Testability Measures

- Origins
- Controllability and observability
- SCOAP measures
- Sources of correlation error
- Combinational circuit example
- Sequential circuit example
- Test vector length prediction
- High-Level testability measures
- Summary

Purpose

- Need approximate measure of:
 - Difficulty of setting internal circuit lines to 0 or 1 by setting primary circuit inputs
 - Difficulty of observing internal circuit lines by observing primary outputs
- Uses:
 - Analysis of difficulty of testing internal circuit parts - redesign or add special test hardware
 - Guidance for algorithms computing test patterns - avoid using hard-to-control lines
 - Estimation of fault coverage
 - Estimation of test vector length

Origins

- Control theory
- Rutman 1972 – First definition of controllability
- Goldstein 1979 – SCOAP
 - First definition of observability
 - First elegant formulation
 - First efficient algorithm to compute controllability and observability
- Parker & McCluskey 1975
 - Definition of Probabilistic Controllability
- Brglez 1984 – COP
 - 1st probabilistic measures
- Seth, Pan & Agrawal 1985 – PREDICT
 - 1st exact probabilistic measures

Testability Analysis

- Involves Circuit Topological analysis, but no test vectors and no search algorithm
 - Static analysis
 - Linear computational complexity
 - Otherwise, is pointless – might as well use automatic test-pattern generation and calculates
 - Exact fault coverage
 - Exact test vectors

Types of Measures

- SCOAP – Sandia Controllability and Observability Analysis Program
- Combinational measures:
 - CC0 – Difficulty of setting circuit line to logic 0
 - CC1 – Difficulty of setting circuit line to logic 1
 - C0 – Difficulty of observing a circuit line
- Sequential measures – analogous:
 - SC0
 - SC1
 - S0

Range of SCOAP Measures

- Controllabilities – 1 (easiest) to infinity (hardest)
- Observabilities – 0 (easiest) to infinity (hardest)
- Combinational measures:
 - Roughly proportional to # circuit lines that must be set to control or observe given line
- Sequential measures:
 - Roughly proportional to # times a flip-flop must be clocked to control or observe given line
Goldstein's SCOAP Measures

- AND gate O/P 0 controllability:
 \[\text{output}_\text{controllability} = \min (\text{input}_\text{controllabilities}) + 1 \]

- AND gate O/P 1 controllability:
 \[\text{output}_\text{controllability} = \sum (\text{input}_\text{controllabilities}) + 1 \]

- XOR gate O/P controllability
 \[\text{output}_\text{controllability} = \min (\text{controllabilities of each input set}) + 1 \]

- Fanout Stem observability
 \[\Sigma \text{or } \min (\text{some or all fanout branch observabilities}) \]

Controllability Examples

More Controllability Examples

- To observe a gate input
 Observe output and make other input values non-controlling

More Observability Examples

- To observe a fanout stem:
 Observe it through branch with best observability

Observability Examples

Error Due to Stems & Reconverging Fanouts

- SCOAP measures wrongly assume that controlling or observing \(x, y, z \) are independent events
 - \(\text{CC} 0 (x), \text{CC} 0 (y), \text{CC} 0 (z) \) correlate
 - \(\text{CC} 1 (x), \text{CC} 1 (y), \text{CC} 1 (z) \) correlate
 - \(\text{CO} (x), \text{CO} (y), \text{CO} (z) \) correlate
Correlation Error Example
- Exact computation of measures is NP-Complete and impractical
- Italicized (green) measures show correct values – SCOAP measures are in red or bold

Sequential Example

Controllability Through Level 0
Circled numbers give level number. (CC0, CC1)

Levellization Algorithm 6.1
- Label each gate with max # of logic levels from primary inputs or with max # of logic levels from primary output
- Assign level # 0 to all primary inputs (PIs)
- For each PI fanout:
 - Label that line with the PI level number, & queue logic gate driven by that fanout
- While queue is not empty:
 - Dequeue next logic gate
 - If all gate inputs have level #s, label the gate with the maximum of them + 1;
 - Else, requeue the gate

Final Combinational Controllability
Combinational Observability for Level 1
Number in square box is level from primary outputs (POs).
(CC0, CC1) CD

Assume a synchronous RESET line.

D Flip-Flop Equations
- Assume a synchronous RESET line.
- \(CC1 (Q) = CC1 (D) + CC1 (C) + CC0 (C) + CC0 (RESET) \)
- \(SC1 (Q) = SC1 (D) + SC1 (C) + SC0 (C) + SC0 (RESET) + 1 \)
- \(CCC (Q) = \min [CC1 (RESET) + CC1 (D) + CC0 (C),
CC0 (D) + CC1 (C) + CC0 (C)] \)
- \(SC0 (Q) \) is analogous
- \(CO (D) = CO (Q) + CC1 (C) + CC0 (C) + CC0 (RESET) \)
- \(SO (D) \) is analogous

Combinational Observabilities for Level 2

Sequential Measure Differences
- Combinational
 - Increment \(CC0, CC1, CO \) whenever you pass through a gate, either forwards or backwards
- Sequential
 - Increment \(SC0, SC1, SO \) only when you pass through a flip-flop, either forwards or backwards, to \(Q, C, D, C, SET, \) or \(RESET \)
- Both
 - Must iterate on feedback loops until controllabilities stabilize

Final Combinational Observabilities

D Flip-Flop Clock and Reset
- \(CO (RESET) = CO (Q) + CC1 (Q) + CC1 (RESET) +
CC1 (C) + CC0 (C) \)
- \(SO (RESET) \) is analogous
- Three ways to observe the clock line:
 1. Set \(Q \) to 1 and clock in a 0 from \(D \)
 2. Set the flip-flop and then reset it
 3. Reset the flip-flop and clock in a 1 from \(D \)
- \(CO (C) = \min [CO (Q) + CC1 (Q) + CC0 (D) +
CC1 (C) + CC0 (C),
CO (Q) + CC1 (Q) + CC1 (RESET) +
CC1 (C) + CC0 (C),
CO (D) + CC0 (D) + CC0 (RESET) +
CC1 (D) + CC1 (C) + CC0 (C)] \)
- \(SO (C) \) is analogous
Algorithm 6.2
Testability Computation

1. For all PIs, \(CC_0 = CC_1 = 1 \) and \(SC_0 = SC_1 = 0 \)
2. For all other nodes, \(CC_0 = CC_1 = SC_0 = SC_1 = \infty \)
3. Go from PIs to POS, using CC and SC equations to get controllabilities – Iterate on loops until SC stabilizes – convergence guaranteed
4. For all POs, set \(CO = SO = \infty \)
5. Work from POs to PIs, Use CO, SO, and controllabilities to get observabilities
6. Fanout stem \((CO, SO) = \text{min branch (CO, SO)} \)
7. If a CC or SC (CO or SO) is \(\infty \), that node is uncontrollable (unobservable)
Final Sequential Observabilities

Test Vector Length Prediction
- First compute testabilities for stuck-at faults
 - $T(x_{sa0}) = C_1(x) + C_0(x)$
 - $T(x_{sa1}) = C_0(x) + C_0(x)$
- Testability index = $\log \sum T(f_i)$

Number Test Vectors vs. Testability Index

High Level Testability
- Build data path control graph (DPCG) for circuit
- Compute sequential depth – # arcs along path between PIs, registers, and POs
- Improve Register Transfer Level Testability with redesign

Improved RTL Design

Summary
- Testability approximately measures:
 - Difficulty of setting circuit lines to 0 or 1
 - Difficulty of observing internal circuit lines
- Uses:
 - Analysis of difficulty of testing internal circuit parts
 - Redesign circuit hardware or add special test hardware where measures show bad controllability or observability
 - Guidance for algorithms computing test patterns – avoid using hard-to-control lines
 - Estimation of fault coverage – 3-5 % error
 - Estimation of test vector length