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Abstract

The Gate Matrix Layout style was introduced in 1980 [2], and has since been used widely in 1!
design. Gate Matrix Layouts are characterized by simplicity of design and qnick tnrnaround time.
However. it has been found that straightforward implementation leads to very inefficient usage of
chip area. In this survey, we discuss several algorithms that reduce the area required to implement
the circuit. All these algorithms find a gate sequence that wminimizes the area. These algorithms
are grouped into five sections: algorithms that use the interval graph representation of the Gate
Matrix Layout, algorithms that use min-net-cut to obtain a good gate sequence, algorithins that
use probabilistic methods to minimize the arca, algorithms that use properties of the Gate Matrix
style to get a good gate sequence and algorithms that obtain a minimal layout corresponding to
prefixed physical constraints. Also, we discuss algorithms that do net assigument such that the
resulting assignment is realizable. Finally, we discuss algorithms that have been developed for the
related problem of One-Dimensional Array Gate Assignment.



1 Introduction

The Cate Matrix style was introduced by Lopez and Law [2]. and can be considered as an extension
of the Weinberger style [1] for CMOS layouts. The Gate Matrix is composed of intersecting rows
and columns. All transistors having a common input are placed on a common polysilicon line.
Sach polysilicon line is represented as a column. This column now serves a dual purpose. It is the
gate of all the transistors that lie on it and it also acts as the common conunection between these
transistors. The columns of the Gate Matrix are equally spaced and parallel to each other.

The p-transistors of the CMOS circuit to be implemented using the Gate Matrix are placed in
one ‘half’ of the Gate Matrix while the n—transistors are placed in the other hall. There are three
tvpes of connections in the Gate Matrix as shown in Fig. 1(b): metal. polysilicon and diffusion.
The rows are formed by conuecting those transistors that are connected to each other either in
series or in parallel. These connections are made using wetal. Fig. 1(a) shows a CMOS circuit.
Its implementation using the Gate Matrix style is shown in Fig. 1(b). In I'ig. 2(a). we see the
abstract representation of a Gate Matrix layout for a given netlist. A x denotes a transistor and a
e denotes a contact. Also, the connections lo power and ground are not shown as they are assumcd
to be implemented in a second layer.

Iig. 2(b) represents the same layout as Fig. 2(a) except that the arrangement ol columns is
different. This layout requires fewer rows. In general, it is possible to reduce the wwmber of rows
required to implement a circuit by choosing a suitable colwinn sequence.

Our aim is to minimize the chip area. Given the circuit schentatic. the number of columus.
the width of each of these columns and the distance separating two adjacent columns are all fixed.
Therefore, the total chip area is determined by the number of rows and the vertical spacing between
any two rows. We have seen that the number of rows needed is lessened by taking a suitable gate
sequence.

2 Formulation of the problem

Before we can formulate the problem, we need to know the concept of a net. Informally, we can
think of a net as a group of transistors that are connected to each other either in series or in paratlel,
aloug with the contacts that this group has with output colummns. More abstractly, a net can be
represented as a sel of columns, each of which acts either as an inpat to a member of the set or
as an output of the structure represented by the net. Moreover, it is not possible to place one vet
over another in the same row., We can now define our problent:

e Input: A set of gates G = {g1,02,....9g,) and a set of nets N = {npong.. .. not

e Output: A permutation of the gates 7{(/} such that each gate is assigned aunigue column

and an assignment of every net to a (not necessarily unigue) row sl thal Hie mambor of

rows (tracks) is mimimized.
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In the next section, we show that this problem is a member of a very difficult class of prob-
lems known as NP-Complete problems. Section 3 discusses methods of obtaining a ‘good” | gale
sequence. The worst—case performance of these algorithms is discussed in Section 4. The min-
net-cut, Simulated Annealing and Genetic Algorithm methods are discussed in Sections 5 and 6.
It is possible to improve the solutions we get from these algorithms by taking into account some
properties native to the Gate Matrix style. Algorithms which use specilic properties of the Gate
Matrix style are presented in Section 7. Section 8 discusses algorithms that search for good net
sequences rather than good gate sequences. Section 9 presents an algorithim that takes into account
certain practical restrictions on the shape of the final layout. Section 10 discusses net merging. a
useful post-optimization technique. After obtaining the gate sequence, we need o assign nets Lo
the rows such that all diffusion connections botwoon the rows become realizable. This, in itself,
is a difficult problem and is discussed in Section L1 In the last section, Section 12, we present
algorithms for a related problem known as the one-dimensional array layout problem.

3 Interval Graph formulation and the consecutive ones property

Ohtsuki et al. [3] gave the first graph-theoretic model for this problem using interval graphs. A
graph &' = (V, ') is called an interval graph if there exists a set of finite closed intervals {/(v)},.er
such that (u,r) € F implies and is implied by I(u) N I{r) # . The set of intervals thus formed is
called a realization of the graph G, Figs. 3(a) and 3(D) shuw an interval graph and its realization.
A elique ' of (7 is a subset of V7 such that Vi, 1 v; € Ch(v;,v;) € I A clique (' is a dominant
clique if it is not a proper subset of any other clique. In Fig. 3(a), {ny,n2.na} and {ny.ns. ng} are
dominant cliques. In any graph. there are atmost || dominant (hths where V| is the size of the
set V' [12]. The clique number is the size of the largest dominant clique. In IFig. 3(a), the clique
nuniber is 3.

Also, given the set of gates and the set of nets, we can construct a connection graph I = (V' I)
as lollows: The set of vertices V' is identical to the set of nets N. Also, there is an edge in the
connection graph between every pair of nets that have a common gate. Fig. 3(c) shows a set of
nets and the set of gates associated with each net. Fig. 3(d) shows the conunection graph for the
nets given in 3(c).

The algorithms given in [3], [1], [5]. [6]. [7]. [8] and [9] try to obtain a sequence of gates which
miniwizes the number of rows. Corresponding to every particular sequence, we can draw horizontal
intervals corrresponding to the nets. This set of intervals defines an interval graph where the set
of vertices is the same as the set of nets and the set of edges comprises of every pair of nets that
cannot be placed in the same row given this particular gate sequence. So. all nets that form a cligque
in this imterval graph have to be placed on different rows. Therefore. the cligne nmber of the
interval graph provides a lower bound on the number of rows that we will weed i we adopt 1 his
gatle sequence.



Notice that the connection graph is a subset of the interval graph. Also, the connection graph
is independent of any gate sequence. If the connection grapl is itself an interval graph, then we
can obtain an optimum layout. If it is not, we need to augment the connection graph (i.e., add a
set of edges) to obtain an interval graph. Iig. 3(d) represents a connection graph that is not an
interval graph. If we add the edge (ny.n4) to this graph, we get the interval graph of Fig. 3(a).
We can now reformulate our problem:

o Input: A connection graph.
e Output: A corresponding interval graph which has minimum clique number,

Kashiwabara and Fujisawa have shown this problem to he NP--Complete by relating it to the
one-dimensional optimal assignment problem [L1]. The related problem of finding a minimum size
augmentation has also been shown to be NP-Complete [11]. We now discuss the algorithms that
attenpt to solve this problem.

3.1 Finding a minimal augmentation

Obtsuki et al. [10] have given an algorithm to find a minimal augmentation. A minimal augmen-
tation is defined as one which is not a proper subset of any other augmentation. A greedy method
is described in [10]. We paraphrase it below:

Algorithm 1: Finding a minimal augmentation

o Any graph with less than four vertices is an interval graph (we can prove this by considering
all possible contbinations of vertices and edges and constructing intervals on the real line).
At cach step, add a vertex and a minimal set of edges such that the resultant graph is an
interval graph. This augmentation is done n — 3 times (i.e., till all edges are included). The
resultant augwmentation is minimal because each of the constituent augimentations is minimal.

To obtain the gate sequence [rom the resultant graph, we need a special representation. Given a
graph, we can construct a verfex-versus—dominant clique (v.d.c.) matriz A = [a;;] as follows:

{1, ifvertex ¢ € dominant clique
i = {0. otherwise.

Pigs. 4(a) and A(h) show the v.d.c. matrix A of a counection graph derived from the gate-sets in
Table 1. The matrix is said to have the consecutive ones property il all the ones in cach row oceur in
consecutive positions. Fig. 4(c) shows a v.d.c. matrix B with the consecutive ones property'. s
we will see. all the algorithms in this section use the consecutive ones property to obtain o tgood’

Ulor the moment, consider the x's as ones. Their significance will be explained presentiy.
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layout. We now state an important theorem due to Fulkerson and Gross:
Theorem |

o A graph is an interval graph ifl there exists an ordering of dominant cliques such that the
vertex—versus-dominant clique matrix has the consecutive ones property.

Such an ordering defines a canonical realization. For every net, the canonical realization defines
an interval. In matrix 3 of Fig. 4(c), net 9 has an interval between positions 3 and 7. denoted
[3 — 7].. Tor every gate. the intersection of the intervals defined by the nets pertaining to it gives
a set of positions at which the net can be placed. Tn Fig. 4(c), the position of gr is defined by
6-TIN[/B~7 N[ -7 =1[6-7. So.gate gr can be placed either at relative positions 6 or T.
Those gates whose positions are defined by an interval of unit length, e.g., [5 = 3], are placed first.
Other gates are placed relative to these gates. It is proved in [3] that a gate sequence obtained in
this fashion corresponds to the interval graph from which the gate sequence was derived.

It is possible to directly manipulate the v.d.c. matrix to obtain a solution. This idea leads us
to our second algorithm due to Wing et al. [1].

3.2 Automated gate matrix layout

We can think of a straightforward wmethod to make the v.l.c. matrix have the consecntive ones
property. In every row, we [ill in ones for zeros between the leftimost | and rightmost 1. TFor
example, the v.d.c. matrix of Fig. 5(h) is made into the v.d.c. matrix of Fig. 5(c) by this method.
Each fill-in is denoted by a x. The matrix of Fig. 5(c¢) has the consecutive ones property. However,
it is possible to reduce the maximum number of ones in any column by using more sophisticated
methods. Ilence, we can think of the result provided by this method as a sort of upper bound on the
maximum colnmn size. We know that the lower bound cannot be less than the maximum number
of nets attached to a gate because all such nets have to be placed on different rows.

In the heuristic algorithm that we discuss next [ 1], the v.d.c. matrix with the consecutive ones
property is constructed row by row, such that at any stage the partially constructed matrix has
the consecutive ones property. The algorithm is described helow:

Algorithm 2: Constructing the solution matrix row by row
e Input: The v.d.c. matrix A.

e Output: A matrix B derived by permuting the rows and columns of A. and having the
consecutive ones property.

L Use the straightforward method described above to check whether the npper hownd

generated is equal to the lower hound. 1 so. this is our optimal vad.eo matris,

o
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Fliminate those rows of A which have only a single one. These rows correspond to nets
connected to only one gate. These nets can always be placed later. Call the reduced
matrix A’. We get the matrix of I'ig. 5(b) by renioving the rows 1.3,6, 13, LE T and I8
{from the matrix of I'ig. 5(a).

We wish to keep the number of fill-ius to a minimam. We can acheive this by placing
those rows which have ones in common next to each other as far as possible. To lind ont
the permutation of the rows that will acheive this effect. we construct an overlap graph
oV " , B such that V7 = set of rows in A" and there is an edge between two vertices in ' !
if the two rows that they correspond to overlap (i.e., have atleast one gale in common ).
Fig. 5(e) shows the overlap graph of the matrix - AL

We now want a permutation of the rows. If we make a spanning tree out ofl O(V' E")
in a depth-first fashion, we can get a permutation of the rows such that rows that are
connected to each other are likely to be adjacent in the permutation as well. By assuining
vertex 2 as the root of the tree, we get the sequence [2,8,5,4,7,9, 11, 10,12, 15, It 6].
laving obtained a permutation, we build a column sequence as follows:
— Set B = the empty madtrix.
— Tor every row r; in the permuted A" do
~ Try to place the row r; in I such that all its ones are in sequence. Il this causes a
conflict with the order of columus imposed by previous rows. place the ones according
to one of the following strategies:

(a) Using fill-ins: If all the columns in which 7; has ones have been placed, then
place the ones in their respective positions, and use a minimum number of
fill-ins to produce the consecutive ones property in r;. Row 10 was placed in
the matrix B of Fig. 5(d) using this principle.

(b) Concatenate and fill strategy: This is similar to strategy 1. except that this
is nsed when all the columns in which r; has ones have not been assigned
positions. In this case, we place that column in the leftmost position and nge
fill-ins to produce the consecutive ones property in r;. Row 12 was placed in
B using this principle.

(¢) Shift and insert strategy: Insert the column between two placed columns so as
to obtain the consecutive ones property in row r;. To preserve the consecntive
ones property ol previously placed rows, it might he necessary to add some
fill-ins in those rows. Row [5 was placed in B by inserting the colmmn 6

between colummns 2 and 5 and shifting rows 9 and 10.
— Cenerally, for every row that has a conflict. all strategies are tricd ount and the one
that vields the least maximmm column size is chosen.

o
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Fig. 5(d) shows the the v.die. matrix B. This matrix has the cousecutive ones property. The
algorithm that we have just discussed was the earliest algorithm developed for the gate matrix
layout problem. It has many drawbacks, the major one being that the quality of the solution
depends on the initial row permutation. Actnally, the solution to the gate matrix lavout problem
is not related to the positions of the rows at all, and heuce the permutation of the rows employed
by the algorithm is superfluous. We now present an algorithm due to Wing and Huang [5] that

builds the matrix B colun by column using a greedy heuristic.

3.3 Building a minimal v.d.c. matrix using a greedy heuristic

The matrix A is reconstructed column by column siuch that at any stage, the partial matrix, de-
noted B, has the consecutive ones property. We give an outline of the algorithm helow:

Algorithm 3: Constructing the solution column by column by a greedy method

e Step 1: Begin with the column that has the largest number of ones (i.e., the largest dominant
cligue). Let it be ¢x. Denote the set of dominant cliques which have one or more vertices in
common with ¢ as Adj(ey).

e Step 20 Among all dominant cliques ¢; € Adj(e). select one. which when placed next to
columu ¢, in B, will result in the smallest increase of the size of the largest dominant cligne
already placed in B. If there are ties, choose the dominant clique having the most vertices in
common with ¢;. Now, denote this clique as the last clique to be placed ey.

e Step 3: Repeat Step 2 with the column placed last as e, I Adj(cy) is empty, and all colunns
have not been placed yet, backtracking is necessary. Backtrack and find a dominant clique ¢,
such that Adj(c,) is not empty. Repeat Step 2 with ¢,.

o Step 4: Stop when all dominant cliques have been placed in B.

In Figs. J(a), 4(b) and d(c), we find a connection graph, its dominant cliques (',..., (-, the
vod.eo matrix A and the reconstructed watrix B. Fach x denotes a set of edges to he added to the
connection graph to make it an interval graph. For example, the x at the intersection of vertex 2
and ('3 indicates that vertex 2 should be connected to all the existing members of (%.

An extended version of this algorithm is given by Wing et al. [6]. This version places dominant
cligues on both sides of the partially constructed matrix. Also, more rules are provided for breaking
ties shonld they occur. Instead of starting with the largest dominant clique of the connection ma-
trix. this algorithm is repeated with a number of different starting colunins (i.o.. dominant cliques)
and the best of these solutions is chosen. In the paper. it is shown by example that the choice of
the starting colummn makes a sigunificant diflerence to the performance of the aleorithin. The main



steps of the algorithm are given below:

Algorithm 4: Placing columns on both sides of the partial matrix
e Input: Matrix A.
e Output: Matrix B with the consecutive ones property.

Definitions : As we build B, we may need to convert some of the zeros of the partial B to ones
so as Lo preserve the cousecubive ones property. Each such conversion is called a fill-in. Deline
the rightmost column of 3 as ¢, and the leltmost as ¢;. Let enlarge R(1) (enlarge L{i)) denote the
inerease in size of the largest dominant cligne of B il the clique under consideration ¢; is placed to
the right of ¢, (left of ¢7). Let com(i) denote the number of vertices that ¢; has in conunon with ¢,.

e Step L: Choose a starting column randomly and denote it ¢,.
e Step 2: Repeat

— Find Adj(e,).
If Adj(e,)is not empty,

« Choose ¢; € Adj(c,) such that enlarge R(i) is minimum. I there be ties. nse min-
imum fill-in(i) and maximum com(i). in that order, as criteria to choose the next
clique?.

If enlarge R(i)is greater than (lesser than) enlarge L(i), place ¢; to the right of ¢,
(to the left of ¢;). Change ¢, and ¢; accordingly.
— 1f Adj{ec,) is emply,
% [ ¢, i1s not the same as ¢,
. Retract the rightmost clique and continue with the previous clique as ¢,.

* If ¢, is the same as ¢,

Choose an unplaced clique which has the maximum size. Place it as ¢, and
coutinne.

until all cliques are placed.

Step 3:

e lterate Steps 1 and 2 and at each stage retain that matrix B which has minimum cligue
number. 11 there is a tie here. retain the one with minimum nnmber of total Gl ins.

2Whenever we give more than one criterion tn a particular order to pesolve a tie, a later criterion apphies only 1o
those candidates which satisfy «ll of the earlier criteria

é
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One severe drawback of the two algorithins described above is'that generation of all the dominant
cliques of an arbitrary graph is in itself an NP-Complete problem. I the graplh is known to be
an interval graph its dominant cliques can be generated in polynomial time. In Li’s algorithm [7].
which we take up next, a vertex—versus-dominant gatc(v.d.g.) matrizis generated and manipulated.

3.4 Generating a gate sequence from a v.d.g. matrix

Delinitions: A dominant gate is defined as one whose set of associated nets is not a proper snbset
ol the corresponding set of any other gate. ln Table 11, a gate-list is shown. The dominant gates
have a D marked next to them.

For a connection graph U = (1, E) with dominant gates gy, ¢2,...,9,. a v.d.g. matrix .1 is
given by [a;;] where

[ L, ifvertex i € dominant gate j
tij = {(), otherwise.
Ads an n X p binary matrix. I'ig. 6(a) gives the v.d.g. matrix corresponding to Table 1.

Finally, if for some row ¢ in a v.d.g. matrix, a;; = 1 and a;;, = 0 for & # j, we say that net i
is isolated in column j. In Fig. 6(a), net 2 is isolated in column 1. If, for a particular ordering of
dominant gates, a;; = 1 and a;; = 0 for all £ > . net i is said to terminate at column j. If - in
I'ig. 6(a) is considered an ordering, we can say that net 3 terminates in column 6. The algorithun
is described below.

Algorithm 5: Constructing the columns of a v.d.g. matrix
o Input: A v.d.g. matrix A.

e Ontput: The output matrix B with the maxinoum column size minimized. B is obtained by
permuting the rows of A and has the consecutive ones property.

e Step L: Find all the dominant gates from the given net list. Construct a v.d.g. matrix A snch
that the rows correspond to the nets and the columns to the dominant gates. Let n and p be
the number of rows and columns of the matrix.

o Step 20 For all columns in A do

— a) mark ¢; unplaced
- b) count the number of ones in g; and denote it 2
— ¢} count the muuber of isolated nets connected to g¢; and denote it y;,
e Step 3¢ Arbitrarily choose one column ¢; as the leftmost oue. mark it placed” and create a

partially formed matrix B = [g;]. Let D = », (A1 the end of the algorithm 1 will hold the
size of the largest dominant clique).

9



e Step I: For each ‘unplaced” column g; do:

— a) place g; to the right of B
—~ b) caleulate the number of fill-ins( f;) needed to make the extended I matrix have the
cousectibive ones property
— ¢) compute the sum(s;) of the numbers of fill-ins and ones in g;, le., s =2+ f;
— ) denote the number of terminated nets in g; as z;
— @) remove g;.
e Step 5: Choose an unplaced column gg with the smallest s;, and place it to the right of the

partially formed B, ie., B = Bl|gr. In case of a tie, use the following criteria in the order
shown:

— a) Choose that column g with the largest number of terminated nets (z)
— b) Choose that column g with the largest nnmber of isolated unets (y;)

— ¢) Choose that column which has the least f when placed uext to B
Update D to max(D. sg).

e Step 6: If there still remain unplaced columuns, go to Step 4. Otherwise, exit and D will be

the mumber of tracks required.

In Fig. 6(b), B as constructed from A is shown. To illustrate the procedure, assutie gz has
been chosen as the first column. Table I11 shows the values calculated in step - for the remaining
colunins. g3 is selected because it has the least s;.

Li has also proposed two variants of the above algorithm, in both of which only Step 5 of the
above algorithm is modified. We desribe them below:

e Variant 1: Instead of choosing a column with the smallest s, as done above, this algovithm
selocts all unplaced columns g which have sy less than or equal to that of D of the partial
matrix B. This is done because none of these columns, when placed adjacent to B, can
increase the value D of B. I case of a tie, resolve it using the following criteria:

— a) Choose that gp with the largest yi

— b) Choose that column which has the least fp when placed next to B

e Variant 2: Choose that unplaced column g, which has the least fi when placed next to B.
{1 case ol ties, select that column with the largest =y

tu
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So far, we have discussed algorithms that use one criterion to select a column and select that
column which satisfies this criterion best (the criteria used to resolve ties are only secondary).
Such algorithms are termed greedy and, in general, tend to produce only locally optimal solutions.
Other algorithms [7.8] have been published which incorporate a set of criteria intended to produce
globally optimal solutions. We discuss two such algorithms below.

3.5 Incorporating globally—oriented criteria into the column selection step

Xu et al. [8], in their algorithin, induce the consecutive ones property into a verter-versus—gale(r.q.)
matriv. The v.g. matrix can be directly obtained from the original description of the problem. The
algorithm proceeds in two stages: In the first stage, the set of unplaced gates is divided into two
disjoint subsets, the selectable gate(s.g.) set and the unselcctable gate(u.g.) set. In the second, the
algorithm chooses the ‘hest’ column in the s.g. set using a weighted function of several factors like

number of fill-ins, starting and terminating nets, etc. The skeleton of the algorithm is given helow:

Algorithm 6: Using global connection criteria in the selection process

e a) Choose an initial column from A and concatenate it into the currently empty output matrix

B.

o b) Partition the unplaced gates into the s.g. and u.g. sets.

o ¢)Ilsg #0,

— then select the ‘best’ column?® from it and concatenate it with matrix 3.

~ else go to step e).
e d) Il all columns of A have been put into B, then B is the output. Exit the algorithm.
o ¢) If s.g. =0 then go to a), otherwise go to b).

An initial column is chosen such that the nets attached to it have minimum incidence relations
with other nets. To do this, we calculate the column degree(de) and the column incidence de-
gree(dein) of every column. These ters reflect the connectivity of the nets attached to a particular
column to other nets. We define these teris helow:

o dv(i)= degree of vertex i in the given connection graph H = (1. F).

o de(j)= 2iL, aix dv(i)
where m is the number of nets and a;; is 1 or 0.

3 . » . « . ..
“In this section. we use the terms ‘column’ and “gate interchangeably,

11



o din(j)= 3_; dv(j); for all j,(v;,v;) € L.

e dein(j)= Yz, a;;* dinfi)
where a;; is 0 or 1.

To choose the initial column, proceed through the following steps:

e a) Select the column with the smallest column degree. In case of a tie, resolve the tie using
the following criteria in the order shown:
— i) Select the column with the smallest column incidence degree.
— ii) Select an initial column arbitrarily.

Fig. 7 shows the dv, din, dc and dcin entries for all nets and colwmns of Table IV. Going
through steps a) and i) above we are left with {14, and 7} as possible starting columns. We choose
1 as the starting columu arbitrarily.

To partition the set of unplaced gates into s.g. and w.g. sets, we adopt the following principle:
If. in the connection graph H = (V, '), some associated net of an unplaced gate is connected by
an edge to an associated net of an already placed gate, the unplaced gate is put into the s.g. set.
Otherwise, it is put into the u.g. set. To express this idea more formally, we need the following
definitions:

e Define enct to he the set of current nets (i.e., nets which are associated with atleast one of
the placed gates).

e Deline the set of nets which incident on the set of current nets as
inenets= {v;|(v;,v;) € E and vj € enct and v; ¢ cnet}

e Deline nset; as the set of nets associated with gate g;.
The set of unplaced columns, upeol is divided into s.g and u.g. We construct s.g. as follows:

e a) ¢; € upcol is assigned to s.g. if nset; C inenets.

e b) g is assigned to s.g. if nset;N cnct # 0.

o ¢) g, is assigned to s.g. if s.g. = @ and nset;N incnets # D aller steps a) and b).
Set w.g. = upcol - s.g.

We will continne the example of Fig. 7. Asswming that 1 has been chosen as the initial colnmn.
we calculate the following:

enel = {5} inencts = Lobo So. the s.g. set furns ot to be PET.S] Colimns 7 and e chosen
because they contain net 5 in their netlists. Cohunn 4 comtains net dwhich overlaps with net 5.

12
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Finally, we need a method to select the hest column from s.g. to concatenate with /3. Again.
we need a few definitions before we can proceed:

e nf(j) = number of fill ins required to place column j next to B3

e ne(j) = number of terminating nets in column j when it is placed next to the partially
constructed matrix B

e ns(j) = number of starting nets in column j when it is placed next to the partially constructed
matrix 3

e ncol(j) = number of ones in column j

o Define the evaluation function a(j) as:
ol J) = kykncol(jY+ ke« nf(j) — ks * ne(j)
where ky, ko, ky are weights.

To select the ‘hest” column, we go through the following steps:

o a)select the column with the smallest a. In case of a tie. use the following rules in the given
order to resolve the tie:

~ i) Select the column with the smallest n f

~ ii) Select the column with the largest ne

!

iii) Select the column with the smallest ns

!

iv) Select an arbitrary column

To illustrate this method, we continue the example of Fig. 7. Take weights k. Ay and ks all as 1.
e ncol() = Linf(d) = Lyne(d) = 0;ns(4) = Lia(d) = 2
o ncol(T) = Linf(T)=05ne(7)=0;ns8(7) = 0:0(7) = |
e ncol(8) = 3inf(8) = 0;ne(8) = 0;ns(8) = 21 a(R) = 3

Since column 7 has the smallest o value, we choose it as the ‘hest” column.

Our last algorithm in this section is due to Liu and Liu [9]. This algorithm defines an upper
bound on the size of the largest dominant clique that can be generated when £ is built asing the
columns ol 4. Parameters are provided to adjust the size of this upper bound.

13



3.6 Generating B given a predefined upper bound on the size of the largest
dominant clique

This algorithm uses two parameters to choose the next column to add to the partially constructed
matrix B. Since these parameters are chosen at the beginning ol the algorithm. it is claimed that
the choice of the column at every step is based on glubal and not local criteria. As before, we need

some definitions hefore we can proceed.

e Deline a personality matriz A as

A= [“ij]m Xn
wlere

1, il net iis connected Lo gate

aj; = . '
Y 0. otherwise,

and number of nets is m and number of gates n. Notice that this matrix is the same as the

v.g. matrix defined above.
e Define LI as the maximun number of ones in any column of /.

e Define ('5(7) as the number of ones in column i of /1 and RS(j) as the number ol ones in

row j ol A.
o Define the matrix B as a matrix corresponding to .1 and having the consecutive ones property.

e Define the simplest personality matric A" corresponding to A = [y 0] as Tollows:
A= [y ... () where 0’ < nand the number of rows in A’ m’, s governed by m’ < m. Also,
for all i,j < n', C; ¢ ' and for every (', there exists atleast one column (. (r # k) such
that (', ¢ . # 0. That is, A’ contaius all those columns of A which are dominant and which
are adjacent to atleast one other column. This purges A of those columns which have no role
in the construction of the matrix B. In Fig. 8, we show the simplest personality matrix A
corresponding to the personality matrix A. Columns 6 and 9 have been deleted.

o Define the quasi-bound-difference QBD as QBD = UDB — LB where 73 is given by:
UB =max{CS(CHC; € BY}. Since it is not possible to know U B a priori. a quasi-bound-
difference is set up at the beginning of the algorithm. This QB D controls the 7 ol the
matrix B generated by the algorithm.

The algorithm constructs a matrix B’ corresponding to A rather than constructing one corre-
sponding to A. In the paper, there is a theorem which states that constructing B’ is equivalent to
constructing B. ,

There is a second parameter ¢ that varies between Fand m'/ LB QBD and cact s dial eliecks
on the column to be selected. Given a problem. a mininm upper bound 8, 018, = L1
is postulated. Using U DBy, values for ¢ and QB D are set. 1 a solution cannot be Tonnd for this

11
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value of U5,,;,,. the algorithi is repeated with a higher value.

Algorithm 7: Constructing column by column using upper bounds

e Step 1: Assume that the i colimn of B, C'yr, has been generated. Also, it is assumed

that values were set for e and QB D at the beginning of the algorithm. Among the unplaced
columns, formy a candidate set C'A for the (i + 1™ column. A column C'; € A" belongs to (.4
if it satisfies the following two conditons:

—a) Pill-in(Ciy ) + CS(Ciy) + CS(C) = C Cip <exLD.
- b) Fiﬂ~iu(C'J’) + C'S(C'J') LD+ QBD.

e Step 2: I[ C'A is empty, then no solution exists. Inter another cycle with new values of ¢ and
QBD. Otherwise, select one colunm in C'A arbitrarily and continue.

In the paper, there are two improved variants of this algorithim. They vary in Step 2 ouly. We
detail the two variants below:

o Variant I, Step 2: 11 C'21 is not emipty, select that cohnmn which has the most terminating
nets associated with it. In case of a tie, clioose that colimn which has the maximnm size. 1f
Celis empty, enter another cycle with new values for ¢ and QBD.

o Variant 2, Step 20 If €U is not empty, select that columm which has the most terminating
nets associated with it. In case of a tie, choose that column which has the mininum size. |If
C'Ais empty, enter another cycle with new values for ¢ and QBpD. -

In Fig. 8. we show the matrix B’ constrncted from the matrix A, We illustrate one iteration
of the algorithm. Assume that 4 las heen chosen as the initial column arbitrarily. Let the values

for e and QDD be 2 and I respectively. We note that LB = 4 from inspection of A’

o (; = 1; Conditions a) and b} satisfied; Number of terminating nets =0

i

o ('; =2; Conditions a) and b) satisfied; Number of terminating nets =0
e (; = 3; Conditions a) and b) satisfied; Number of terminating nets =0

o (' =5; Conditions a) and b) satisficd: Number of terniinating nets =1

C'; = 7; Conditions a) and b) satisfied: Number of terminating nets =0
o ('; = 8: Conditions a) and b) satislied: Nuniher of terminating nets =0

e ('; = 10; Conditions a) and b) satisfied: Number of feriuinating pets =()



Since all columns satisfy conditions a) and b), we choose column 5 because it has the maximum
numher of terminating uets.

It is claimed that the above methods find nearly optimal results. It is also believed that the
quasi- bound- dilference method can, in general, convert many local optimization algoriths into
nearly global optimization ones.

4 Worst—case performance of the greedy heuristics

We have scen several heuristic algorithms that solve the gate matrix problem. How well do the
solutions produced by these algorithms relate to optimal solutions? To address the performance
of these heuristic algorithms, we intoduce the concepts of absolute approvimation and relative
approzimation. Let H(I') and OPT(I) denote the track requirements of the heuristic and optimal
solutions, respectively, of a gate matrix instance [. H is an absolute approximation algorithm
if, for every instance I, H(1) < OPT(I) + k. where & is some constant. H is called a relative
approximation algorithm if H(I) < r e 0 PT(1) + k. for some constants r and k. When such
constants exist, they provide a bound on just how far from the optimum algorithm H may cver
deviate. Deo et al. [13] have proved that no absolute approximation algorithms exist for the Gate
Matrix problem. It las also been proved in the same paper that the ‘greedy’ algorithms discussed
in the last section are not even relative approximate. In the following paragraphs. we describe the
proofs briefly.

The Gate Matrix Layvout problem has been shown to be NP- Complete [11]. Now, suppose that
an absolute approximation algorithm AA exists. That is, given any Glate matrix instance I, A
uses atmost O PT(I) + k rows where k is some fixed constant. Construct a gate madtrix /7 that has
k41 copies of 1. In Yig. 9(a), we show a gate matrix [ and a corresponding matrix I’ where kb = 2.
Now, for the gate matrix I', the optimal solntion takes O Prry=(k+ HOPI) tracks. Since
A is an absolute approximation algorithm, it takes atmost (k + DO PT(1)+ k tracks to solve I,
This means to say that atleast one of the identical copies took only O PT(I) tracks. Since we did
not put any restrictions on I, this means that AA can produce an optimal solution for any instance
I. This cannot be true if A4 is a polynomial- time algorithm because the Gate Matrix probleny is
NP Completet.

It is also proved by example that the greedy algorithms of the last section cannot be even
relative approximate. Consider the family of jnstances which have the [ollowing structure:

8 iy = {.'11~L':3~,{]5~~-~.’}n«—1}

o o= {g1.92}

#{inless a particular open question P=NP7 has the answer frue.
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& Ny = {!/3-,’]«1}

b ”n/'2+1 = {gn—]~ﬂn}
. "11/2—%—2 = {{/z,y,»;.,...,yn}
® N3 = {92:94, - g0}

A greedy henristic which counstructs the gate sequence by appending gates so as to minimize the
increase in the size of the largest dominant clique will result in the matrix ol Fig. 9(b)*. This
matrix has n/2 + 2 tracks whereas a 4-track solution is possible®. Since n/2+ 2 is not bounded by
4 for any constants r and k, we conclude that the greedy algorithins are not relative approximate.

lor small problems, the use of optimal algorithims might be feasible. Deo et al. have nsed
dynamic programming [L1] to give optimal solutions to the problem. We take up this algorithm

next.

4.1 Dynamic programming formulation

What methods are available for obtaining an optimal solution to an arbitrary problemn? The obvi-
ons method is to use exhaustive search, where we generate all possible gate sequences and retain
that one which yields the best solution. This takes O(n!) time. where n is the number of gates.
Instead, a dynamic programming formulation has been proposed in [13], which takes O(n? o 2)
time. 1t should be remembered that the gate matrix layout problem is NP—Clomplete, and that
polynomial time algorithms that find optimal solutions are unlikely to be found. In Section 12,
another optimal algorithm that is based on the branch-and--hound strategy is discussed.

Algorithm 8: Dynamic Programming

Given a set of gates ' = {g1,092,...,¢n}, denote ¢((V,g;) as the minimum number of tracks
required for the gate matrix layout if g; is placed as the last gate. Then, the optimal solution conld
be found by taking the minimum of ¢((/,¢;) over all gates g; € (. We note that il ¢; is the only
gate in G, then ¢({g;:},9:) =the number ol nets that are counected to g;. Ience. we can adopt a
recursive formulation, whereby the size of the set G in ¢((, gr) is progressively reduced till it has
unit size.

“'The following matrix has to be obtained regardless of the tiebreakers becaunse the last two identical nets ensure thal
all even -unmbered gates have thiree ones. So, all odd numbered gates have to be placed before the even nnnthered
ones.

s

“Net ny on row 1: Nels 0y, Mooty o4 O FOW 2 and neis 1wy g amd My g ol tows 3 and



To calculate (i}, g;), it is not enough to find out the best solution among o((V; — {gi}.9;)
over all g;, where g; is distinct from g This is because gate g which is placed at the end might
have the largest number of nets crossing it (i.e.. have a columu size greater than that of any of the
columns in (7 = {g}). We can account for this by using two more functions. Let f((/;.g;) denote
the number of nets that cross ¢;, do not terminate at g;, and are not connected to ;. Let rGagi)
denote the number of nets that cross ¢;, do not terminate at g;, and are connected to g;. Now. we
are in a position to define (G, gx) recursively:

(Goge) = ming,e[(,«}_{gk}][nuz:r{c( Gi—=A{git-90)-

FUGG = {gr} o 90) + (G5 = {gr}.gi)+ the number of nets that begin at gate gr: 1]
i.e.. the max checks to see if the last column g, has the largest number of ones and the min takes the
minimum value over all possible combinations. So. as mentioned before, this recursion is continued
till we have (¢ of unit size. It can be easily proved that this algorithm produces optimal solutions.

So far, we have discussed algorithins that do not take any properties of the Gate Matrix layvout
itsell to generate a solution. We now discuss an algorithm due to Hwang et al. [15,16] that uses the
perntutability of series—connected transistors to improve the quality of the gate sequence generated.

5 A min-net—cut algorithm using the dynamic net—list property

Consider the example shown in Fig. 10(a). In net nz, we have gate g bound to gates e and f.
But. this is not necessary. Since gates ¢ amd d are in series, either of ¢ or d can be connected
to g. Similarly, either gate f or gate ¢ could be connected to f. We can delay ‘binding” these
gates to the fixed gate g till we have decided upon a gate sequence. We could then represent net
nr as ny = {g.ng.ng}. Such a net is called a dynamic net. 1 a net does not have any other net
as a component, it is called a fived net. 1l a net (e.g.. n7) contains any other net (e.g.. ng) as a
component. it means that oue and only one component of the internal net (i.e., ng in this case) is
bound to the other components of the first net.

The algorithm uses the min-net-cut heuristic [17.18]. The min-net-cut algorithm does the
following:

Algorithm 9: Min—net—cut

o It divides the set of gates S into two blocks g (the ‘left’ block) and Sg (the right” block)
such that
— the two blocks are roughly of the same size, and

— the number of nets that are associated with gates in both blocks (called the culsel) is
iwininized.

TP'hough we do not have a gate sequence vet, we know the gates that exist on vither side oty Henee, we can
calculate the number of nets that cross g,.
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o The procedure iteratively moves one gate at a time from one block to its complementary block
s0 as to minimize the cutset of the final partitioning. The gate to be moved is chosen such
that it will result in the greatest decrease in cutset size. This measure is quantified as the
gate-gain, Gain(i), which is the number of nets by which the cutset would reduce il the gate
i were moved from its current block to its complementary block. To prevent the algorithm
from becoming a greedy one, gates with negative gains are also moved occasionally. Also. to
prevent the same set of gates from shuttling repeatedly back and forth, a gate is locked after
a move, i.e., it is not available for [urther exchanges. Also, pseudogates are created in hoth
Sr, and Sp. The pseudogate in Sy represents all those gates that do not belong to the set 5
and lie to the left of the set 57, This psendogate is always locked. This prevents gates which
should be placed to the left of S, from being moved to the right. Similarly, a psendogate for
S is delined.

o The min-net—cut procedure is used recursively on blocks S and Sg Gill the linal ordering of

gales is obtained.

5.1 Computing the gain of each gate

The following general principle is followed to determine whether to increase or decrease the gain of
a gate:

o Tor every net, if the net belongs to the cutset, and if the movement of gate i will result in
the removal of gate i from the cutset, then the gain of gate i is increased by one®,

e lor every net, if the net does not belong to the cutset, and if the movement of the gate i will
result in the net being added to the cutset. decrease the gain of gate i by one.

o Otherwise, there is no change to the gain of gate i due to this net.
Using the above general principle, we can arrive at the following rules for fixed nets.

e Rule I: When the gate is the only gate of a net in the current block ( from-side), increase its
gain by one.

o Rule 2: When the net does not have any gates in the complementary block (to-side). decrease
the gain of the gate by one.

However, when we are considering dynamic nets, we should recoguize the role of hound gates. We
give the corresponding rules below:

Rrgr . . . . .

Ihe two rnles staled here apply only to those nets which are associnted with more thaw one sat g wet s

associnted with only one gate, then the movement of the gate 1o the other block does not alliot the cntset. Henee,
such nets do not mfluence the gain of the gate.



e Rule 3: When the gate is the only bound gate of a net in the from-side. and there is some
unhound gate of the net in the to-side. increase the gain of the gate by 1 (i.e.. il the gate is
moved to the to-side, the net can be completed using the gates in the to-side aloue).

e Rule 4: When there are no hound gates of a net in the to-side. and there is some unhound
gate ® in the from-side, decrease the gains of all the bound gates in the from-side by one.

In Fig. 10(h), we illustrate the caleulation of gate gains for simple examples containing fixed and
dynamic nets.

Once the gate is moved', the gains have to be changed again for the next iteration. 1t is
not necessary to again consider the effects of all the nets on the free (i.e.. not locked) gates. The
only gates affected are those that have common nets with the gate that was moved. The rules
for updating the gains of these gates are the reverse of the rules stated above. The layout of the
example in Fig. 10(a) is given in Tig. 19(c¢) in connection with the section on net merging.

The min-net-cut algorithm is called recursively on Sy and Sg till a gate ordering is obtained.
The initial partitioning into two parts takes O(N) time where N is the total number of transistors
and gate-net contacts in the circuit. Since, we divide § into roughly two equal parts, the time
complexity of the algorithm is given by the recurrence relation:

T(N) = eN + 2T(N/2).

This has the solution T(N) = O(N log N). which is the time complexity of this algorithm.

We have scen in the case of greedy algorithms that there can he unbounded deviation from the
optimal solution. How do the solutions produced by the min-net-cut algorithm compare with the
optimal solutions? We will first need to define the concept of an ideal min-net—cnt. An ideal min-
net-—cut is one which will always produce a partition with a cutset of minimum size. It is proved in
the paper that an ideal min-net—cut algorithm would be, in the worst case, log n approximate, i.e.,

Ajgeatl 1) < & #log 0+ OPT(]),

for all instances I, where A;geq(l) is the mumber of tracks required by the ideal min-net ent
algorithm. How is this true? Since our min-net—cut is ideal, the size of the cutset in the initial
partition cannot be greater than the optimal solution (i.e., the required nnmber of tracks)''. Also,
we know that the number of tracks required by the ideal min—net-cut algorithm is given by:

%It is not entirely accurate to consider all the unbonnd gates together because they may belong to different fixed
nets. This error is rectified in another paper [20] i

10 ere is one other factor which decides the gate to be moved. It is possible in sone cases to merye two nets o
one. Net merging is discussed in a later section.

U0 see this. take the optimal solntion and place a partition snel that the wimber of wates on it her =i i equald.
Now. the number of nets that cross this partition Hine is atmost equal to the mumber of tracks i the oprimad =olntion.
Since this is our cutset, the size of the cutset is never greater than the required nmmber of fracks,
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Number of tracks< O PT(T) +Max[Number of tracks required by S,
Number of tracks required by Sgl.

Fronm onr earlier proof, we know that the algorithm will have to be called recursively logn times.
Hence, the number of tracks required by the ideal min-net-cut algorithin is bounded by logn *
Py

Min-net cut is one algorithm that uses iterative improvement to get a good quality solution.
There is another popular iterative technique called Simulated Anncaling [19] that has been used on
many other VLSI CAD problems as well. We now discuss an algorithm due to Leong et al. [21.22]
that applies Simulated Annealing to the Gate Matrix layout. Another probabilistic paradigm.
known as the Genetic Algorithm [23,24], is being used successfully on many VLST CAD prob-
Jems [25,26,27,28,29,30]. In the following section, we discuss algorithms that apply these general
techniques to Gate Matrix Layout.

6 Probabilistic Algorithms

6.1 Simulated Annealing

Sinntlated Annealing is an optimization techniqne that nses an analogy with the problem of detor-
miniug the lowest energy ground state of a physical system. To bring a {luid to a highly ordered
low—energy state, it is necessary to cool it slowly, spending a long time at temperatures in the
vicinity of the freezing point. At each temperature in this annealing process, slow cooling enables
the system to reach equilibrinm. In an optimization problem, the cost may be viewed as the energy
and the temperature may be viewed as a control parameter which enables the attainment of a
‘good’ solution from some initial high-cost state. To apply the Simulated Annealing algorithm to
a problem, we have to specify the {ollowing:

1. The solution space. This means that the problem has to be formulated to obtain a
concise description of its configurations.

2. A method of obtaining the neighboring solutions of a solution. Since we improve the
algorithm iteratively, it should be possible to go [rom any solution to any other solution
by a sequence of steps.

3. The cost of a conliguration.

4. An anncaling schedule, i.e., a specification of the initial temperature, the rule for chang-
ing the temperatnres, the duration of search at each temperature and the termination
condition of the algorithm.

2 Actually, this is a very loose estimate because we have assnmed that the size of the cutset at every lovel (o of
recusion ) is approximately equal to OPT(1). N is conjectured by the anthors that if we assnme that the size of the
cutset at every level is proportional to the number of gates, win-net cut could turn ont to bhe n vedative approximation
algorithm
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For the gate matrix layout problem, the above requirements are met as follows:

Algorithm 10: Simulated Annealing
e A layout solution is specified by the following:

— the gate permutation, and

— the dynamic binding of the D-nets.

So. the solution space here consists of all possible gate permutations along with all possible
dynamic bindings.

For the gate matrix layout, we can define two types of moves that take us [rom one solution
to its neighbours.

— ML!: interchange the positions of two of the gates.

— M2: interchange the binding of a D-net (i.e., represent the internal net in a dynamic
net by some other transistor)

When we make a move of type M1, the gate permutation is changed (perturbed). aund this
may allect the following:

~ TFixed nets that are connected to any of the two gates. The update of the wire length of
such nets is straightforward.

— The hindings of some D nets. In this case, that binding which results in minimum net
length is chosen. If this choice is not clear, then the selection of the binding is guided
by the simulated annealing procedure.

Also, we can go from any solution state to any other solution state by a sequence of MI
and M2 moves. In the Simulated Annealing algorithm, these moves are essentially made at
random. However, we notice that move M1 leads to a more global rearrangement of nets as
compared to move M2. llence, the generation of moves is biased such that more moves of
type M1 are attempted than moves of type M2.

The cost function should reflect the fact that our primary aim ig to minimize the number
of rows. Let d;, denote the number of nets crossing gate gi. Then, the mininmum nunber
of tracks required d is given by d = max{d;} for all i = 1.2..... n where n is the munber
of gates. Additionally. the cost function should include the total lengt hvof the nets 1) as a
secondary factor. The algorithm chooses the following:

Clost = o* + A [)“/17.
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where A is a constant chosen to reflect the relative importance of d and D. Hence. A should
be less than or egnal to 1. In the algorithm, a value of X = 0.5 has been used.

o The temperature schedule is of the form Ty = re Ty, for k = 1.2,.... Since we have to
redice the temperatire during each iteration, a vahie of 0.8 for r has heen selected. The initial
temperature Ty is chosen such that there shonld be a reasonable probability of acceptance
for moves that increase the number of tracks required. The number of tracks reqnired can
never be greater thau the number of nets m. So, in this implementation 7y is of the form
constantem (i.e., O(m)).

It is very difficnlt to predict either the average or the worst case performance of the Sinmlated An-
nealing algorithm. llowever, the algorithm has given very good solutions on benchmark problems.

6.2 Genetic Algorithm

The Genetic Algorithm [34] models the process of evolntion in obtaining answers to optimization
Al

problems. The key steps of the algorithm are as lollows:

Algorithm 11: Genetic Algorithm

1. Fach solution to the problem is represented as a string called a chromosome. We start
from an initial random population consisting of several sneh solution strings.

2. The two operators, reproduction and crossover' are applied on the members of this

generation (i.e., population). Reproduction allows particular chromosomes to be present
in the next generation in proportion to their fitness. Crossover is an operator that takes
two chromosomes, and returns their offspring which bas substrings from both parents.
An example of (simple) crossover is shown in Fig. 1l{a). Although crossover occurs
between random positions, it is very eflective in producing better offspring because it
acts on above-average chromosomes. Reproduction and crossover are carried out till all
members of the new population have been generated.

3. Step 2 is repeated for a predetermined nnmber of generations. The best answer evor
found (i.e., the string with the highest fitness function) is ontput as the final answer.

For the Gate Matrix problem, the chromosome chosen in [30] is the gate seqnence itself. However,
the simple crossover shown in Fig. 11(a) will lead to illegitimate offspring as shown in Fig. 11(h).
Hencelit is necessary to use the permutation crossover operators defined in [24]. There are three
suclt operators: Partially Matched Crossover (PMX) . Order Crossoccr (OX) and Cyele Crossorer

2 . . . . . . . . N
lu wany Genetic Algorithm applications. use is made of several other operators known a~ mutation, insersion.
elc.
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(C'X). OX chooses one section from the first parent to be transferred without modification to the
oflspring. The remaining elements are drawn from the second parent in the order of their occurence.
Fig. 11(c) gives an example of such a crossover. PMX also chooses one section that is transferred
in toto to the offspring. The rest of the offspring is obtained from the other parent by placing them
in the same positions that they occupy in the parent. This is shown in Iig. 1 L{d). Cycele Crossover
works by identilving a cyele within the first parent as follows: Suppose 4 is chosen as the crossover
position. In Iig. Ll(e), we have a 2 at position -l in the first pavent. Correspondingly. we have a b
in the second parent. So, ('X decides to take 5 from the first parent. This causes the corresponding
number 1 also to be taken from the first parent. This causes | to be chosen from the fivst parent.
which in turn causes 8 also to be selected. Now, we have a 2 corresponding to 8. llence. we have
completed a cycle. The other elements are chosen from the second parent. The final offspring is
also shown in Fig. L1(e). In general, PMX and CX respect the absolufe position of the genes within
the parents, while OX respects the relative position of the genes. In the gate matrix favont, we do
not place any particular restriction on the absolute position of the gates. As expected, preliminary
results given in [41] have shown that OX works best on the gate matrix layout problem.

It is necessary to choose a cost function that reflects the quality of the chromosome. In particu-
Jar. differences in fitness must be accentuated such that members with higher fitness are reproduced
at a proportionately higher vate. To determine the quality of a layout. the primary factor is the
number of tracks required. Given a gate permutation, the calculation of the number of tracks is
straightforward. For each net, the leftmost and the rightmost gate are found by scanuing. The
density of these two gates as well as the gates in between. is increased by one. The wirelength re-
quired to place the net is equal to the difference between the rightmost and leftimost gate positions.
After all the nets have been examined, the maximum gate density gives us the number of tracks
required. The following cost function C' is used:

O = ky * Numberoftracks + ky x wirclength,
. )

where ky is much larger than k™. The fitness of a string is the inverse of its cost.

Preliminary results on benchmark problems as given in [30] are very enconraging. The Genetic
Algorithm finds solutions comparable to that of existing algorithms in only a few generalions,
Shahookar and Mazumder [27] have obtained considerable improvement over the basic algorithm
by the use of a meta-genelic parameter optimization procedure. This procedure is invoked to
determine good values for the control parameters themselves. Typically. good values have been
found for crossover probability. population size and mutation rate. It is planned to extend this
approach to the gate matrix layout problem as well.

All the algorithins we have discussed so far have assumed that optimizing the n part of the
Ciate miatrix antomatically optimizes the p-part. This is not necessarily true. Tn the next section.
we describe two algorithms that show improvement by considering both halves together.

Hriypically, by is 25 and by is 0.5,
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7 Algorithms for minimizing both n and p—parts together

Consider the netlist given in Fig. 2. If we minimize this layont using Algorithm 2 which minimizes
only the n-part, we get the layout of Fig. 2(a). However, if we minimize both parts together. we
get the layout of I'ig. 2(b) which has fewer rows than the layout of Fig. 2(a). The algorithms
we disenssed so far assumed that an optimum solution for the n—-part (p-part) implied an optimal
sohttion for both parts put together. But, [rom the above example. we know that this is not frue.
In this section, we discnss two algorithms due to Fujii et al. [31] and Chen and Hon [20] that
mintmize the total lavout.

7.1 A heuristic for minimizing the total layout

In the earlier section, we defined each net by the set of gates that it was connected to. In this
algorithm, the authors partition that set of gates into two parts, the set of input gates and the set
of outpnt gates. Also, this algorithm asswmes that the circuit is totally composed ol only NAND
gates, NOR gates and inverters.

A directed graph called a gate graph is introduced to represent the ciruit information given in
terms of the net—set and the gate—set. Define a gate graph (/G = (V. ) as follows:

o The set of vertices V' of (7 is identical to the set of gates (.

o There is an edge from gate g; to gate g; il there exists some net ny for which g; is an input
gate and gy; is an output gate.

e TFor each such edge (gi,9;), attach ny as a label.

Fig. 12 shows a net-list and its associated gate graph. Note that we have to specily both the inpnt
and output gates for each net.

Once we decide the assignment of the gates, we have to decide where to place the diffusion runs
between the nets ou different rows. Let the set of nets that require diffusion runs be denoted by D.
A diffusion position function Vp assigns to cach member of D a valne equal to either left or right.
Left (right) means that the diffusion ruu should be placed to the left (right) of the net. Fig. 13
gives an example. Figs. 13(a), 13(b) and 13(¢) show a NOR gate and two gate matrix realizatiouns.
We notice that whatever the gate sequence, only series—connected transistors need diflusion runs
(il at all). Parallel -connected trausistors do not need dilfusion rnns. But if we can place the gates
in such a way that the output gate is on one side of the input gates (not in between). no diflusion
rin is required even for series—connected transistors. The lesser the munber of diffusion rans. the
fewer rows we reqgiire. We can state the algorithm now.

Algorithm 12: Minimizing both n and p-parts at once.
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o Input: The set of nets N and the set of gates (.

e Output: An assignment of the gates, 7G' and a diffusion position function Ve such that the
layout requires minimum number of rows.

I. Construct the gate graph (7(/ corresponding to the set of gates (. and the set of nets N
2. Select a vertex v € V and set the set of vertices V" to V" — v.

3. From V. select a vertex v such that the expected number of rows is minimum when »/
is placed next to v. Set V=V =" and v = v,

4. Repeat step 3 till an assignment of P is obtained (i.e., V" becomes empty).

Find a dilfusion position function Vp for P.

[\ }

6. Apply the left-edge method to obtain the net assignment'® for P and Vp.

Repeat Steps 2 o 6 for each vertex in GG and output the best layout obtained among
then.

When we apply the algorithm on the example of Fig. 12, the layout of Fig. 2(h) is obtained. The
algorithm has a complexity O(|(/]? o [N]) where (/] denotes the number of gates and [.V] denotes
the nnmber of nets.

This algorithm has used one heuristic for climinating diffusion runs. However, there are other
possible rules, which if followed will eliminate diffusion runs. Our next algorithm incorporates this
‘dnality’ between the series and parallel parts of a logic gate. Also, the above algorithm takes
O(]¢/?) time. Tt is possible to reduce the complexity by using min-net cut for generating the gate
sequence. This brings us to our next algorithm due to Chen and You [20].

7.2 An algorithm that uses several diffusion elimination rules

Other than the duality rule discussed in the above subsection for eliminating diffusion runs, three
other such rules can be developed. We give these rules.

e Rule 1: For a set of series-connected and parallel-connected transistors as shown in I'ig.
13(a). all the gates should be placed on the same side with respect to the output line to
eliminate dilfusion runs. This is shown in Iig. 13(c).

o Rule 2: When two sets of series-connected (parallel connected) transistors are connected in
parallel (series) as in Fig. Ll(a) (L)), the ontput line should he placed in hetween these
two sets to eliminate dillusion runs. See Figs. Li{c) and L(d).

YNet assignment algorithms are discussed in a later section.
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¢ Rule 3: When a set of series-connected (parallel-connected) transistors is connected in par-
allel (series) with a single transistor as shown in Iig. Li(e). this single transistor should be
placed between the output line and the transistor set. See Iig. LH{[)

o Rule 4: When more than two sets of series—connected {parallel-connected) transistors are
conunected in parallel (series) as shown in Fig. 11(g), at least one vertical diflusion run will
be required.

The min-net-cot algorithm is used to obtain the gate sequence. However, this algorithm is
not identical to the earlier min-net—cnt algorithim we discussed. Specifically the concept of what
nets constitute dynamic nets (D-nets) and fixed nets (F-nets) is determined using the rales (ie..
constraints) stated above, To represent these constraints, a duality constraint graph DC' G = (V. I))
is introduced. This graph is defined as follows:

o A vertex represents a single transistor or a set of transistors which can be permuted.

s There exists an undirected edge hetween two vertices il and only il there exists a congtraint,
from the above rules, between them.

Figs. 15(a) and (b) show a circuit and the duality constraint graph of a part of it.

For the earlier min-net—cut algorithm, two transistors of a net are said to be in a D net if
their positions in the final layont are permutable. llere, this definition is extended to take duality
constraints into account.

o Two vertices of the duality constraint graph are said to be in a dynamic net (I net) if there
is an edge between thewm and one of them has more than one transistor in it. Bach vertex is
called a component of this D-net.

e A set of transistors (i.e., gates connected to the transistors) is called a fixed net (I"-net) if
they are in the sanme vertex.

e Two vertices. each of them having exactly one transistor, connected by an edge also form a
fixed net.

In Fig. 15(b), Npy = {f.e} and Ny = {e.d} are the fixed nets while Ny = {g.Np} and
Nz = {g. N2} ave the D-nets. This representation fits the cirenit better than the representation
adopted in [15]. In [I5]. this circuit would have been represeuted as having one D net {foeocod}
with the condition that gate g should connect to any gate helonging to this set. Actnally. the gate
g should connect to one gate belonging to set {f.c} and one gate belonging to set {c.d}.

A miv-net—cut algorithm similar to the earlier min-uet—cut algorithim is nsed hereo Howover,
the gain function has to be wodified to take into acconut the pew representation. Some additional
rules have been introduced to calculate the gain function:
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¢ When a gate is an F-net, and no other gates in this F -net are in the current (opposite) block.
the move of this gate will increase (decrease) the gain by one.

e When a gate is a component of a D-net. and an I' net which is also a component of the same
D-net is in the opposite (current) block (i.e., all the gates of the F-net are in the block), the
gain of the gate is increased (decreased) by one.

The procedure is described below:

Algorithm 13: A min-net—cut algorithm using diffusion elimination rules
o Step 1: Construct a duality constraint graph.

e Step 2: Establish an initial partition according to the duality constraint graph constructed
in Step 1.

e Step 3: Recursively perform the min-net—cut algorithm. i.e.. at each stage, compute the gain
functions for all gates and move the gate with the highest gain. After the move of this gate.
recalculate the gain function for all gates which have common nets with the moved gate.

The layout of the circuit of Fig. 15(a) is shown in Fig. 15(c). Since this algorithm is also hased
on the min-net—cut principle, it is of time complexity O(N log V) where N is the total number of
Lransistors and gate-net contacts, ~

We now discuss an algorithm due to Huang and Wing [32.33] that searches for a good net
sequence rather than a good gate sequence. This algorithm is based on an algorithm developed
by Asano [34] for one-dimensional arrays. Asano’s algorithm is discussed in a later section de-
voted to one-dimensional arrays. Once we have a net sequence, we can construct a gate sequence
correspouding to it.

8 Searching for a good net sequence

At any stage of the net selection process, we can identify the following categories of nets:
o N = {the set of 1/O nets emerging from the left boundary'"}.
e Vi = { the set of I/O nets emerging from the right boundary}.

e Ny = { the set of nets connected to gates which have pre-fixed positions].

" his is a practical constraint thal earfier algorithms have not dealt with. The positions of =ome pets ive 1o
he restricted to the boundaries to accomodate implementation constraints, Also. it i sometimes necessary 1o keep
certain gales in pre fixed positions
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o 1 = { the set of nets which have already been selected}

e 1(m) = { the set of unselected nets that have some common gate with the set of selected
nets}.

e A(n;) = { the set of nets that have some common gate with net ni}.

o Ap(m.n;) = { the set of nets that have some gate in commowm with n;. but which belong
neither to m nor to t{m)}.

Ilig. 16 shows the sets m, #{m) and Ag(m.n;) for some set of selected nets m. Now. to choose
a net, we have to evaluate its ‘goodness’, i.e.. we have to obtain an estimate of the number of
rows we will require if we choose this net now. From Fig. 16, we know that if we choose n;, we
will not need more than [i(m)| + [Ar(m,ni)| tracks'™. So the number of tracks required will be
cither [{(m)] + |Ap(m,n;) or number-of~tracks(m) whichever is maximum. Since for all »; being
considered. [{(m)] is common, we only need to evalnate [ Ag(m.n;)|. In addition, if there is a tie.
the net with most neighbours (larger | A(n;)] is chosen. So, we can define the evaluation function
SElm,ng) as follows:

unde fined, if n; belongs to either m or Ny or Nyy)
e X Ap(myn;) —|A(n;)].  otherwise,

Se(mon) = {

where ¢ is a sufliciently large constant that restricts the use of A(n,) to cases which involve ties.
Also, a net that helongs to Ny is released from it if all the pre-fixed gates that it is connected to
have been assigned positions. We can now state the algorithm.

Algorithm 14: An algorithm for gate assignment by net sequencing
e Input: The sets Np,,Np and the set of gates (<5, whose column positions ('p are fixed.

e Output: A gate sequence which minimizes the number of tracks and ensures that the con-
straints placed are obeyed.

L. Set m = 0; tim) = Np; enrrent-col position = 0.
2. While (current—col -position< |(7| — 2) repeat steps 3 to 6.
/* That is, we continue till each gate has been assigned a place. /.

3. Tor each net n; that does not belong to [im U Ng U Nyfl. caleulate fr(m.n;). Choose
that n; which has the minimum value of fr(neon) and npdate m to inchide n;.

i [32]. this expression is modified to reflect the role played by orersized foapsistors. Oversizod fransisior are
represented in consecutive rows on the same gate



1. For each gate g; that is connected to n; and has not already been assigned a position.
do step 5.

Il current—col-position€ C'p. then continue this step; otherwise do step 6.

Find the gate gy in (g that should be assigned to this position. Assign g; and update
Nar. 10 g, is different [rom the gate gy, assign g; to the next position and update

by}

current—col-position.
6. Sinee current col position is available, place g; at this position and increase current
i ) q; I
col -position by 1.

In Fig. 17, we show examples of net selection and assignment of gates to positions. The time
taken by the algorithm depends on the number of nets. We now describe another algorithmn that
takes into account another practical constraint. the height-width ratio, of gate matrix layouts. A
modified version of the net sequencing algorithm is used to get the gate sequence.

In a circuit. it is possible for a large number of gates to have mauy fewer nets than the lower
bound (i.e., the maximum number of nets connected to any gate). 1n such a case, the methods
we have discussed so far will yield a layout that has very low density. Also. the width (ie..
nnuber of gates) to height (required number of tracks) ratio, known as the aspcet ratio may hecome
unacceptably large. Such a situation often arises because the nets on a gate vary over a wide range.
So. it is not necessary to place all gates in a single sequence. We can divide the set of gates into two
or more (not necessarily disjoint) parts and place them on ‘top” of eacly other. Huang and Wing
introduced gate matrix partitioning [35] which does this division in a systematic manner.

9 Gate Matrix Partitioning

The partioning algorithm divides a gate matrix into two blocks at a time, an upper block and a
lower block. Cates that have nets in both blocks form the interconnections between the blocks. To
avoid the use of any extra routing area, the interconnecting gates are placed in the same column
in both blocks. T'he other gates in a block intersect nets only inside the block, so that the width
of each block is smaller. Each partitioned block has width smaller than the width of the original
matrix. However. the sum of the heights of all the blocks may be larger than the height of the
original matrix (because we stack one block on top of another). The min-cut algorithm is used
here to partition the matrix into two blocks. The cutset is made wp of the interconnecting gates,
The min—-cut algorithm can then be called recursively upon the two blocks till the rectangle that
ciremmseribes the entire set of partitioned blocks has the best combination of height and width,
Once the partitioning process is finished. the gate matrix layout of each block is done separately.
We can now define the problem formally.
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9.1 Problem Definition

Consider a gate matrix M = (G, N, R) where (¢ represents the set of gates, N the set of nets and

12 the set of rows. Let N(g;) denote the set of nets associated with gate g; and n;) denote the

set of gates associated with net n;. Let # denote the total number of gate-net contacts and lot n

be the total number of nets. The symbolic arca (i.c.. number of grid points) is given by |(/] o | R].
Our goal is to partition the net set N into two disjoint subsets, Ny and Ny, forming two gate

matrices, the upper matrix M, = (1, Ny. )) and the lower matrix M, = (Gy. Ny Ry) such that

the total area and the aspect ratio of the layout are better than that of the layout M. If we know

Ny and Ny, we can calculate the gate sets () and Gy as

(/1 = {gates intersecting nets in Ny} = Un,en, (r(n;)

(/y = {gates intersecting nets in Ny} = Un,en,(i(n;)

To implement the min-cut algorithm, we had to specily the following:

I. the balance condition, and

2. a method of computing the gain, and

v

a wethod of updating the gain after an entity is moved from one block (the source block)
to the other (the target block).

9.2 The balance condition

The balance condition employed here ensures that the height (i.e., the number of rows) of one block
is roughly the same as that of the other, i.e., |R| ~ |R;]. However, when we partition the matrix
into two blocks, we do not know the heights of the blocks. The heights of the blocks can only he
kuown after assigning the nets to the rows. This places a severe computational burden at each
step of the partioning process. To avoid this burden. we can estimate the height by a lower hound
given by the maximum number of nets on a gate in the block. We know that the height can never
be lower than the maximum number of nets on a gate. The authors also produce experimental
evidence to show that the height increases as the lower bound increases. Hence, the use of the lower
bound instead of the actual height is permitted. Just as we defined psendogates in the original
min-net-cot algorithm to maintain the relative positions of the gate sets. we define two virtual
nets, Niop and Npopgom here to maiutain the relative vertical order of the blocks. Niop Intorsects all
gates extending to the top edge and npgpon, intersects all gales expanding to the bottom edge. In
the partitioning process, ng,, must always be in the npper block, and np,pom must be in the lower
block.

9.3 Computing the gain function

The gain function for a net has two parts:
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If by moving the net from one block to another. we can reduce the number ol intercon-
necting gates, we stand to gain by moving the net from one block to another. This is
called the cutgain. To calculate the cutgain of a net n;, we go through the following
steps:
— Tor every gate gi associated with this net n; do
« Define partialgain(gg.n;) = 1. if n; is the only net that gate g has in the source
block (i.e., gr will be removed from the set of interconnecting gates):
x else partialgain(gg,n;) = ~1, if gate g, has no net at all in the target block
(i.c.. gr will be introduced into the set of interconnecting gates;
x else partialgain(gy,n;) = 0, otherwise.
— culgain(n;) is the sum of the partialgains of n; over all its associated gates,
We would also want to move a net that can reduce the height of the blocks. This gain
torm is called the heightgain. To caleulate this, we have to first identify those gates in
the block that have maximum number of nets within the block. These nets are critical
nets in the sense that only nets attached to these gates can reduce the lower hound.
If a nel intersects all critical gates in its source block. then moving it to the other block
will cause the lower bound of the source block to be Jowered by one. Il on the other
hand. the net intersects some critical gate in the target block, the lower bound of the
target block will be raised by one. Even il the movement of the net does not change the
lower botnds of either block, it might reduce the number of critical gates in the source
block. This makes it more likely that another net moved from this source block will
roduce the lower bound of the block. We want to assign some positive gains for such
nets too. We can now state the following five rules.
— W1t heightgain(n;) = 2, if n; intersects all critical gates in its block and does not
intersect any critical gate in its target block.
— H2: heightgain(n;) = 1, il n; intersects some critical gate (but not all) in its block
and does not intersect any critical gate in its target block.
— 13: heightgain(n;) = —1, il n; intersects sowme critical gate in its block. and also
intersects some critical gate in its target block.
~ 1L heightgain(n;) = —2.if n; does not intersect any critical gate in its block. but
intersects some critical gate in its target block.

|

H5: heightgain(n;) = 0. otherwise.

Finally. Gain(n;) = Cutgain(n;) + Heightgaim(n;).
Fig. 18 shows the cutgains and heightgains of several nets nsing these rifes,
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9.4 Updating the cutgains and the heightgains

Onece we have ¢

alculated the cutgains and the heightgains after the initial (given) partition, it is not

necessary to recalculate this value from scrateh after the move of a net from one block to another.
The net nj that has been moved is locked. All nets that are not locked are available for movement

and are called
follows:

N

Jree. The updates of the cutgains and the heightgains of the free nets are done as

o ('utgain update:

We consider each gate g; that is associated with net n;. There are four cases that we have to

consider:

1.

If g; does not have any nets in the target block other than n;. increase the cutgains of
all free nets of g; (because these nets can now be moved to the target block without
increasing the number of interconnecting gates).

Il g; has only one net in the target block other than n; and this net is free, reduce
the cutgain of this net by one (because moving this net is not going to remove ¢;
from the set of interconnecting nets).

Il g; has no nets left in the sonrce block, reduce the cutgains of all its frec nets
by one (hecanse these nets cannot be moved withont putiing ¢; into the set of
intereonnecting nets).

Il g; has only one net Joft in the source block and this net is free. increase the
cutgain of this net by one (hecause moving this net will remove g; from the set of
interconnecting gates.

When we go through the four steps above for all gates associated with the moved net n;, we

are done,

We now have to calculate the change in height gains of the [ree nets.

o lleightgain update:
We perform two steps here. In the first step, we determine the set of free nets D that need
updates to their height gains. In the second step. we use the five rules HI through H5 stated

above to

i.

calculate the new heightgains of these nets.

Inctude in D all vets that have some common gate with net n;. Also. check if the
lower bound of the sonrce matrix has changed. If so. make the new set of critical
gates. Add to D all the nets that are associated with any of the critical gates.
Iinally, check if the lower bound of the target matrix has changed. 1f so. repeat the
process that was carried out for the source matrix.

For all nets in D). recalculate the heighteains using the five rules HI throngh 15
stated above.
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We now stmmarize the partitioning algorithm:

Algorithm 15: PARTITION

e Input data from the data-list.

Identify gates which have lengths greater than lower-bonnd /2 and call them long gates.

Randomly generate an initial partition (N, Ny).

e Repeat PASS nuntil the result (N, Ny) is unchanged.
Algorithm 16: PASS

o Initialize the gains of the nets.

e While (a gate to be moved n. can be lonud) do

~ Lock n, and complement its block.
— Update the gains of the [ree gates.

~ If (the current partition (Ny. Ny} is better than the recorded vne). retain (N, Ny

. . 2. . . .

The algorithm PASS takes O(t) + O(N time. lHowever, we still have to assign the gates to
= L

their respective positions. Also, to ensure that no extra routing area is necessary betweemn any two

partitioned blocks (i.e., matrices), gates have to be assigned the same (absolute) positions in each

madtrix. This is acheived by the simultancous gate scquencing algorithm discussed next.

9.5 Simultaneous gate sequencing

After PARTITION, the set of nets has been partitioned into a number of subsets b, i.e. N =
Ni+Ng, - Ny, Each subset N, comprises the nets ol a partitioned matrix M, = (N, (o Ry C)y
in which (7, is the set of gates, R, the set of rows and ', the set of columns. The gate set (v,
includes the gates intersecting nets in N, as well as gates that intersect nets in both N.(r > )
(i.e.. in some matrix above M, ) . and N (s < x) (in some matrix below Al,.) even il these gates do
not intersect any net in N, itself. This is because such gates will have to run throngh A,.. The
matrices to which a gate belongs are called its home matrices and this set is denoted as H(1). A
colnmmn is denoted as ¢,. where  is its matrix index and 7 is the position of the column.
Onr problem is to allot each gate in each matrix to a column position such that:

e the total height is minimum, and

e those gates that run in more than one matris are assigned the same position in all matrices.
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An algorithm similar to that of the net sequencing algorithm is used. There are two important
changes.

o Associated with each matrix, we have a gate buffer. This buffer holds gates that are to he
placed in the matrix. When every bufler has atleast one gate, a set of gates that matches
the set of colunms eyp,e9p, ..., cpr, where & is the cnrrent colnmn index, is moved from the

18

buflers to the columns '®. If a gate has multiple home matrices, it must be included in the

buflers of all the home matrices.

e The evaluation function fr(m.n;) has an ohjective function similar to that of the net se-
gquencing algorithm. Iowever, the total height of all the matrices put together is evaluated
atd not the height of a single matrix. The evaluation function is now delined as

h
frtmon;)=c Z ho (e, ng) = [A(n )]

r=1

where h,.(nm,n ;) denotes the height of matrix r if net n; is selected. As before, a large valne
for the constant ¢ is selected. This enables us to break ties.

We can now put the algorithm together.

Algorithm 17: SIMULTANEOUS-GATE-SEQUENCING
o Input: The set of partitioned matrices M. M, ..., A,

e Ontput: A gate sequence that minimizes the total height while allocating the same absolnte
positions to gates that run in more than one madtrix.

L In each matrix, initialize the set of selected nets m,. to the emptly set @ and the height
of the matrix h,(m) to 0. Set the column index p to 0.

2. Define the set of nets to be considered for placement as the set of all nets of all the empty
buffers. /+ We allocate gates to colimus only when all the buffers are non-empty.«/
From this set, choose that net n. for which fr(m.n.)is minimal. Update the buflers of
all the matrices to include the gates connected to net n.. Also. update the evaluations
of all nets which are neighbours of n..

3. While (there is not an empty buffer) do
For {ow = 1.2,....0) do

“This can create conflicts of the form shown in Figure 18(a). This is resolved nsing doglesg<which inervea=c the 1otal
height by one [33]. Ounly those doglegs which do not go awayv by exehanging colunmns ape rofaised Moy doslens can
be discarded by exchanging two columns. However. we shall not discuss this in detail.
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('hoose a gate ¢; [rom bufler(x).
Remove ¢; from buller(w)

Assign ¢; on column p of matrix x.
endlor

p=p+ L

endwhile

The total time complexity of algorithm SIMULTANEOUS-GATE-SEQU ENCING has been shown
to be O(L e n) where ¢ is the number of gate net intersections and n is the number ol nets.

With this algorithn, we have discussed all algorithms that yield a gate sequence. Alter a gate
sequence is obtained, we need to assign the nets to a winimal mmber of rows. This is the net
assignment problem. Before net assignnent is done, we can perform an operation known as nel
merging which can reduce the number of tracks we require.

10 Net merging

In the formulation we have used so far, we have assumed that i two nets have any gate in common,
then they cannot be placed on the same track. Consider the example of Fig. 19(a). Since nets
ny and ng share only the terminal gate g3, they can he merged into one net. This is shown in
Fig. 19(h). In [6] and [21], net merging is performed aflter we obtain the gate sequence. In the
min-net-cut algorithm [16] however, nets are merged during the base-gate selection process. This
gives a correct estimate of the cutset. The rule for merging a dyvnamic net with a serial net is
slightly ditferent, though. When the dynamic net has all its unbound gates on one side and all its
bound nets on the other. the D-net can be merged with the fixed net. An example of this is shown
in Fig. 19(c) which is the layout for the example of I'ig. 10(a).

It is possible to merge two nets even il they do not have a transistor in common. In [36]. an
algorithm that merges nets in a more comprehensive fashion is presented. In our representation
o far, we have assmmned that each row—column intersection is either a transistor or a {(metal-poly)
contact. Actually. we can classify these contacts into six categories as seen in Ilig. 20. The
number of units (of vertical length) that a contact occupies is also shown. The density Dig:) of a
gate ¢; is defined as the minimum number ol units requiired to accomodate all the nets associated
with the gate ¢;. The minimum number of tracks required to place all the wets is equal to the
maximum density, Dypa, = max[D(gi). D(g2)s ... D{gm )]. where m is the total nomber ol gates.
The algorithm proceeds in two steps:

1. Given a gate-list, the density of all gates and the maximum density s calenlated.
2. The left edge net assignment algorithm' is modified to merge nets nsinge information
generated in step 1. while assiguing nets fo rows.

rqe . . . . . . . N
916 be discussed in the section immediately following this one.
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To represent all the types ol contacts we saw in Fig. 20, we denote a gate—net intersection by

> 20

the 6-tuple: (g, n.t e l.r)", where

¢ g is the gate number (i.e.. gy has the gate number 1 etc.):

¢ 1 is the pet number;

t is the type of intersection where

0. for the metal-to-poly contact

for the horizontal metal line

for the source (drain) of a transistor whose drain (source) is connected to Vpp or ground
for the source {drain) of a transistor whose drain {source) is connected to a net

OO
N - .

o cisequal to 0, if t <0. When ¢t = 3, i.e. when the 6-tuple represents the source (drain) of a

transistor whose drain (source) is connected to the net numbered ¢.
e [(orr)isequal to I when the intersection is the leftinost (right most) endpoint and 0 otherwise.

Fig. 21 shows the 6-tuples for a vartety of connections.
We are now ready to describe the algorithms for steps 1 and 2 above.

Algorithm 18: DENSITY-FUNCTION

e Input: The gate permutation and the gate for which we wish to fiud the density, g;.

o OQutput: The density Mmnetion D{gg).

1. lnitialize D{gi} to 0.

2. ldentify any two 6-tuples (gg.n;,3.¢;.li, 7)) and (gp.n;.3,¢;.0. ;) with n; = ¢; and
n; = ¢; as a pair of G-tuples.

3. For each pair of 6-tuples obtained in step 2, if [ of one 6 -tuple is | and r of the other
is 1, then add 1 to D{g) and delete the pair of 6-tuples (because they terminate atl the
satne gate, these two nets can be merged into one); otherwise, if [ (or 1) of one G-tuple is
1. mark the G-tuple with I to indicate left half (resp. rh to indicate right half); delete
the other 6-tuple and add 1 to D(gy). This corresponds to Fig. 20(h).

4. For each 6-tuple with ¢t = 2 and I {(or r)= 1. if there exists a G-tuple with t = 1. mark
the G-tuple of t = 2 with Ih (or rh). add | to D(g;) and delete the 6-tuple ol 1 = |:

otherwise, add 1 to D(gr) and delete the G-tuple of ¢+ = 2. This corresponds to g,
20(¢).

A n-tuple is a sequence of n elements: for example, (11,1008} is 1 3 -1uple.
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5. For each 6-tuple with ¢ = 0 and [ (or r)=1. il a 6-tuple marked with rh (or {h) can
be found. add 1 to D(gi) and delete the two G-tuples (these two 6-tuples can share the
sante space as in Iig. 20(d).

6. For each 6-tuple marked [l if a 6-tuple marked rh can be found, add 1 to D(gg) and
delete the two 6-tuples (these 6-tuples can share the same space).

7. Finally, add the number of remaining 6-tuples to D(gy).

The maximum of D(gy) is taken over all gates gp. This is the maximum density D). Vig.
29(a)shows the calenlation of D(gg)'s and D, for an example layout. We will now describe the
algorithm that actually does the merging of the nets. Net assignment is also done simultaneously
nsing the left-edge algorithm which will be described in the next section.

Algorithm 19: NET-ASSIGNMENT

e Input: The gate permutation, along with the gate densitics D(g;)’s and the maximmm gate
denisty D0

e Output: An assignment of nets to rows including all possible mergings.

1. For each pair of 6-tuples (g;, 4,3, j, 1,0) and {g;.7.3.4,0, 1), merge the corresponing nets
i and j.

2. For a gate column g;, if the number of 6 tnuples with g = g; is larger than D,
mark the gate column with myg to indicate that there are mergings to be made at this
columu. (Since we know from DENSITY-FUNCTION that the assignment will require
atmost Diy,qae rows, any gate column that has more than D, 6 tuples must have some
mergings).

3. Apply the left-edge algorithm to assign a net?'. Once a net has been assigned. lot
the gate positioned at the endpoint of the net be denoted by g 4. I gopq has not
been marked with myg, then assign a net beginning from ge,q + k. choosing & as the
smallest number greater than or equal to 1. If g.,,q has been marked with mg and il the
corresponding 6-tuples had been merged during the density function caleulation, then
assign a net beginning from ¢.,q. If not, then start lrom g4 + 1.

Fig. 22(b) shows the steps used in obtaining the density of gate I'. Using the same method on all
the gates leads to the 3-track solution shown.

Once we obtain the gate sequence, we have to assign individual nets to the rows to complete
the layout. As we will see, this is not a trivial problem hecanse of the constraint< imposed by the
gate matrix style. In the next section. algorithms for net assigciwment ave eiven.

2" he reader is advised Lo browse through the material vn the lelt—edyge algorithm i the next section.
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11 Net Assignment algorithms

The first algorithm that was used for the net assignment problem was the lefi—edge algorithm de-
veloped by Hashimoto and Stevens. This algorithm was originally developed for wire routing. We
describe the algorithin below.

Algorithm 20: Left-Edge-First
o Input: The gate permutation and the set of nets.

o An assignment of the nets to rows such that the number of rows required is minimum.

1. Consider each gate succesively from left to right in the given order. For each gate do
— For each unassigned net connected to this gate do
+ Clieck if this net can be assigned to any of the existing rows. Il it can, assign it
to that row and mark the net as ‘assigned’. Il it cannot be assigned to any of
the existing rows, assign this net to a new row, and mark it ‘assigned’.

ig. 23(h) shows the step-hy-step assignment of nets for the net-set in 23(a) and the gate sequence
(11, A, B,C.F. G E D). Notice however that there are conflicts which prevent us [rom vealizing the
diffusion runs between nets 7 and 8, and between nets 3 and 4. We will prove later that assigning
the nets to the rows such that there are no such conflicts is a very difficult problem. Now, we will
present two heuristic methods [6], [33] that assign nets to rows such that the number ol conflicts is
mininized.

11.1 Permuting the rows after Algorithm Left—-Edge-First has been applied.

As we saw in the example above, the assignment given by the Left-edge-first algorithm may not be
implementable. We can immediately think ol a straightforward solution to the problem. Suppose
a conflict is occuring at column ¢;. We could increase the spacing between ¢; and its left (or right)
neighbour so that we can realize the diffusion run®?. For example. in Fig. 23(b), if increase the
spacing between colummns (¢ and £, we conld implement the diffusion run between nets 7 and 8.
However, it might be possible to eliminate (or atleast. reduce) the number of conflicts by permutting
the rows. In Fig. 23(c), we have placed the rows in the order [5.4.2.1.3]. There are no conflicts
now. Wing et al. [6] have given a method of constructively placing the rows. We will discuss that
algorithm next. .

Algorithm 21: Realizable sequence construction

225, what we said in section 1 abont the spacing betwern colnmus being Hxed is vot cutirely trne,
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The algorithm constructs a realizable sequence row hy row. To select the ‘next’ row. we need
a representation that depicts the entire relationship between the rows. Using this representation,
we can choose a row by keeping in mind the global effect of our choice. Such a representation is
provided by the row adjacency graph J(V.I). Tach row is represented as a vertex. There is an edge
between two vertices ¢y and v;, if there is a diffusion run between some net ny, in »; and some net n,
in ;. The row adjacency graph of the layout of Iig. 24(a) is shown in Iig. 24b). A cyele group is

a set of vertices in which every vertex belongs to a cycle?? or to a set of cycles in which every pair of

cveles have atleast two vertices in common. In Figo 2Hb), {1,3.4}, {1, 2.4} and {1.2,3.1} are eyele
groups. In the algorithm, a partial sequence is constructed for every cvele gronp and the positions
ol the other rows are decided later. This is done because we know that the partial sequence for every
cycle group has to be realizable for the entire sequence to be realizable. How do we decide which
vertex of the partial group to place as the initial vertex? This is done by considering catensions.
An catension is a path which begins at a vertex of a cycle group and terminates on aisolated vertex
ol a vertex of another cycle group. In Fig. 25, ({1.2}.{5.8} and {5.6.7} are the extensions. The
vertex (row) with the longest extension (the source) has the ‘deepest’ connection with rows not in
this cyvele group. llence, a partial sequence is started with the vertex having the longest extension
and ended with the vertex having the second longest extension (the sink).

How do we choose the other vertices of the partial sequence? At cach step, we define a set of

acceptable candidales, K. A vertex is considered to be acceptable if it has a diffusion run with some
vertex that has already been selected and if it does not cause a conflict between a vertex that has
already been selected and a vertex that has not been selected yet. Fig. 214(c) gives some examples
ol acceptable and unacceptable candidates. We can now defline the following steps:

o [f there is only one acceptable candidate, choose that row as the next vertex in the partial
sequence.

¢ Il there are more than one acceptable candidates, the tie is resolved by applying the following
rules in the order shown.
1. Choose that candidate which has the maximum number of diffusion runs to rows
already selected.
2. For each candidate, define a risk funetion that gives the risk taken if this candidate
is not selected, i.e., the possibility of conflicts being introduced later if this candidate
is not chosen. Then, select a candidate that has the maximum risk.

Choose that candidate which is nearest to the sink (in terms of shortest path).

4. For each candidate, assume that it has been selected and form the fresh list of

candidates that are now eligible. I ,,,0500s. Choose that candidate which has the
]2I<l'g(‘St I grandsons-

22 A evele in a graph is a sequence of vertices vy, r. ... rposnchothateach ol try sy tes e ey o e e

are edges in the graph. A graph might or might vot have cycles.

10

:
|




%

W

Wy

ww

g

R

Fig. 24(c) shows the layout obtained after the application of the above rules to the lavout of
[Mig. 24(a).

o If the set of candidates is empty. choose a candidate y, and for each conflict induced by y.
icrease the spacing between columns as necessary to impleinent all the diffusion runs between
y and the set of selected vertices. Choose y in the order of priority shown below:

1. Choose that candidate which has the minimum number of diffusion runs to rows
already selected.

2. Select a candidate that has the maximum risk.
Choose that candidate which is nearest to the sink (in terms of shortest path).

4. Choose that candidate which has the largest K, qndsons-

However. the above algorithm has not been very effective in eliminating conflicts. This is bhecanse it
nses the left-edge algorithw as its basis, and the left-edge algorithm does not take realizability into
account when it assigns the nets. We now discuss another algorithm due to Huang and Wing [32.33].

This algorithin uses the concept of zones. A zone is a consecutive set of columns with the
following properties:

1. Every net whose left end lies on a column in this set overlaps every other net which also

has its left end in this set.
2. Each of these nets overlaps any net whose right end lies on a column in this set.

3. 1f one more column is added to this set, the set will not have properties 1 and 2. i.c.,
the set is maximal.

In Pig. 26, a layont and its zones are shown.

Net assignment is doue zone by zone from left to right. A row is said to be available in zone
z; if it is filled only at the columuns to the left of z;. In Fig. 26, rows 3 and - are available in zone
z2. Denote the set of rows available in zone z; as AR(z;). The set of associated nets of zone z; is
denoted by N(z;). In Iig. 26 again, N(z2) = {nq.n:}. If there are more nets in N(z;) than rows
in A(z;). new rows are added to the gate matrix. But, the real advantage of the concept ol zones
is that an associated net can be assigned to any of the available rows. So. we can assign a net to
that row which makes it possible to realize the diffusion runs emanating from the net. Also. define
E(z;) as the set of nets that terminate in zone z;, and B(z;) as the set of netg that begin in zone

i

Before we describe the algorithm, we have to discuss the natnre of two graphs known as the ne/
redation graph, (¢, and the row relation graph. .. respectively. The net velation craph ¢/, 0N 1))
has each net as a vertex. There is an edge hetween two vertices (nets) il there oxists o diflusion
run between the two nets. The row relation eraph ¢/ (1. 11 consists of eacl row of the matris as



a vertex. Rows r; and r; are counected if r; should be placed adjacent to r;. Initially, the edge set
I, is empty. During the course of the algorithm. edges are added to £, We can now describe the

algorithm.

Algorithm 22: Zone—Net—Assignment

o Tuput: The gate sequence and the set of nets.

e Output: An assignment of nets to rows with mininial number of increases in gate spacing.

e ldentily the zones of the given gate sequence.
¢ For each zone z; do

~ Set AR(z) = AR(zi-1)U E(zi—y) and N(z) = B(z).

~ Call MATCHING with AR(z) and N(z;)]

— Update the row relation graph , to reflect the row adjacency requirements created by
MATCHING

~ For every net n; € Ngz;) that could not be assigned a row, assign a new row and add it

to the best possible row position using information in Gy

o endfor

Algorithm 23: MATCHING

e Input: the set of available rows and the set of nets belonging to a zoune

e Output: An assigument of nets to the rows.

o Use the CRITERIA listed below to find a pair of the form (row.net).

e Add the net to the row and update the sets AR(z;) and N(z;). Also, update (7.
The CRITERIA are given below in order of importance.

1. If all rows in AR(z;) are free, match them to nets arbitrarily.

2. 1f net n; is adjacent to ny in the net relation graph (/. and ny is assigned to a row

adjacent to r; € AR(z;), match n; to .
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a vertex. Rows r; and r; are connected if r; should be placed adjacent to r;. Initiallv. the edge set
7, is empty. During the course of the algorithm. edges are added to E.. We can now describe the
algovithn.

Algorithm 22: Zone-Net—Assignment
o Input: The gate sequence and the set of nets.

e Output: An assignment of nets to rows with minimal number of increases in gate spacing.

B
o Ldentify the zones of the given gate sequence.
o lor ecach zone z; do
. — Set AR(z) = AR(zi-) U E(zi-y) and N(z) = B{z).

— Call MATCHING with AR(z) and N(z;);

— Update the row relation graph &, to reflect the row adjacency requirements created by
MATCHING

— Tor every net n; € Niz;) that could not he assigned a row. assign a new row and add it
to the best possible row position using information in G,.

;’,%
]

o endfor
Algorithm 23: MATCHING

o Input: the set of available rows and the set of nets helonging to a zone

e Output: An assignment of nets to the rows.
o Use the CRITERIA listed below to find a pair of the form (row.net).
b o Add the net to the row and update the sets AR(z;) and N(z;). Also. update (/..
The CRITERIA are given below in order of importance.

1. If all rows in AR(z;) are free. match them to nets arbitrarily.

2. If net n; is adjacent to ny in the net relation graph G,. and ny is assigned to a row
adjacent to r; € AR(z;). match n; to r,.
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3. Netsin (,, that have a diflusion run between them are called adjacent nets. A eomponent
of (4, is a subgraph of (¢, such that any two nets in the component have a path between
them. We wish to place nets belonging to a component to adjacent rows. So, this step

looks for a compouent p, of the row relation graph G, that is complete. i.e.. a set of rows €
in which none of the assigned nets are adjacent to any of the nnassigned nets (which
neans that any of the nets can still he placed on these rows). Such a complete component
should be in the set of available rows AR(z;). If the number of rows in the component
P, is greater than the number of nets in the component of ), (this component of nets
nmist be in the set of unassigned nets N(z;)), we also match some free nets along with ¢

the nets belonging to the component. 1T it is not, we match as many nets as possible
onto the rows. The matching should maintain the adjacency properties of the rows and
the nets.
4. This criterion is similar to Criterion 3. llere. however, we look for a compleie set of nets
I1. This set I contains all the nets of a component of (7. We look for a component p; ¢
of AR(z;) that is bigger than H?!. If we cannot find a p, bigger than H. we add some
free rows. The matching should maintain the adjacency properties of the rows and the
nefs.

[ |

Match every free net in N(z;) to a non—free row in AR(z;). The longest free net is
matehed first. That row in ) which has the maximum number of adjacent rows is
matched with this net. We do this because we try to keep the least constrained (in
terms of adjacency) rows for nets with many diffusion runs. This minimizes the chance

of a conflict.

r

6. Match every free row in AR(z;) to a non free net in N(z;).

7. Match net n; € N(z) to some row r; € AR(z;) if n; does not overlap with the nets é
already assigned to AR(z;) and if /A R(z;) has some net nj which is in the same component
as nj.
8. For the remaining rows in AR(z;), the row with the simallest number of adjacent rows is
matched fivst. If there is a tie, choose that row which belongs to the smallest compounent.
For the remaining nets in N(z;), the following three sub—criteria are used to determine g
the net to be matched:

|

(‘hoose that net which has the smallest number of assigned nets in its component.

— (hoose a net belonging to the smallest component.,

Choose a net which has a minimum number of adjacent nets.

21y the earlier criterion, we looked for a set of nets that was larger than the nnmber of vows: here we are looking
for a set of rows that is larger than the set of nets that we have identitind.
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The algorithm runs in O(n) time where n is the number of nets. 1t has sncceeded in obtaining
realizable layouts for a large number of cases that could not be solved using the left-edge-first
algorithm.

We know now that the net assignment problem is quite difficult. In fact, it has been proved to
be NP-Complete by Rim and Nakajima [37]. In the following subsection, we present the outline of
the NP-Completeness proof as well as the algorithm developed in [37].

11.2 Net Assignment as an NP-Complete problem

Lach vertical diffusion run on a column induces a partial order on the nets connected to the
column, i.e., il a diffusion runs exists between nets n; . n;,,....n; on colnmn /. the other nets
connected to column I must lie outside n; ,n;,, ..., n; for the diffusion run to be feasible. This
is because all these other nets also have contacts on column [ and if they lie in between, a conflict
is bound to arise. Fig. 27(a) gives an example. So for each column, we can define a set of
constraints that must be satisfied for all the diffusion runs to be realizable. Itach constraint is
of the form (n; ., niy,.... 0 )0, which means that n; (the outsider) has to be placed outside
NiysNiys .oy, (the insiders). Thus, the Qutsideness problem described next can be converted fo
the net assignment problem in polynomial time?®. llence. the net assigninent problem is considered
to be NP-Complete.

The Outsideness problem is:
Civen a set A and a collection of constraints 1, find an ordering of the elements of .1 such that all the
constraints in I? are satisfied. To prove this problem NP-Complete, the anthors have demonstrated
that a known NP-Complete problem called as the NOT-ALL-EQUAL-3SAT problem [11] can be
transformed in polynomial time to the Outsideness problem. The details of the prool are not given
here. We will next describe the heuristic algorithm that has been developed by the authors hased
on the proof.

Given the netlist and the set of diffusion runs. we can create the sets A and R. where A is the
set of nets and I is a set of constraints that reflects the vertical diffusion runs. In Figure 27(b),
we show how each vertical diffusion run can be expressed as a set of constraints, Based on the sets
A and K, we can construct a graph GV, L) where V' is equal to the set of nets NV and there is an
edge (ng,n;) in G il n; and nj are an insider and the outsider respectively, of a constraint®®. Onr
aim is to create an ordering of the vertices of (7. Hence. as we progress through the algorithim. we
will assign a direction to each edge. The directed edge (v;, v;) tells us that the vertex »; precedes
v; in the ordering. The edge is outgoing from v; and incoming into v;.

The algorithm first calculates the maximum density D,,,,.. This gives us the minimum muonber

2T here are some details that have to be looked into before we can wake this conversion. The full proof is given

in [37].
24 . . . . Ce : .
21y the earlier algorithm, there was an edge in the graph if the neo wets had a diffnsion rnn in common. Here, it
is the other way round.



of rows in which all the nets can be assigned. It then proceeds to find supervertices that are
collections of nets (vertices) that can be placed together on a single row. The algorithm then
allocates supervertices to the D,,,, rows, proceeding row by row. We give a broad outline of the
steps below:

1. For each row. a ‘seed’ supervertex is found.

2. Then. all those supervertices that can be placed to the left are merged with the “seed’
supervertex. If there is wore than one such supervertex. the supervertices are chosen in
an order that minimizes the enlargements.

3. Similarly, all supervertices that can be placed on the right are also merged with the “seed’
supervertex. As before, the order of merging aims to keep the number of enlargements
minimal.

4. The three steps above are repeated D, times.

The two operations orientation and merging are discussed below:

e Orientation: When we assign a direction to a edge as discussed above, other edges are affected
as well, Consider Fig. 27(c) which shows how the direction of (ry,r3) is automatically
determined once we orient (v, v,). This is called the domino cffcet. In general, the domino
effect may create a directed cycle, or may cause a constraint violation (IFig. 27(d)). In such
cases, we have to permit enlargements.

e Merging: Merging takes two supervertices and creates one new supervertex that contains all
the nets contained in the other two. 1f there exists a directed path?™ hetween any two nets
and v in the two supervertices, we have to destroy the path by removing some edge (i.c.. by
removing some constraint). That means, we have to permit some enlargements. The merging
operation chooses to delete that edge which minimizes the number of enlargements.

Of all net assignment algorithms developed so far. this one has given the best results. Net assign-
ment is a problem that has not received as much attention as the Gate Matrix problem.

Our next section is devoted to algorithins that solve the gate assignment problem of one-
dimensional arrays.  ‘This problem, as we will see is closely related to the gate matrix layout
optimization problem. However, the practical constraints that we take into account while solving
the gate matrix problem, are not relevant in the one-dimensional array problem.

2TIT there exists a directed path, it means that an order has been specified between v, and v, But. merging puls
them in the same position. This violates the ordering imposed earlier and leads to a directed cvele,
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12 One-Dimensional Arrays

The one-dimensional logic gate array was introduced by Weinberger [1]. A complex logic func-
tion can be realized with gates interconnected as a one-dimensional array. In the layout. in-gate
wiring is done along the vertical columns and connections between gates are made horizontlly. In-
put/Output lines are also drawn as vertical columns. At the intersection of a vertical cohimn and
a horizontal wire, there is either a terminal of a transistor or a straight connector. The width of
cach column(gate) and the separation distance hetween two neighboring columus are predetermined
depending on physical constraints. The layout schiematic of a NAND gate is shown in Fig. 28(a).
Tn Fig. 28(b), a layout of a one—dimensional array with six gates is shown. Additionally, we require
two distinguished gates gy, and g,i55, for input/output purposes. In Fig. 23(c), another lavout of
the same array is obtained by permuting the gates. We see that the number of rows is lesser in
the second case. In general, we want to place the gates so as to minimize the number of rows(also
called tracks). The one-dimensional array approach is suitable for MOS and I*L technologies.

In Section 3, we have already seen one algorithm, the minimal augmentation algorithm, that
solves the one-dimensional array problem [3]. We will outline four other algorithms that have been

.

R

L

developed.

Asano’s net assignment algorithm 335]

R

L.

2. The two-terminal net heuristic developed by Fujii et al. [38]
3. The hierarchical contraction heuristic of Yamada et al. [39]
4,

The double macrovertex heuristic given by Hong et al. [40]

Of these. a modified version of Asano’s algorithm was used in Algorithm Net -Sequencing. We will
outline the algorithms but will not go into the details.

L

12.1 Asano’s algorithm

Asano developed a branch-and-bound algorithm that obtains optimal solutions to the one=dimensional
array problem. The branch-and-bound technique first finds oune solution using the depth-first—
search method. Then every incomplete path in the search graph is pursued either till it finds a
sohttion of lesser cost or till it exceeds the cost of the hest solution so far. An evalnation function
is used to determine whether the current node in the search graph can possibly lead to a better
solution than the best one so far. The evaluation function used in this algorithu is similar to the
function fr(m.n;) used in algorithm net-sequencing.

This algorithm takes O(m?+v) time, where m is the number of nets and # is the number ol nodes
generated during the search. v may vary from O(m) to Oy, Hewce. this aleorithm is not feasible

2
%ﬁ

even for moderate values of m. Asano has suggested an approximate version of the aleorithm that
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works in a greedy manner. At every stage of the search tree. the approximate algorithm chooses
the scemingly best path. Once a solution is obtained, the algorithm stops (there is no backtrack).

12.2 The two—terminal net heuristic algorithmm

Fujii ot al. developed a henristic algorithm that first decomposes a problem consisting of multi

terminal nets (nets with more than two gates) to a problem consisting only of two—terminal nets,
That is, each multiterminal net with ¢ contacts is broken down into ¢ — | consecntive two—terminal
nets. To do this, an arbitrary gate sequence is generated. The multitertinal net is now decomposed
into a sequence of two-terminal nets which appear consecutively. This reduced problem. consisting
only of two terminal nets is known as Problem R. A solution for Problem I known as Algoritlum
R is based on a bidirectional search method. Two partial assignments of vertices are constructed
independently: one is started from the left boundary , while the other is started from the right
boundary. The search is conducted on a weighted graph ¢ = (V, E) which is created unsing the
input to Algorithin R. A complete one-dimensional assignment is obtained when the search from
the left boundary visits the same vertex as the search from the right boundary. Algorithm It is
repeated for a nwuber of different starting sequences. The best solution obtained is retained as
the final gate sequence. lt is claimed that such an approach also minimizes the total wire length.

Algorithun R runs in O(|V| e | L] e log | L]).

12.3 The hierarchical contraction heuristic algorithm

There are two stages in the hierarchical contraction algorithm. In the first, gates are confracicd®®

a prelixed number of times. The ‘hierarchy’ defines that at each level, vets with minimun number
ol gates be contracted. Contraction is done using the following two policies:

e Policy 1: The original problem is divided into i, + | levels by iterating contraction of nets in
increasing order of the number of terminals, where i,, is a control parameter to be selected hy
the designer, and is an integer between | and p — L, where p is the total number of terminals
on nets. This ensures that atleast one net will be contracted at each level.

o Policy 2: The contraction of nets connecting to the left boundary gate or the right boundary
gate is forbidden.

Iig. 30(a) shows a layout, whose contracted lavout with 7, = 2 is shown in Fig. 30(b). Once we
have extracted the subset of gates at each level. we have to arrange them in a row fto get a gate
sequence. This is done in accordance with the f[ollowing policy:

e Policy 3: The gates al each level are selected one at a time. and arranged in order sneh that
the total wire length and the number of tracks are locally wminimized.

28 Fig. 29a) shows a small layout. Fig. 29(b) shows the layvout after the contraction of net u,.
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The algorithm runs in O(i,, e n e p) time where n is the total number of gates. It is claimed that
this algorithm performs much better than the algorithm due to I'ujii et al.

12.4 The double macrovertex heuristic algorithm

Ounr last algorithm [10], like the algorithn dne to Fujii et al., also procceds to buils a gate sequence
from both the left and the right directions. However, this algorithm starts with a weighted graph
GV, ), where Vois the set of gates (colinmns). The edge set E of the graph is generated as follows:

o Construct a complete graph?? for cach net. The union of all the complete graphs thus gen-
erated is the final weighted graph. The edge set £ is the union of the edge sets of all the
complete graphs.

Fig. 31(a) shows the weighted graph of the netlist in Fig. 31(h). Since this weighted graph does not
depend on any starting sequence etc., it is unique for the given netlist. So. unlike I'ujii’s algorithm,
this algorithm does not have to he repeated for different starting sequences. The subset of vertices
already chosen to be placed from the left boundary is called the left macroverter and that from the
right boundary is called the right macroverter.

At each step, the direction of ordering (left or right) is first determined using the minimum
cut as a criterion. In Iig. 30(a), the cut of the left macrovertex Lg is 9 and that of the right
macrovertex s is 6. So, at this step, a gate is chosen to be placed next to the right macrovertex.

To choose the gate, two criteria are used.

1. The maximum connection criterion: We consider all the gates which are connected to
the macrovertex chosen for expansion. That gate which has the edge of maximum weight
will be chosen. In I'ig. 31(a), e5 has an edge of weight 3 which is the maximum among
the weights. lence, ¢5 is chiosen.

2. The Overriding property: In Li’s algorithm [7] , we discussed the concept of dominant
gates. 1t was stated that for local optimization. a gate (column) should be placed next
to a gate that dominates it. This property is called the overriding property here becanse
we choose a gate that either dominates or is dominated by the macrovertex. il such a
gate exists. llence, we are overriding the choice made by the first criterion. In IMig.
31{a). 5 dominates and hence replaces Rg in Fig. 31(c). The method of obtaining the
graph ol Fig. 31(c¢) is explained in the next paragraph.

Once we have chosen the gate, we merge it with the-macrovertex. For all those gates that were
connected to the chosen gate but not the macrovertex. edges are introduced with weights as belore.
For gates that were connected to both the chosen gate and the macrovertex. o single edee with
weight equal to newweight is created. where nowwcight s

29 . . . .
A complete graph is one in which every vertex is connected to every other vertex by an edwe

4R



o the maximom of the two weights if the gate was chosen because of the overriding property
e the sum ol the two weights if the gate was chosen by the maximum connection criterion.

Fig. 31(c) shows the graph after s has been merged with Rs. The above steps are repeated till
there is only one gate left (other than the distinguished ones). The algorithm runs in O(|(/]*) time
where |(/] is the number of gates. However, the actnal execution time depends on the number of
overrides. In [40], a simulated anncaling approach to the one-dimensional array problem has also
been detailed. 1t is claimed that the proposed heuristic algorithm gives results ol nearly the same
quality as the siimulated annealing algorithm using much less computation time.

13 Conclusions

In this section, we will discuss the performance of the various examples on some common. bench-
mark problems. There are some issues that still need to be resolved before the Gate Matrix style
hecomes as popular as other design styles. It is necessary to try out the Gate Matrix style on large
problems that are solvable using standard place—and-route techniques. Fuoture algorithms should
provide hounuds on the extra area that the Gate Matrix is likely to use as compared to existing
place—and-route techniques.

Other open theoretical problems include the development of (or atleast, a result about the
existence ol) a relative approximation algorithin and the use of other graph-based techniques.
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nl={g2,g4,¢g3};n2={gl, g3,g4,g5};n3={g2,g4,g8 };nd={g5,g7 });n5={
g5,g8,g6 };

Figure 2: A sample netlist.

gl g2 g3 g4 g5 g6 g7 g8

. B 23 1 r ]
i1 5 |
P 2 l
b - 4 1
— | ) |
|y * |
B N [ S k 4
-1 ] 1 1

Figure 2(a): Layout of the above netlist.

e

Figure 2(b): Layout of the same netlist requiring fewer rows.



Interval graphs and connection graphs

n2

Figure 3(a): An Interval Graph

Figure 3(¢)

Figure 3(d): Connection
Graph of netlist given in Figure 3(c).
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G(A)=2,GB)=-1,G(C)=1,G(D) = -1.

L
|

If we move C, cutset becomes 1.

Figure 10(b)
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(a) G(A) = +1 by rule 3.
(b) G(A) = G(B) = G(C) = -1 by rule 4.

x denotes a contact; y denotes a series
transistor.

N1

Figure 11

Figure 12

I b

Diagram for the Assignment function
Vp(N1) = Left is given by a.

Vp(N1) = Right is given by b.
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”Let the netlist be nl = { g1, g3, g4}; n2={ g2, g3}y n3={g3,g4}; nd={g2, g5}
Assume that nl has been assigned. So, m = {nl}; t(m)= {n2,n3)

f3\7\76 have fE(m,ni) = AR (m, ni).
AR(m,n2)= 1; {ie.n4 }; AR(m,n3)=0; AR(m,n4)=0:;

So, choose n3. No gates are added. We have the following sequence.

gl g3 g4

m={nl,n3}

Since no gates are added, AR (m, n2) and AR (m, n4) remain unchanged. Choose n4.

b gl g3 g4 g2 g5

Now, all gates have been assigned.

Figure 17.
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et the netlist be nl = {gl,g3,85,g6); n2 = {g2,g3,g5}; n3= {gl,eg4 g6};
nd = {g2,g4};
et the two blocks be {nl,n2)} and {n3,n4 } as shownin the figure below.

gl g2 g3 g5 gb gl g2 g4 g6
| l
Ji nl | i n3
n2 n4
—x—X X

‘utgain ( nl) = partialgain ( g1, nl) + partialgain ( g3, n1) + partialgain ( g5,nl)
+ partialgain (g5,n1 )= 1+-1+-1+1= 0.
‘utgain ( n4) = partialgain ( g2, n4) + partialgain (g4, nd) =1+-1= 0.

Jeightgain (nl ) = 2 because critical gates in block 1 are g3 and g5 and in block 2 is g4.

Ieightgain (n4 ) = 2.
feightgain (n2 ) = 2.

Figure 18.
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Figure 20.

g3
n4

Y

<g3,n4,2,0, 1,0>

g3
n4

nS

<g3,n4,3, n5,1,0>
<g3,n5,3, n4,0, 1>

Figure 21
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To calculate D(F), the density at gate F.
Fhas 4 6-tuples <3,3,1,0,0,0>, <3,3,1,0,0,0>, <3,5,0,0,0,1> and <3,6,2,0,1,0>

Step 1: Only one 6-tuple with ¢ = 3; Hence, step 1 is skipped.
Step 2: No pair; Skipped.

Step 3: For <3,6,2,0,1,0>, we have <3,3,1,0,0,0>. Mark <3,6,2,0,1,0> with lh ; delete
<3,3,1,0,0,0>; Add 1 to D(C); Hence, D(C) = 1;

Step 4: For <3,5,0,0,0,1>, we have <3,6,2,0,1,0> marked with Ih.; delete both; Set
D(C) =2;

Step 5: No 6-tuple marked with lh or rh left in contention.
Step 6: Add 1 to D(C) because <3,2,1,0,0,0> because <3,2,1,0,0,0> is left; D(C) = 3.

After calculating D(A), D(B), ..., DH) similarly, we find that Dmax = 3.

Figure 22(b): Continued on the next page.
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Nets Gates

1 A, H

2 A,B,C
3 C,D,H
© 4 B,D,E

5 F,.H

6 C,F

7 E,F,G
8 E,D

!

&

Figure 23(a).

W

H A B C F G E D
3
| F ]
| 5 3
- l ]
4 I
1 ) 4 /r;\ X
1/
2 7 I
X——-——J,;———- . I m—
X ——= Contact

Figure 23(b).

O —p Violation

®  Step 1: Assign nets 1,3 and 5 to different rows because they are connected to the

leftmost gate H.

Step 2: None of the first three rows are empty at gate A. So, put net2 on row 4.

®  Step 3: Row 3 is empty at gate B. Assign net4 to row 3.

and so on.
H A B C F G E D
2 N
v jr
5 |
P “+—X
b
‘ I
1 4 |

Figure 23(c).
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Row 1 }L T y, | }li T vs |
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2
Figure 24(b)

Figure 24(a)

Iteration 1: Only one cycle group here. No extensions. Choose row 1 arbitraily.
Iteration 2: Set of acceptable candidates = { 4}. So, choose row 4,

Iteration 3: Acceptable candidates = {}. Row 3 has minimum number of
diffusion runs to rows 1 and 4. So, choose row 3. Enlarge spacing between

gates D and E.

Iteration 4: Acceptable candidate set= {2}, because of the enlargement. Choose
row 2. This is shown in figure 24(f).
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Row 1 % S A ; s

| . ] <4
Row 4 | 1 1 I

¥ NS N |
Row 3 [ I

. | g1 i
Row 2 . 3 X

Figure 24(c)
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Suppose we have a diffusion run involving nets nl,n2,n3 and n4 at gate gk. Let
the other nets connected to gate gk be n5 and n6. Two orderings of the nets on gate gk
are shown. One is realizable, while the other has a conflict.

Realizable. Unrealizable. Conflict at n6.
gk gk
b 116 —t— nl
nl —t— n2
n2 Q;—- n6
n3 n3
—_—t n4 n4
—t ns5 ns
Figure 27(a)

So, for the gate gk, we have two constraints, rl = (n1 n2 n3 n4) n5 and r2 = (nl n2 n3 n4) nb.
That is of course true only if [nl1 n2 n3 n4] is the only diffusion run on gate gk. If, for example,
[n3 n4 n5] is another diffusion run, we have to add the constraints r3 = (n3 n4 n5) nl; r4 = (n3
n4 n5) n2 and r5 = (n3 n4 n5) nb.

Figure 27(b)

Suppose we have the constraint set R = { (nl1 n3) n2, (n2 n4) n7, (n2 n4) nl, (n7 n5) n2, (n7 nd)
n6}. The graph G =(V,E) is given by

vl v2 v3
V5
J
4
v v7 v6

Suppose (v1 v2) has been directed as v2 —»v1. Now, (v2 v3) has to be oriented as
v2 —» v3. Otherwise, we have a conflict because of constraint 1.

Figure 27(c)
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Suppose we have the constraint set R = { (nl n2) n3, (n2 n3) nl, (n1 n3)n2 }.
Hence, we have the graph G =(V,E) below.

vl v2

v3

L 4

Constraint 1: Orient (v3 vl )as v3 —= v1. So, we have to orient (v3 v2) as v3 —m=v2.

Constraint 2: (v3 v1)is already v3 -#v1. So, we orient (v1 v2)asv2 = y1,

|

Constraint 3: To satisfy this constraint, we need either v2 =v1 and v2 ®v3 or

vl #= v2and v3 -= v2. But, either of these will violate the orientation induced by the
earlier constraints.

L

> Figure 27(d)
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Figure 28.
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Figure 30(a)

} G-left G2(2) G3(2) G4(2) G5(2) G- right G2 (2) means that 2 levels of

X : contraction have been made to
produce gate G2 and so on.

s X

Ny
Fal]
N
a
.

Figure 30(b)



Let n1={cL,cl,c2};n2={c3,c5cR };n3={cL,cl,c3,c5}; nd={cL,c4,c6}
n5={clL,c2,¢6};n6={c3,c5¢c7,cR };n7={c4,c6,c7};n8={c5 cR}

Cut =9

Figure 31(b).

Cut=6

e

Choose
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direction
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Figure 31(a).

Cut=6

B s

Choose
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Figure 31(c).

direction



12345:678 Parent 1

876541321 Parent 2
[

I

!
Crossover point = 5

Figure 32(a): Simple Crossover.

12345321: Illegal Offspring
87654678: Illegal Offspring

Figure 32(b): Illegal offspring .
I

:
12345,678 Parent 1
87654:321 Parent 2

I
I

Crossover point = 5
12345876 Offspring 1

87654123 Offspring 2

Figure 32(c): Order Crossover.

Substrings occur in the same order as
in parent.
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