Emerging Models & Technology

Prof. Pinaki Mazumder,

Univ. of Michigan Program Director Emerging Models & Technologies Computing & Communications Foundations CLSE Directorate National Science Foundation

CCF Division Research Clusters

1. Theoretical Foundations

2. Foundations of Computing Processes and Artifacts

3. Emerging Models and Technologies for Computation (11th Floor, 1115)

	The DiVincenzo Criteria										
QC Approach		Quantum Computation						QC Networkability			
	#1	#2	#3	#4	#5		#6	#7			
NMR	Ô	6	6	e	6		Ô	Ô			
Trapped Ion	6	\diamond	6	e	O		6	6			
Neutral Atom	6	\odot	6	6	6		6	6			
Cavity QED	6	\diamond	6	6	\diamond		6	6			
Optical	6	6	&	6	0		6	0			
Solid State	6	6	6	8	0		ô	Ô			
Superconducting	6	\diamond	6	8	0		ô	Ô			
Unique Qubits	This fie	This field is so diverse that it is not feasible to label the criteria with "Promise" symbols.									
egend: 😒 = a potentially vi 🏠 = a potentially vi 💼 = no viable appre	able approach h able approach h oach is known	as achieved s as been prop	ufficient pro	of of principl re has not be	e en sufficient p	proof of p	orinciple				

Dr. Pinaki Mazunder CORE EMT BUDGET FOR QIS PROGRAM ELEMENT												
Quantum Information Processing	Props. Funde d 2004	Funding Amount 2004	Props Funded 2005	Funding Amount 2005	Props Funded 2006	Funding Amount 2006	Props Funded 2007	Funding Amount 2007				
Quantum Algorithms			5	\$1,165,000			1	\$300,000				
Quantum Hardware	2	\$637,674	3	\$800,000	3	\$925,000	3	\$925,000				
Quantum Communications, Error Correction	2	\$700,000	2	\$706,000	3	\$940,000	2	\$300,000				
Theoretical Modeling	3	\$788,295	4	\$980,000	4	\$945,000	3	\$700,000				
Quantum Measurements			1	\$150,000								
TOTAL	7	\$2,125,969		\$3,801,000	10	\$2,810,000	9	\$2,225,00				
TOTAL (APX.)	7	\$2.1 M	15	\$3.8 M	10	\$2.8 M	9	\$2.2 M				
QIS Funding Needs Boosting QuBIC + ITR @ NSF												

Dr. Pinaki Mazumder

OPPORTUNITIES

Quantum Computing Offers ~ 10,000 Speed Advantages over CMOS, CNT, QD, NW, SET, ... QC is likened with Mount Everest (29,000 ft.), while CMOS, CNT, ... are at its Foothill (19,000 ft.).

CHALLENGES

nanoCMOS, CNT, QD, NW @ Foothill

Quantum Computing @ The Himalayas Summit

No bridging technologies to interface → QCs cannot be used as Ultra Processor like Super Computers (Cray, Fujitsu FACOM, ...) interface with Main Computers

Challenges:

No Bridging Technologies

Quantum Computers are ~ 100,000 more expensive than Pentium Chips → QC will not enter mass PC/PDA/Notebook market for several billions of people.

Quantum Computers are suited for Application Specific Complex Scientific Tasks However, QCs need I/O support to interface with the Surrounding Environment. (Measurement & Sensing of QC's should be High Priority in Research).

Ultimately, Quantum Computers in some form will prove that God indeed plays with dice to solve intractable problems and have fun! Einstein was wrong.

