EECS 427 VLSI Design

Lecture 11: Dynamic Logic Families
Prof. Pinaki Mazumder
Winter 2013

Adapted from Harris, Rabaey, Blaauw, Zhang, Sylvester, and others

Outline

- · Basic domino gate
- Issues in dynamic gates
- · Domino cascading
- · Footless domino
- NORA/Zipper logic
- Multiple-output domino logic
- · Compound domino
- · Dual-rail domino
- Self-reseting domino
- · Limited Switch dynamic logic

Dynamic CMOS

- \Box In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n(n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

© Digital Integrated Circuits^{2nd}

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- □ Inputs to the gate can make at most one transition during evaluation.
- \Box Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_1

© Digital Integrated Circuits^{2nd}

Properties of Dynamic Gates

- □ Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static complementary CMOS)
- \Box Full swing outputs ($V_{OI} = GND$ and $V_{OH} = V_{DD}$)
- □ Non-ratioed sizing of the devices does not affect the logic levels
- □ Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)
 - no I_{sc}, so all the current provided by PDN goes into discharging

© Digital Integrated Circuits^{2nd}

Combinational Circuits

Properties of Dynamic Gates

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{sc})
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- □ PDN starts to work as soon as the input signals exceed V_{Tn} , so V_M , V_{IH} and V_{IL} equal to V_{Tn}
 - low noise margin (NM₁)
- □ Needs a precharge/evaluate clock

© Digital Integrated Circuits^{2nd}

Issues in Dynamic Design 2: Charge Sharing

Charge stored originally on C_L is redistributed (shared) over C_L and C_A leading to reduced robustness

© Digital Integrated Circuits^{2nd}

Combinational Circuits

Charge Sharing Example

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

Combinational Circuits

Solution to Charge Redistribution

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Combinational Circuits

© Digital Integrated Circuits^{2nd}

Issues: Leakage

- Dynamic node is floating during evaluation
 - Leakage current of NMOS can discharge it

Issues: Charge sharing

- In evaluate, dynamic node charge is shared with internal node caps
- Node was discharged in previous cycle

- Issues with precharging internal node:
 - PDN becomes slower (more internal cap.)
 - Higher voltage to discharge

Footless Domino

- Advantages:
 - Faster than classic domino → one less NMOS
 - Why is footer necessary in the first stage?
 - · Input not guaranteed during precharge

Footless Domino

- Disadvantages:
 - Use of different clocks → Can not simply delay the clock (fast inputs during eval)
 - Reduced precharge time for later stages
 - Tradeoff of sizing up PMOS (increase dynamic cap.) vs 1 less NMOS in PDN (footless)
 - But can use a footed stage after a footless stage to recover

Multiple-Output Domino (MODL)

- · Implement more logic per domino stage
- Slowdown top output but more work done
- Very common

Compound Domino

- · Add static gates to evaluate logic
- Need to add half latches to every output node

Compound Domino

- Reduce the number of transistors in a stack (faster)
 - Due to V_{dd} scaling no more than 4 transistors in a stack (Vdd~4*V_{dsat})
 - But use two PMOS in NOR gate to drive output high

Compound Domino

· What static gate can you add?

Self Resetting Domino

- Advantages:
 - No clock
 - Fast eval because no footer
 - More time for pre-charge than standard footless domino

Self Resetting Domino

- Disadvantages:
 - Timing constraints
 - Stability after precharge
 - Sensitive to process variations
 - Very difficult in practice -> pulse everything

Lecture 12 -Static Power

WH 5.3

Adapted from Weste & Harris, and Rabaey & Chandrakashan

Prof. Pinaki Mazumder

Topics

- Leakage mechanisms
 - Subthreshold leakage
 - Gate oxide leakage
- Leakage reduction methods
 - State assignment
 - MTCMOS
 - Dual-Vth design
 - VTCMOS

Leakage mechanisms

- I1: Reverse-bias p-n junction
 - Reverse-biased p-n junctions current: $I_D = I_S \left(e^{v_T} 1 \right)$
 - Typically < 1 fA/mm² (negligible)
 - Depends on area and perimeter of diffusion regions
 - Also: Band to Band tunneling (BTBT)

Leakage mechanisms

P-sub

- I2: Weak inversion or subthreshold leakage current
 - Increased voltage increases drain depletion extending to the source → lowers the potential barrier
 - Dominant effect in modern devices

Subthreshold Leakage

• Subthreshold leakage exponential with V_{gs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{y} V_{sb}}{n v_{T}}} \left(1 - e^{\frac{-V_{ds}}{v_{T}}} \right)$$

- n is process dependent - typically 1.3-1.7

$$- v_T = kT/q$$

See next page for explanation.

threshold voltage: V_{t0}

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left(V_{ds} - V_{dd}\right) - k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right) S = \left[\frac{d\left(\log_{10} I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

• S ≈ 100 mV/decade @ room temperature

The threshold voltage decreases with increasing V_{DS} . This effect, called the drain-induced barrier lowering, or DIBL, causes the threshold potential to be a function of V_{DS}

Drain-Induced Barrier Lowering (DIBL)

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left(V_{ds} - V_{dd}\right) + k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right)$$

• Electric field from drain affects channel

- More pronounced in small transistors where drain to channel coupling is stronger
- Drain-Induced Barrier Lowering effectively reduces threshold voltage
- High drain voltage causes leakage to increase. $V_t = V_t$

3

Body Coefficient / Vds Dependence

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{dd}) + (k_{\gamma}V_{sb})}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right)$$

$$V_T = V_{T0} + \gamma(\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})$$

- For NMOS: lower body voltage relative to source voltage (reverse bias)
 - Increases effective Vth
 - Reduces leakage

- Vds dependence
 - For Vds > 4 VT leakage current independent of Vds (other than DIBL)
 - For Vds < 2 VT leakage current drops rapidly with lower Vds

9

Leakage Mechanisms

P-sub

- I3: GIDL Gate Induced Drain Leakage
 - Negative gate / Positive drain
 - Thins out drain depletion causing drain to well leakage near gate
 - Generates a tunneling current

Subthreshold Leakage Roundup

11

Subthreshold Leakage

For V_{ds} > 50 mV

$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}} I_{off} = 100 \text{ nA/}\mu\text{m} @ V_{th} = 0.3 \text{ V} \\ I_{off} = 10 \text{ nA/}\mu\text{m} @ V_{th} = 0.4 \text{ V} \\ I_{off} = 1 \text{ nA/}\mu\text{m} @ V_{th} = 0.5 \text{ V}$$

Typical values in 65 nm

• I_{off} = leakage at V_{gs} = 0, V_{ds} = V_{DD}

DIBL coefficient: $\eta = 0.1$ Body effect coefficient: $k_y = 0.1$ S = 100 mV/decade

Leakage Mechanisms

- I4: Gate Oxide tunneling
 - Thinner oxides cause an increase tunneling
 - Highly dependent on oxide material and thickness

Gate Leakage

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$I_{\text{gate}} = WA \left(\frac{V_{DD}}{t_{\text{ox}}}\right)^{2} e^{-B\frac{t_{\text{ox}}}{V_{DD}}}$$

- A and B are tech constants
- Greater for electrons
 - So NMOS gates leak more

- Negligible for older processes (t_{ox} > 30 Å)
- Critically important at 65 nm and below (t_{ox} ≈ 12 Å)
 - But: improved again with High-K metal gate transistors

15

[Song01]

Fundamental Leakage Levers

• Increase Vth: ~10x leakage reduction for every 100mV

– But: bad for delay

$$\tau \propto \frac{V_{dd}}{\left(V_{dd} - V_{t}\right)^{\alpha}}$$

- Reduce temperature: ~5.2X reduction / 10 degree C
- Stacking transistors

Stack Effect

- Series OFF transistors significantly reduce leakage
 - $V_x > 0$, so N2 has negative V_{gs}

$$\begin{split} I_{\mathit{sub}} &= \underbrace{I_{\mathit{off}} \, 10^{\frac{\eta(V_x - V_{\mathit{DD}})}{S}}}_{N1} = \underbrace{I_{\mathit{off}} \, 10^{\frac{-V_x + \eta\left((V_{\mathit{DD}} - V_x) - V_{\mathit{DD}}\right) - k_y V_x}{S}}}_{N2} \quad \text{VDD} \\ V_x &= \frac{\eta V_{\mathit{DD}}}{1 + 2\eta + k_\gamma} \quad 0 - \begin{vmatrix} N_2 \\ \frac{-\eta V_{\mathit{DD}}\left(\frac{1 + \eta + k_y}{1 + 2\eta + k_y}\right)}{S} \\ = \underbrace{I_{\mathit{off}} \, 10^{\frac{-\eta V_{\mathit{DD}}}{S}}}_{S} \approx I_{\mathit{off}} \, 10^{\frac{-\eta V_{\mathit{DD}}}{S}} \\ - \text{ Leakage through 2-stack reduces $$^{\sim}$10x} \end{split}$$

17

Stacking and Leakage

# of stack SVT	Leakage current (pA)	Reduction
1	258	X 1
2	36.1	X 7.1
3	19.8	X 13

# of stack HVT	Leakage current (pA)		Reduction	Reduction per HVT	
1		1.25	X 206	X 1	
2		0.185	X 1394	X 6.8	
3		0.122	X 2115	X 10.3	

State Assignment

- · Only a few states have significant leakage
 - Dominant leakage states have only one transistor OFF in any path from V_{dd} to Gnd

Α	В	С	Leakage Current	Leaking Transistors
0	0	0	10.537	N1, N2, N3
0	0	1	18.534	N1, N2
0	1	0	18.234	N1, N3
0	1	1	135.772	N1
1	0	0	20.350	N2, N3
1	0	1	102.672	N2
1	1	0	100.970	N3
1	1	1	192.174	P1, P2, P3

Leakage currents in pA. NMOS width = 480nm PMOS width = 320nm

State Dependence of Leakage

- Circuit state is partially unknown in sleep state
- Leakage variation is less for entire circuit than for individual gates

	Lea	Leakage Current (nA)		
	Min	Mean	Max	Max / Min
Adder1	256.8	283.1	309.8	1.2
Control	33.8	45.97	60.23	1.78
Decoder	1702.5	1914.3	2122.1	1.25
Nand4	0.07	0.76	7.1	101.4
OAI21	0.84	7.73	17.78	21.2
Tinv	0.37	1.89	5.76	15.6
AOI21	2.44	8.51	17.23	7.1

State Assignment

- Since the leakage of a logic gate depends on its input, find the input to a combinational circuit that minimizes leakage
 - 30%-40% leakage variation depending on input vector
- Modify latches
 - Sleep signal moves pre-determined values as inputs into combinational circuit

Power Gating - aka MTCMOS

- Turn OFF power to blocks when they are idle
 - Use virtual $\rm V_{\rm DD}$ and Gnd
 - "Gate" outputs to prevent invalid logic levels at next block
 - Use HVT header/footer
- Voltage drop across sleep transistor during normal operation
 - Size the transistor wide enough to minimize impact
- Switching sleep transistor costs dynamic power
 - Only justified when circuit sleeps long enough

22

Dual-Thresholds Inside a Logic Block

- Minimum energy consumption is achieved if all logic paths are critical (have the same delay)
- Use lower threshold on timing-critical paths
 - Assignment can be done on a per gate or transistor basis; no clustering of logic is needed
 - No level converters needed

V_{th} Assignment Granularity

- V_{th} assignment can be performed at different levels of granularity
 - Gate level assignment
 - Pull up network / Pull down network based assignment (half gate)
 - Single V_{th} in pull up or pull down networks
 - Stack based assignment
 - Single V_{th} in series connected transistors
 - Individually assignment within transistor stacks
 - Possible area penalty (see right)

Design rule constraint for different V_t assignment

- Number of library cells increases with finer control
 - Better leakage / delay trade-off
 - Harder for synthesis tools to handle

Power	and	Energy	Design	Space
-------	-----	--------	--------	-------

	Constant Throughput/Latency		Variable Throughput/Latency
Energy	Design Time	Non-active Modules	Run Time/Adaptive
Active	Logic Design Sizing Low C circuits	Clock Gating	DVFS (Dynamic Freq, Voltage Scaling)
Leakage	Multi-V _{th} Stack effect	Sleep Transistors State assignment Variable V _{th}	Variable V _{th}

Conclusions

- Lots of recent work on circuit and technology techniques to reduce static power
 - Standby mode leakage reduction can be orders of magnitude, may lose state, takes time to switch in and out of standby mode
 - Active mode leakage reduction is a tougher problem, smaller savings (<50% typically), must be ready for inputs to toggle at any time

