s	8.4s	33s	2m 14s	8m 57s	35m 47s
GALPAT	41d	22 month	29 years	457 years	7312 year	1e5 year
Sliding D.	1h 55m	15h 16m	5 d	41d	226d	7 years
PSF (K=5)	21s	83s	5m 34s	22m 15s	1h 29m	5h 56m
	8h 39m	2d	11d	2 month	11 month	4.5 years
Row-PSF	4m 2s	18m 31s	1h 24m	6h 18m	28h 8m	5 d
	43m 56s	3h 35m	17h 16m	3d 10h	16d	2.5 month

Cycle time: $T_{\rm C} = 50 \, \rm ns$

Testable Memory Design

Technology-Related Faults

- *I_W:* Weak inversion current *I_F:* Field inversion current
- I_B : Bulk or dark current

Column-Pattern-Sensitive Fault

Technology-Related Faults

Bit-Line to Word-Line Crosstalk

Testing of Technology-Related Faults

Proposed three parallel algorithms:

- Algorithm 1: Parallel Parametric Walking Test
 - Test Complexity: $10\sqrt{N}\tau_A + 6\tau_R$; $\tau_A \rightarrow \text{Access time}$, $\tau_R \rightarrow \text{Refresh time}$.
- Algorithm 2: Bit-line and Word-line Decoders Test
 - Test complexity: $20\sqrt{N}\tau_{A} + 2\tau_{R}$
- Algorithm 3: Power-supply Voltage Transition Test
 - Test complexity: $4\sqrt{N}\tau_{A} + 2\tau_{R}$

Algorithms and their Coverage of Parametric Faults				
Fault Type	Algorithm 1	Algorithm 2	Algorithm 3	
Weak-inversion current	No	Yes	Yes	
Field-inversion current	Yes	No	No	
Dark current	Yes	No	No	
Gate short	Yes	Yes	Yes	
Multiple selection	No	No	Yes	
Single-ended write	Yes	Yes	Yes	
Bit Line Voltage Imbalance	No	Yes	No	
Bit Line to Word Line Crosstalk	No	Yes	No	
Transmission-Line Effect	Yes	No	No	

Transistor Count Overhead = $2\sqrt{pN} + p\log N - p\log p + 12p$; $p \rightarrow \#$ of Subarray

Parallel PSF Test

А	ll possible	SSPSFs an	d SDPSFs	
Fault Type		Fault	Notation	
SSPSF	↑/000,	↑ /100,	↑ /010,	↑ /110,
	↑ /001,	↑ /101,	↑ /011,	↑ /111,
	↓ /000,	↓ /100,	↓ /010,	↓ /110,
	↓ /001,	$\downarrow/101$,	↓ /011,	↓ /111,
SDPSF	0/↑00,	0/↑10,	0/↑01,	0/↑11,
	1/↑00,	1/↑10,	1/↑01,	1/↑11,
	0/↓00,	0/↓10,	0/↓01,	0/↓11,
	1/↓00,	1/↓10,	1/↓01,	1/↓11,
	0/0↑0,	0/1↑0,	0/0↑1,	0/1 ↑ 1,
	1/0↑0,	1/1 ↑ 0,	1/0↑1,	1/1 ↑ 1 ,
	0/0↓0,	0/1↓0,	0/0↓1,	0/1↓1,
	$1/0 \downarrow 0$,	$1/1\downarrow 0$,	1/0↓1,	1/1↓1,
	0/00 ↑,	0/10 ↑,	0/01 ↑,	0/11 ↑,
	1/00 ↑,	1/10 ↑,	1/01 ↑,	1/11 ↑,
	0/00↓,	0/10 ↓,	0/01↓,	0/11↓,
	1/00 ↓,	1/10 ↓,	1/01 ↓,	1/11 ↓,

Comparison of Different PSF test algorithms

1	<u>.</u>		0	
RAM Size	256 Kb	1 Mb	4 Mb	16 Mb
No. of Partitions (p)	4	8	8	16
Hayes' Test $(3\mathbf{k}+2)2^{\mathbf{k}}\mathbf{n}$	28.5 s	114.1 s	456.3 s	1825.3 s
$\frac{(c + 2)^2}{Suk \& Reddy's Test}$ (k+5)2 ^{k1} n	8.4 s	33.6 s	134.2 s	536.9 s
Proposed Test $195 (n/pe)^{0.5})$	9.2 ms	12.8 ms	25.6 ms	36.4 ms

Write on even/odd bit lines Read through parallel detector Tessellation reduces test complexity

COPYRIGHT © 1997 BY PINAKI MAZUMDER http://www.eecs.umich.edu/~mazum

Deterministic BIST for Embedded Memories

Covers SAF, TF, PSF, CF

Hamiltonian Cycles

13

H7

H8

H6

COPYRIGHT © 1997 BY PINAKI MAZUMDER http://www.eecs.umich.edu/~mazum

H5

BIST Implementation of Embedded RAMs

A-F, F ₁... F_{p-1}are J-K Flip-Flops G-J are D Flip-Flops

Test Size Optimality versus BIST Hardware

Component	Hamiltonian	Eulerian	Extra
	Tour	Tour	Component
	34w + 2b + 64	33w + 2b + 64	
Flip-flop	7+p	10 + <i>p</i>	3
MUX (4 to 1)	0	4	4
MUX (2 to 1)	1	2	1
XOR Gate	3	4	1
OR Gate	1	8	7
AND Gate	3	15	12
Inverter	1	1	0

Random Testing of Embedded Memories

Random Testing of Embedded Memories

DFT for Random Testing

Soft Error in DRAMs

The Soft-Error Rate Simulation System

http://www.eecs.umich.edu/~mazum

Double-Error Correcting Codes

Technology-Related Tests for SRAMs

(for stuck-open faults and static data loss)

Defect Models in SRAM

PSF induced by means of a diodeconnected P-type transistor

PSF caused by oxide short and a weak coupling capacitor

PSF caused by open fault and a weak coupling capacitor

PSF caused by bridging fault and a weak coupling capacitor

Dynamic Current (I_{DD}) Testing

- Diode-connected transistor short
- Open Fault

- Gate oxide short
- Bridging faults
 - Use current monitors for:
 - Voltage transient
 - Ground transient

Fault Models for SRAMs

Open gate fault and its equivalent circuit

High Electron-Mobility Transistor

Defect Classification in GaAs SRAMs

Primary defects

Material-related: compositional purity, crystalline perfection, control of stoichiometry

Examples:

- Threshold voltage variation
- Mobility degradation
- Charge-trapping
- Oval defects
- Kink effect in I-V characteristics Threshold voltage spread: $V_{TE} = 0.278 \text{ V}, \sigma(V_{TE}) = 11.3 \text{ mV}$ $V_{TD} = -0.602 \text{ V}, \sigma(V_{TD}) = 14.2 \text{ mV}$

Secondary defects

- ♦ Wafer-processing-related
- Examples:
 - Stuck-at faults
 - Bridging faults
 - Ohmic contact degradation

Gallium Arsenide HEMT RAMs

Basic RAM Cell

$$V_{DD} = 1V, V_{H} = 0.8V, V_{L} = 0.2V$$

 $\mu_{\text{HEMT}} = 20\mu_{\text{Si}}(300^{\circ}\text{K})$

$$\mu_{\text{HEMT}} = 200\mu_{\text{Si}}(77^{\circ}\text{K})$$

Cross-sectional View

Read/Write Operation

Goal: To determine the range of the V_{TD} and V_{TE} for which V_1 at the end of read does not increase above V_T of T_2 .

Write Operation

Read/Write Errors

Effect of Parameter Variations

		۲V	ΓE	
VTD	0.1V	0.3V	0.5V	0.6V
0.1V	Error	ОК	ОК	Error
0.3V	ОК	ОК	ОК	δ> 100μs
0.5V	ОК	δ> 100μs	δ > 100μs	Error
0.6V	δ > 100μs	δ> 100μs	Error	Error
0.7V	δ> 100μs	Error	Error	Error

Catastrophic Failure Modes

Canonical Set of Resistive Paths

- 1. Bit to word-line
- 2. Word-line to storage node
- 3. Storage to power supply
- Storage to complementary node
- 5. Storage to ground
- 6. Bit-line to storage node

- Resistance shorts between transistor electrodes (GS,GD) increases leakage currents
- Bridging of metal lines: shorts between two adjacent signals
- Stuck-open transistors

Read and Write Errors

Read and Write Errors Caused by Different Failure Modes

Gate-source short on transmission gate - bit line to word line					
Resistance (ohms)	Write	Read	Comments		
R1: 100	Write 0 fails	Weak 1	Write 0 fails		
	Write 1 delay < 100 ps		Write / Read 1 slow		
500	Write 1 delay > 100 ps	Weak 1			
	Write 0 fails				
1000	Delay $> 100 \text{ ps}$	Read 0 fails			
2000	Delay > 150 ps	Same as above			

Gate-source short on transmission gate: word line to cell

Resistance (ohms)	Write	Read	Comments
R2: 100	Cell follows word line		Cell follows word line
500	Weak 1 - decays after 22 ps	Read 1 error	
1000	Weak 1 - decays after 60 ps	Read 1 error	
2000	Weak 1 - decays very slowly	OK	Data retention problem
5000	OK	OK	ОК

Coupling between cells of the same bit line due to a bit line to word line short

in one of the cells					
Resistance (ohms)	Write	Read	Comments		
100	Write 1 fails	Read error			
500	Write 1 fails	Read error			
1000	OK	Read 1 error	Cell flips to 0 when read		
2000	OK	Read 1 error			
5000	OK	OK	ОК		

Parametric Testing for Layout Defects

Write operation followed by three read operations, the last one causes the cell to change states

Fault Type	Causes	Tests
Stuck-at Simple coupling	Parameter variations, Resistive bridging, Leakage current (parametric)	8N March Test
Stuck-open Delay faults	Resistive Bridging / Leakage Currents	At-speed Test (8N)
Data retention Row/Column Pattern Sensitive	Missing / stuck-open transistors Resistive Bridging / Leakage Currents (parametric)	Temperature and voltage stress with stuck-at tests or exhaustive row/column patterns, Sliding diagonal

GaAs SRAM Faults

Design-Related Faults

- Causes: Process and temperature variations causing threshold voltage shift of load and enhancement devices.
- Fault Types: Delay faults + erroneous read/write operations
- Tests: Perform reads and writes and compute the access delays
- Catastrophic Faults
 - Causes: Process and material-related gross defects
 - Fault Types: Shorts between transistor terminals & metal lines+ Stuck-open transistors
 - Tests: Sliding diagonal + tests for shorts and opens

Concluding Remarks

- Technology and layout-related testing performs accurate faultmodeling from a circuit and layout point of view.
- Device and circuit-specific tests for SRAMs have been described. Main techniques:
 - Process and circuit simulation
 - Soft-defect detection (SDD)
 - Quiescent power supply current (I_{DDQ})
 - Dynamic power supply current (I_{DD})
- Design for testability and parallel test algorithms for DRAMs have been described.
- Deterministic and pseudorandom BIST for embedded RAMs have been described.
- Parametric failures and soft errors in DRAMs with trench capacitors have been described.

Masking Faults

Fault Classification

Testing of Device Spread

Delay Time Testing for SRAM

Simulation test pattern

Bit-line model

Simulation parameters for three generations of process technology

Proc.	# Memory Cells						Cell Size (μ^2)	PMOS Bit-line Load L/w (μ^2)		Supply V.
	1024			2048						
	CL	CB	$\mathbf{R}(\mathbf{\Omega})$	CL	СВ	$R(\Omega)$		$\Delta \mathbf{V} =$	$\Delta \mathbf{V} =$	
	(pf)	(pf)		(pf)	(\mathbf{pf})			200 mV	30 m v	
0.8- μ	0.194	1.353	683	0.388	2.705	1365	49.30	1.2/6.0	1.2/30	5.0
1 Mb										
0.5-μ 4 Mb	0.187	0.853	638	0.374	1.718	1277	18.96	0.9/4.0	0.9/20	5.0
0.35-μ 4 Mb	0.238	0.412	497	0.476	0.824	995	7.29	0.6/2.6	0.6/13	3.3

CL: metal1 intermetal capacitance, CB: metal1-poly capacitance

Delay Time Testing for SRAM

Simulation test pattern

Bit-line model

BISRAMGEN

Built-in Self-Repair of VLSI Macrocells

- What?
 - Inclusion of circuitry that can **automatically** test and repair faulty components
- Why?
 - Improving the production yield with submicron CMOS technologies
 - Improving the mean time to fail and fault-tolerance during field use
 - Reducing the difficulty and cost of external field repair for embedded VLSI circuits, and in hazardous outer space and oceanic applications

In short, *built-in self-testing* (BIST) alone is not enough to deal with yield and reliability problems associated with modern VLSI technology

Silicon Compilation

What?

Fully automatic layout generation for CMOS VLSI macrocells

Why?

- To reduce the design cycle time and increase the designer's efficiency
- Layout quality can closely emulate full-custom layout quality
- May achieve process and design-rule independence, portability and flexibility

Why another CAD tool?

- VLSI technology is progressing very aggressively and CAD tools for physical design are lagging behind
- Major challenges: achieving timing targets, ensuring yield and reliability, ensuring testability and fault-tolerance, keeping cost low

Silicon Compilation of RAMS

- Introduced in 1986 by Texas Instruments (RAMGEN)
- Some state-of-the-art RAM compilers:
- For simple RAM arrays without BIST and BISR:
 - CDARAM Compiler (for single and multiport RAMs) [Cascade Design Automation and Mitsubishi] (1990) [Shinohara, et al., Custom Integrated Circuits Conf.]
 - MEMORIST Compiler [Motorola and Mentor Graphics] (1992) [Tou,1992 IEEE J. Solid-State Circuits]
 - ARC GaAs MESFET RAM compiler [The University of Michigan] (1995) [Chandna, 1995, Ph.D. Thesis]

For BIST RAMs:

 BIST RAM Generator with CADENCE ES2 SOLO 2030 [IMAG/TIM3 and Cadence] (1992) [Kebichi and Nicolaidis, 1992]

For BISR RAMs:

~

BISRAMGEN [The University of Michigan] (1996) [Chakraborty and Mazumder]

Overview of BISRAMGEN

BISRAMGEN

Self-test Technique Used by BISRAMGEN

Test chosen: Inductive Fault Analysis Based IFA-9 (or 9N test)

Fault coverage:

- Stuck-at faults
- Address decoder faults
- Transition faults
- Coupling faults: unlinked idempotent and inversion coupling, pairwise state coupling
- **Data retention** faults: RAM disabled for two 100ms delays

March notation:

Two-pass testing:

Pass 1: Faults are detected and faulty addresses stored in a table

 Pass 2: The RAM is re-tested with faulty address references being substituted by the mapped redundant addresses

BIST/BISR Circuit Design

Finite State Machine for Control Unit

- PLA-based
 - Stores an *espresso*-minimized version of the state table

State Register

- Uses 6 D Flip-Flops to encode 59 states
- 6 state bits together with 7 status bits are used to address the PLA rows

Test Address and Data Generators

 Binary up-down counter, and Johnson counter, respectively, with 0 and max. count detection logic

Reconfiguration Circuitry

 Translation lookaside buffer (TLB) using a novel scheme for effective zero-delay penalty address diversion

BIST/BISR Circuit Design (contd.)

Static and Dynamic RAM Array Design

- Uses wide-word organization and column mux'ed addressing, for better bandwidth
- ♦ Single-port architecture
- Simplified read/write circuitry: write select muxes, bitline pullup transistors, sense amplifier latch
- Specified by geometry parameters: bpc (=bits per column), bpw (=bits per word), N (=number of non-spare rows), S (=number of spare rows)
- Word-line drive circuitry includes multi-input NAND decoders and drivers
- For DRAMs: 4T cells are used and the same sense amplifiers are used for both read and refresh, in time-multiplexed mode

Characteristics of BISRAMGEN

- Process independence
- **Buffer sizes** of various components can be user input
- Does not use any commercial standard cell library
- **Fully automatic:** no netlist info needed
- Hierarchical place and route
- Low area-overhead BIST and BISR design
 Three layers of metal for routing

Sample Layout Plot

(32 kilobyte SRAM)

Process: CDA0.7μ3m1p CMOS

RAM geometry parameters:

- Number of words = 4096
- Bits per word = 64
- Bits per column (i.e., degree of column-multiplexing) = 8
- Number of spare rows = 1
- Buffer size in RAM array = 1 (i.e. minimum buffer size)
- Strap space = 1 every 32 cells
- Layout area is about 15.5 mm²
- Number of transistors is about 1.7 million
- Note: Due to column-multiplexing, 1 spare row can replace at most
 8 faulty words

Sample Layout Plot (contd.)

BISRAMGEN

Yield Increase with BISR

Number of rows = 1024, bits per column = 4, bits per word = 4

Chip yield is proportional to embedded RAM yield, since chip yield is proportional to the product of the yield of component macros and wiring

Reliability Improvement with BISR

Reliability for a RAM with BISR with a defect rate of 0.001%/kh per memory cell; the RAM has 1024 regular rows, with *bpc* = 4 and *bpw* = 4

BISRAMGEN

Improvement of MTTF with BISR

MTTF for a RAM with BISR with a defect rate of 0.001%/kh per memory cell; the RAM has 1024 regular rows, with *bpc* = 4 and *bpw* = 4

In contrast, MTTF without BISR would only be $1/(10^{-8} \times 16^{*} \times 1024) = 6103$ hours

Improvement in Total Manufacturing Cost

Total manufacturing cost per packaged and tested chip for various microprocessors; onchip caches implemented with 2 spare rows

Name	Package Pin	Die Cost without BISR (\$)	Die Cost with BISR (\$)	Package Cost (\$)	Test & Assembly Cost (\$)	Total cost without BISR (\$)	Total cost with BISR (\$)
Pentium	PGA/ 273	68.00	27.55	25.00	25.00	118.00	77.55
Power PC 601+	CQFP/ 304	24.00	14.33	25.00	20.00	69.00	59.33
Alpha 21064	PGA/ 431	149.00	36.07	30.00	23.00	202.00	89.07
Super Sparc+	PGA/ 293	282.00	47.82	20.00	34.00	336.00	101.82
MIPS R 4400SC	PGA/ 447	38.00	28.98	50.00	28.00	116.00	106.98
HP PA 7100	PGA/ 504	74.00	25.75	35.00	16.00	125.00	76.75

Die Floorplans of Microprocessors

POWER PC604

Die Floorplans of Microprocessors

BISRAMGEN

Area Overhead with BIST and BISR as Percentage of Chip Area

Percentage of overall chip area occupied by our proposed BIST/BISR circuitry

Name	On-chip cache (kilobytes)	On-chip cache (% floor-plan)	% Overhead w.r.t. cache	% Over-head w.r.t. chip
TI 320C80	50	22	4.0	0.88
Pentium P54C	256	26	1.2	0.31
Motorola68060	24	20.4	4.3	0.88
Power- PC 604	16-32	22.3	4.7	1.05
HyperSPARC	128/256	37.3	1.2	0.44
Alpha 21164	104	37.8	1.3	0.49

BISRAMGEN

How Many Spares to Use?

- Depends on targeted reliability (at a specific time, T), targeted yield and targeted area overhead
- Estimated by a table-driven, linear search-based, quadratic optimization approach
- Algorithm:
 - **Input:** Targets R_0 , Y_0 , A_0 , and C (the number of bits of RAM storage required)
 - Output: Numbers S and N that denote the number of spares and the number of rows, respectively
 - **Objective:** To minimize *F*, the sum of squared deviations from targets
 - Approach: Construct N x S tables of discrete values for yield, reliability and area overhead, with *bpc* ranging over powers of 2 from 8 to 128. For each value of *bpc*, choose (*N*,*S*) to maximize reliability and then perturb S by +/-1 to minimize *F*
- Observation: for small values of T (<20,000 hours), use of 8-16 spare rows is advisable; for higher values of T (> 20,000 hours), optimal spare requirement drops down steadily to about 3-5 for most applications

Built-in Self-repair Scheme

[Karpovsky 91]

- Detects and corrects single address errors only
- Components Reqd Address generator, Bidirectional MISR, T-flip flop reg, set of XOR gates ...

 $t_{fault-tolerant-ROM} = max(max(t_{match}, t_{ROM}), max(t_{match}, t_{precharge}) + t_{sense}) + t_{mux}$

Sample Layout Plot

FTROMgen

Approximate Floorplan of Fault-tolerant ROM

FTROMgen

Timing Analysis, Defect Coverage and Layout Quality Estimation of SRAMs

Pinaki Mazumder

Department of Electrical Engineering and Computer Science The University of Michigan Ann Arbor, MI 48019

Overview of SRAM Compiler

- Process and design-rule portable
- Flex grid cell representation
- User specified array size and aspect ratio
- Power minimization via ATD
- User programmable self-test
- Synchronous or asynchronous design
- Accurate timing analysis by SPICE path-based design cornering
- HDL model generation and back annotation
- Layout quality analysis
- Defect coverage metric

Compaq Cell Representation

Two Compaq SRAM cells represented in SRAM compiler

Row Decoder and Drivers

□ NAND-NOR structure with maximum 12 address inputs

NFET source of intermediate word buffer is controlled by ATD circuit.

Word buffer is automatically sized based on user geometry specification

Column Multiplexer

Column Decoder

Column decoders use a NAND-NOR structure for bpc > 8

□ Maximum bpc = 64

Sense I/O Circuit

Width matched to a multi-bit column

Allows efficient placement of synchronous registers and/or test data generation circuitry in the I/O block reducing area overhead

Power reduction through used of address transition detection

ATD Circuit

Detects address transition using a dummy RAM column

Controls operation of address buffer, word buffer and sense I/O units

Address Buffer

- Address buffer is activated only by address transitions
- ATD circuit controls access to latch in buffer circuit

Synchronous Register Cell

True single phase clocked logic

Edge triggered flip-flop using 8 transistors

Write Enable Buffer

Calibrated delay inverter chain used for asynchronous RAM operation

TSPC register cell with asynchronous reset used to latch enable line in synchronous mode

Test Generator Cells

Timing of 64bx512b RAM Array

In the CELL 1 RAM, the VDD lines of the RAM array run in vertical metal2 whereas the GND lines run in horizontal metal1

In the CELL 2 RAM, the VDD and GND lines of the RAM array run in horizontal metal1

The wide primary horizontal VDD/GND lines are sized based on clock frequency (500 MHz)

Timing Analysis of Large Arrays

High-level timing analysis has limitations

- SPICE simulation of very large netlists for large number of parameter and input signal combinations is highly compute-intensive
- RAM array netlists contain a large number (> 90%) of devices that are inactive during a particular memory operation
- Solution for efficient and accurate timing information
 - Generate reduced SPICE netlist of sensitized address and data path from input to output
 - Model remaining devices and wires by their effective parasitic contribution

Results

- ♦ Greater than 98% reduction in netlist size for moderate array sizes
- Accurate and efficient timing analysis
- Comprehensive design cornering
- Quick feedback to design and optimization tools

Design Cornering of Arrays using Compaq Cells

Automatic SPICE path extraction for various array sizes

♦ 128b - 256Kb

Address and data input generation

Vdd variation

♦ 3.15V to 3.85V

Temperature variation

Optional device parameter variation

♦ VTH0, U0, TOX, XJ, NCH

Automated simulation

Delay measurement

Back annotation to HDL model

64bx512b RAM Array Simulation Comparison

Comparison of Cycle Time for 64x512 RAM array using DEC1 and DEC2 cells

COPYRIGHT © PINAKI MAZUMDER http://www.eecs.umich.edu/~mazum NDR

Layout Quality Estimation and Defect Coverage

Generate small RAM arrays

Defect distribution probability

Defect insertion

♦ 2-D inductive fault analysis

♦ 3-D process induced defects

Fault probability estimation

♦ Quality metric

Fault classification

Netlist generation

March test generation

□ SPICE simulation and defect coverage estimation

Example RAM Array Used for Defect Extraction

2x2 array with cell 1 shown

Defect coverage experiments were conducted on:

♦ 3x3 cell 1 array

- ♦ 3x3 cell 2 array

🖵 Issues

- Obtain defect coverages
- Compare cell quality
- Compare extraction approaches
- Compare results of 2x2 approach with 3x3 approach
 - 3x3 captures all mirroring effects but is much more compute-intensive

Defect Insertion

Inductive fault analysis

- 2-D defect representation
 - Equal bridge and break probability densities
- Masking level
- ♦ Inter- and intra-layer defects
- Process induced defects (UMICH.)
 - ♦ 3-D defect representation
 - Equal conducting and non-conducting defect fractions
 - Layer and oxide thickness specification
 - Choice of defect density functions
 - Defect collapsing

Extracted defects show majority of *faults* caused are bridging in nature

Non-conducting Defect Classification

Nodes	Description	Class
Vdd	If cell Vdd is broken data is lost after some time.	DRF
Vss	W, R1 normal. R0 fails. Cell reads 1.	SAF
Bit	R1 fails, R0 may be successful.	TF
Word	Access transistors off.	SOF
D / ND	Stored data can not be held.	DRF

Conducting Defect Classification

Nodes	Description	Class	
Vdd - Vss	Large steady-state current.	CAT	
Vdd - other	Node is always stuck high.	SAF	
Vss - Word	Access transistors off.		
Vss - other	Node always stuck low.	SAF	
Bit_x - Bit_y	Write to a cell changes data in neighbor.	CF	
Word - other	Word line charged during read/write.	SAF	
D - ND	Equalizes Bit and ~Bit voltage.	SAF	
D_x - D_y	Write operation affects neighbors.	CF	
Bit_x - D_y	Write operation affects neighbors.	CF	

Fault	CEI	_L 1	CELL 2		
	IFA	3-D	IFA	3-D	
Bridge	139	141	109	111	
Break	171	42	122	47	
CAT	0.128	0.198	0.0	0.001	
CF	0.363	0.336	0.463	0.502	
DRF	0.107	0.043	0.149	0.038	
SAF	0.225	0.356	0.272	0.360	
SOF	0.118	0.057	0.113	0.097	
TF	0.058	0.007	0.004	0.004	
Sensitivity	24.3	22.4	23.6	20.9	

Fault Probabilities and Layout Quality: 2x2 Array

Fault	CEI	_L 1	CELL 2		
	IFA	3-D	IFA	3-D	
Bridge	319	158 *	249	122 *	
Break	295	58 *	314	47 *	
CAT	0.120	0.165	0.0	0.001	
CF	0.383	0.371	0.466	0.520	
DRF	0.103	0.053	0.145	0.062	
SAF	0.241	0.357	0.239	0.331	
SOF	0.114	0.047	0.110	0.082	
TF	0.039	0.005	0.040	0.004	
Sensitivity	23.1	22.7	23.9	21.8	

Fault Probabilities and Layout Quality: 3x3 Array

Generalized March Test Generation Framework

User input:

- ♦ Defect statistics file
- RAM array description
- Arbitrary march sequence
- Optional: peripheral circuit netlist
- Programmed test generation
 - Generate or add peripheral circuits
 - Generate SPICE simulation waveforms
 - Create SPICE command file
 - Parse defect statistics file
 - ♦ Generate netlist for each defect
 - Simulate and compare with correct expected output
 - Log results with defect coverage of march test

March 7N and up show complete defect coverage except Vdd-Vss shorts which can be detected by I_{ddg} testing

Conclusions

Cell 1 demonstrated faster access times as compared to Cell 1

Verified by SPICE path extraction of large RAM arrays

 Cell 2 has longer poly lengths on the back-to-back inverters and these are exposed to cross coupling with adjacent cell storage nodes

Cell 2 is more robust as compared to Cell 1

Verified conclusively by our 3-D defect extraction process

- Cell 2 has no Vdd GND overlap leading to reduction of catastrophic shorts
- Cell 1 has greater bit/~bit line to internal storage node overlap
- Results of the two approaches track well for the various examples studied
- 3-D defect extraction is more realistic and captures the artifacts of process induced defects more accurately than 2-D IFA defect extraction
- March 7N tests achieved 100% defect coverage excluding Vdd-Vss shorts for the examples studied
 - The experiments show that physical defects do not manifest themselves into complex functional faults which limit memory test effectiveness

Thus, simple March tests achieve similar defect coverage as more complex testing schemes even though *functional fault* coverages of the tests vary

Future Work

Since simple March test are proven effective for defect coverage, the future work in testing will be:

- Stress testing: Repeated read/write of a single cell introduces stresses that might lead to eventual failure. This must be detected by introducing multiple consecutive read/write operations in the march sequence. Our generalized march test framework will be modified to include address stress, data background stress and timing stress.
- Extension to deep-submicron effects: Currently we address parameter variations of devices in order to address delay faults. This will be extended to account for electromigration, leakage currents and volatility.
- Programmable IDDQ Test: Include onchip Iddq testing circuitry along with existing March test circuitry to account for resistive Vdd-Vss faults that are not detected by functional fault tests.
- Application of defect characterization to memory cell peripheral circuits and logic circuits used in test data and address generation.

To quantify robustness of different decoding and sensing approaches

♦ To improve reliability of testing circuitry

Metal-to-Polysilicon Induced Noise

C1+C3: Coupling Capacitance of Metal and Poly

R1: Resistance of Poly.

Step and Ramp Input Response

 $V_{step}(t) = A \exp(-\alpha t) + B \exp(-\beta t)$ $V_{ramp}(t) = A \exp(-\alpha t) + B \exp(-\beta t) + \gamma$

Peak induced voltage is proportional to coupling capacitance and time constant is proportional to coupling capacitance and polysilicon resistance.

Polysilicon-to-Metal Induced Noise

 $V(t) = A\left(\exp\left(-\frac{1}{RC}t\right) - \exp(-\alpha t)\right) + B\left(\exp\left(-\frac{1}{RC}t\right) - \exp(-\beta t)\right) + C\left(1 - \exp\left(-\frac{1}{RC}t\right)\right)$

- **C_o = poly-to-ground** capacitance C₁ = poly-to-metal coupling
 - capacitance
- $R_1 = poly resistance$
- $R_o = driver resistance$
- R = driver resistance
- C = load capacitance

NDR

Metal-to-Metal Noise

Interconnect Capacitance and Resistance

Technology	1.0 μm	0.5 μm	0.35 μm	0.25 μm	0.18 µm	0.10 µm
Thickness/Width	0.667	0.89	1.5	2	2.5	3.5
Thickness (μm)	1.0	1.0	0.7875	0.75	0.675	0.525
Width (µm)	1.5	0.75	0.525	0.375	0.27	0.15
Metal1 to Substrate (aF/ μ m)	156	126	123	116.5	112	107
Metal1 to Metal1(aF/µm)	16	39.7	46	67.72	91	142
Sheet Resistance (Ω /square)	0.07	0.07	0.089	0.093	0.104	0.13

$$V_{2}(t) = \frac{C_{1}}{C_{T}} \left[V_{1}(t) - \frac{1}{T_{D}} e^{-\frac{t}{T_{D}}} \int_{0}^{t} e^{\frac{\theta}{T_{D}}} V_{1}(\theta) \mathcal{A}_{\theta} \right]$$

 $C_{T} = C_{12} + C_{1}$

$$T_D = C_T \cdot R_{eq}$$

Metal-to-Metal Noise (cont'd.)

Phase Trajectories of Memory Read Process

4×4 Self-Repairable Square Array Architecture

Reconfigurable Array with BISR Circuit

Reconfigurable Array with MUX Switches

Adaptive Repair Circuit for Square Array

Sample Solution of Defective Array

Solution with appropriate MUX settings. MUXs are automatically set by the outputs of adaptive circuit.

Symbolic solution showing how defective elements are replaced by spares.

NDR

Overall Goal of the Proposed Research

Adaptive Circuit for Memory Array

NDR

Adaptive Repair Logic and Fault Pattern Compaction

Self-Repairable Systems

16K X 8 SRAM

Image Processing Array

Adaptive Repair with Hexagonal Mesh

Repairable Hex Arrays

Architecture for Matrix Multiplication

Reconfigurable Hex Mesh

Adaptive Repair for Square Array

Layout Research Overview

LAYOUT ALGORITHMS	PARALLEL MULTILAYER ROUTING	NEW DATA STRUCTURES FOR LAYOUT	LAYOUT ALGORITHMS FOR ON-CHIP PARALLEL PROCESSING
 GENETIC ALGORITHM BASED - multiway partitioning -standard cell placement -macrocell placement -gate matrix DISTRIBUTED GENETIC ALGORITHM 	 HEXAGONAL ARRAY FOR CONCURRENT 3-D MAZE ROUTING MULTILAYER ROUTING MODELS ON POLYMORPHIC ARRAYS SWITCHBOX ROUTING CHANNEL ROUTING MAZE ROUTING AREA ROUTING CHORD ROUTING 	 QUAD TREE DATA STRUCTURE AND PLANAR TESSELLATIONS OCTTREE DATA STRUCTURES AND 3-D TESSELLATIONS 	 ASYMPTOTIC MODELING OF VLSI INTERCONNECT NETWORKS EVALUATION Topological mapping Evaluation criteria Evaluation technique CELLULAR EMBEDDING TECHNIQUES Yield-related layout techniques

