•Bocumer [Ddf version]	EECS 270: Digital Logic Design
"Resume, <u>Full VelSion</u> Relation Results [Consultant d], [Anthing Denser, Edited Denser, Dense Obertant, Technical Densets]	EECS 312: Digital Integrated Circuit Design
Publications: Books [Coauthored]; [Archival Papers; Edited Books; Book Chapters; Technical Reports]	EECS 427: VLSI Design
PDF version of archival papers are available at <u>IEEE Xplore.</u>	EECS 527: VLSI Layout Automation
•Research Accomplishments and Current Projects:	EECS 570: Parallel Architecture
Summary of Accomplishments: 1) Nanocircuits, Nanoarchitectures and CAD Tools for Nanosystems	EECS 579: Digital System Testing
[Overview PPT1], 2) Nanoscale and Very Deep Submicron CMOS VLSI Systems [Overview PPT2],	EECS 598: Nanocircuits and Nanoarchitectures (F 06)
3) Semiconductor Memory Systems (Overview PPT3), and 4) VLSI Lavout Automation (Overview PPT4).	K 42 Education Polyware Developments [MothCurv]
Overview of Sponsored Research Projects: [Overview Chart]	K-12 Education Software Development: <u>IMathourur</u>
	Invited Talks: [Prof. Mazumder's Presentations]
Description of Research Projects:	
 Nanocircuits and Nanoarchitectures using RTD's and Quantum Dots (ONR, NSF, KG) 	NDR Group: Contact Prof. Mazumder at mazum@eecs.umich.edu
 Plasmonics Interconnect Modeling: Nanoarrays, Nanowires and Nanoholes (AFOSR) 	
•Quantum MOS Circuits on CMOS Substrates (DARPA, NSF, TI)	
•Modeling and Simulation Tools for Nano and Quantum Electronic Circuits (DARPA, ONR, NSF, KG)	
•Ultrafast Circuit Design with Compound Semiconductor Devices (DARPA, NSF, NEC, HRL, NL)	
•very Deep Submicron CMOS VLSI Systems Design (ARO, NSF, SM)	
•CMOS Semiconductor memory resting, Fault Tolerance, and Reliability (ARO, NSF, DEC)	
•Full-chip Three-Dimensional Simulation using Finite Difference - Transmission Line Matrix (ONK)	R IBM and GM)
-omoo veor eayour Automation. Gen-repanable memory compliers, riacement and Routing room (peo, bin	
•Very Deen Submicron CMOS VI SI Reliability Issues:	Uomo Pane ni Pinani illa company
+ Electromagnetic Radiation Effects on Digital Circuits (AFOSR)	
+ Simultaneous Switching Noise Effects on Caches and SRAM's (NSF)	
+ Full-Chip Dynamic Noise Modeling (NSF)	httn://WWW.BBCD.UIIIIOII.ouw
+ Differential Quadrature Method for Interconnnect Delay and Timing Modeling (ONR)	
+ Full-Chip Thermal Modeling by Green's Function (NSF, AFOSR)	
Names of Sponsors of Above Research Projects	
(1) National Science Foundation (NSF) (2) Defense Advanced Research Projects Agency (DARPA) (3) Office of Nava	Research (ONR)
(4) Army Research Office (ARO), (5) Air Force Office of Scientific Research (AFOSR), (6) State of Michigan (SM).	
(7) Nippon Electric Company (NEC), (8) Bell Northern Reserach Laboratory (BNR), (9) General Motors (GM),	
(9) Digital Equipment Corporation (DEC), (10) International Business Machines (IBM), (11) NanoLogic (NL).	
(12) Korean Government Tera and Nanoelectronics Research (KG), (13) Texas Instruments (TI), (14) Hughes Research Lab ((HRL)

Research Projects & Sponsors PI: Prof. Pinaki Mazumder, University of Michigan

	AFOSR, ONR	Very Deep Design Tools:	Submicron CMOS		
		Circuits, Therma Chips, Multivaria Dynamic Noise	I Modeling of 3-D te Statistical Timing,		NSF, ONR, DARPA, Industries
NSF, ONR, and DARPA	Nano Circui And Device	t Modeling, S DQM, FDQ etc	SN, Nano	Circuit m Design:	Industries
	Simulation Tools: Q-Spice, VEDICS,		Mesoscale & Nanos Circuits and Archi Plasmonics	scale Devices tectures;	
	QModel, QUECDOE Lay GA	yout synthesis: -based	Memories: Testable Design Compilers Self-repair,		
Industries, A	Dis Lay	tributed out Tools	Panorama	NSF, A	ARO

Quantum/Nano Systems Research Overview Prof. P. Mazumder, NDR Group

Challenges: From Quantum Physics to Circuit Theory and Software Tools

CAD Tools	Circuits	Theory	Fabrication
Q-Spice * QMOS * HEMT/HBT QModel * RTD * Quantum Dots & Wires QUECDOE * 3-D Opt VEDICS * FD-TLM * Full Chip	 New Logic Families MVL Circuits Memories Manopipelining Correlator, DDFS Turbocode Decoder Cellular Nonlinear Networks (CNN) Quantum Dot Image and Video Processors Plasmon Nanowire 	 PDE and ODE based Nonlinear Circuit Analysis Quantum Physics based RTD & QD Modeling FD-TLM Ckt. Simulation 	 SiOz/Si-Ge based QMOS NRL, OSU InP based RTD+HEMT Raytheon InP based RTD+HBT KAIST, HRL GaSb Based RTD+HEMT HRL, ND

Nano-scale CMOS Design Issues Prof. P. Mazumder, NDR Group

EM Effects on VLSI Circuits	Thermal Modeling of a 3-D Chips	Device and Interconnect Modeling	Statistical Timing Analysis	Dynamic Noise Analysis
Chebyshev's Approx & Pade Approx. for Distributed Noise Sources Finite Difference Quadrature Method	Green's Function based full-chip thermal analysis Direct Cosine Transform and IDCT for Fast Computation Hankel Transformation for Fast Computation	Envelope Function based quantum tunnel modeling of Nanoscale CMOS FET Differential Quadrature Method (DQM) for Interconnect Delay Modeling	Multivariate Normal Distributions for multi-input Domino gates Min/Max Correlation Analysis through Recursive Moment computation	Dynamic Noise Margins and Algorithms for Noise Analysis Simultaneous Switching Noise Estimation Coupling Noise Modeling for Automatic Routers

Quantum Tunneling Systems: Prof. Pinaki Mazumder, NDR Group

Multivalued Logic Provides Dense Integration & High Speed

Quantum Integrated **Circuits: Designed at UM** And fabricated by Texas Instruments

Reduces DRAM Power Consumption by X1000

Color Extraction

Image Processing by Quantum Dot Array

Quantum Dot Array for Video Image Processing

RAM Research Overview

Techniques	Algorithms	Error Correction	Self Repair	Compiler
 DFT for DRAM TC-89 DFT for CAM TCAD-88 DFT for random test JETTA-92 BIST for RAM TIE-89 ASIC for memory testing JSSC-91 	Parallel PSF DAC-87, ITC-87 Parallel parametric tests JSSC-89 Parallel stress tests JETTA-94 Tests for device- related faults TCAD-93 Board-level test	 Double-bit ECC JSSC-92 Parallel signature analyzer based ECC JSSC-93 Projective geometric code TC-93 Radiation study Reliability analyzer based 	 Pseudo-analog adaptive circuits for self-repair <i>TCAD-96</i> Digital adaptive circuits for self- repair <i>TCAD-93</i> Generalized adaptive self- repair circuit techniques <i>TCAD-92,93</i> 	 RAM compiler Self-testing Self-repair EDAC-99 ROM compiler Self-testing Self-testing Self-repair ICCD-99 VLSIJ-99

- Books written by P. Mazumder
 - Testing and Testable Design of High-Density RAM, 1996
 - Fault Tolerance of RAM, 2000
 - Circuit Techniques for DRAMs (under preparation)

Layout Research Overview

Layout Algorithms	Parallel Multilayer Routing	New Data Structures For Layout	Layout Algorithms for On-Chip Parallel Processing
 Distributed genetic Algorithm <i>TCAD-93</i> Genetic-Algorithm- Based: multiway partitioning <i>PH-99</i> standard-cell placement <i>VLSIJ-91</i> gate matrix <i>IEE Proc94</i> 	 Hexagonal Array for Concurrent 3-D Maze Routing Multilayer Routing Models on Polymorphic Arrays <i>TCAD-90, TVLSI-93</i> Switchbox Routing <i>IEE Proc95</i> Channel Routing Maze Routing Area Routing Chord Routing 	 Quad Tree Data Structure and Planar Tessellations <i>CVGIP-87</i> Oct Tree Data Structures and 3-D Tessellations 	 Asymptotic Modeling of VLSI <i>ICPP-87</i> Interconnect Network Evaluation <i>TC-87</i> -topological mapping -evaluation criteria -evaluation technique Cellular Embedding Techniques <i>IEE Proc92</i> -Yield-related layout techniques

