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Earlier Generation 3-D System Integration

In Mission Critical (Space and Military) Applications
High Performance and Light Weight are Paramount
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3-D VLSI Chip: Problems and Challenges

Goal: To Design Commercial
High-Performance, Low-Power
Hand-Held Systems

1/0 device

— V-IC

Active
| — Device

— VIA

substrate

3-D VLSI System
on a Multi—Active
Layered Chip
(Advanced SoC)

Problems and Challenges

1. Degradation of Reliability due to

Thermal Rundowns

2. ldentification of Hot Spots in

Active Layers in 3-D Chips

3. Avoidance of Hot Spots by

Thermal-aware Block Placement

4. Fast computation of Thermal

maps due to power dissipation
in multiple active layers of
transistors and interconnects

5. Development of appropriate

Heat Sinking Technology

Key Requirement: Thermal Engine having
High Accuracy v. Low Computation Time

Thermal Problem Definition

Time Variant Thermal Equation

VT (x,y,z,t)+———
(x,y,2 )+a(x,y,z

)g(x,y,z,t):

1 aT(xy,zt)
a(x,y,z) ot

Boundary Condition:

Steady-State Thermal Analysis

oT (X, Y,z,t)

k(x,y,z) +hT (x,y,2,t)= £, (x.y,2)

Poisson’s Eqgn.

V- (VT(ey, ) = ~LELD

VV =-ple

7: temperature [K], &’ thermal conductivity [W/(mK)], g-

power density [W/m3],

a- thermal diffusivity [m2/s1, #- heat transfer coefficient.
a=k/pc: p: density [kg/m3] and c’specific heat [J].




Equivalent Thermal Network
Approach

Modeling Procedure for Circuit Network Method

Elec.:Cﬂ:iﬁ-G Y (Vp+Vp—2V)
dt m=x,Y,z

-

—i+GVA/

Thermal :pc%:g+kV2T

T=V,,c=C,g(xy,z,t)=ik(xy,2)=G

Chip Structure Equiv. Circuit Node Circuit System v. Thermal System

Electric Current (I) €«=» Heat flow (Q); Voltage (V) €= Temperature
(T); Electrical Resistance (R)€=» Thermal Resistance (®); Electrical
Conductivity (G) €=» Thermal Conductivity (k)

Model-Order Reduction for the Resulting Equivatent Thermal-Network
using Krylov subspace method, Arnoldi algorithm, or PVL

Thermal Analysis Methods

Two most efficient approaches:

o Reduced Order Modeling of Equivalent
Thermal Network for Chip Structures

o Free Space Green’s Function Method




Free-Space Green’s Function
Approach
Temperature can be obtained by spatial and temporal

convolution of heat sources with Green’s function since in
reality the present type of thermal analysis leads to a linear
system

T(xy,2t) =j;j:j:j:G(x y,2,t|x, Y,z 7)g(x y', z',7)dx dy'dz' dr

Green'’s function is the response of original system to Dirac
Delta source, i.e., the transfer function of the original system

V*G +£5(x—x',y—y',z—z',t—r)
(04
G(x,y,z,t|x"y"z'7)

136

a ot
—> can be represented by

G(x,t|x',7)-G(y,t|y'7)-G(z,t|z'7)

Free-Space Green’s Function Approach

First use Fourier Transform in the spatial domain,
then Laplace Transform in the time domain:

. es* S ‘_
G(x|x ,s):\/%exp{—\/;x—ﬂ

. e’ S ’
G(yly,S)=%exp[—\Ely—yl}

Using image method further to account for the effect
of heat insulation at z=0, it can be obtained that
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Free-Space Green’s Function Approach

al2+x al2-x

1
G(x,a,r)zi[e f(z\/(i_ f( \/7))]
1 b/2+y b/2-y
G(y,b,r)_z[erf(zx/(i_ +erf( m)]
G(0,c,7)= erf(ﬁ)

PWL approximation of erf(x)

erf(x) ~ 2x/\x if x<057
1 ifx>05Vx

AT (X, yOt)— o, IG(XaT)G(be)G(OCT)dT

= AT(X, yOt)—

The Framework for Free-Space
Green’s Function Approach

Evaluation of time-domain free-space Green’s
Function

Evaluation of Convolution Integral:
Approximation of Error Function

Problems:

o Cannot handle Multiple active layer heterogeneous
heat conduction materials.

o In reality, it uses time-domain free-space Green’s
function to analyze the equilibrium states




The Proposed Approach Based on Layered
Green’s Function in Multilayer 3-D VLSI

Difficulties

o Multi-layered Green’s function itself is more
complex than free space Green’s function

o How to reduce the speed penalty of evaluating
Green'’s function itself

o How to ensure the fast evaluation of temperature
distribution when specific functions and
transforms are presented.

Layered Green’s Function in Thermal
Problem

Thermal Problem Description | 7 . (‘F‘T(_I;,y: _z]:] =—

K is only function of z. The x-y plane can be assumed as infinite. Thus
cylindrical coordinate system can be used

PGlp.z) | 10607 0G(p7) __8) i)
dp? p dp = 2rp k(z)

Hankel transform |g(s, ) = fﬁ G(p, z)pJu(ps)dp|fOr further simplification. J,:
1]

+

zero-order Bessel function Spectral domain representation:

P(5.2) __ 8
—o7 ~ 9N = ey

Mapping the infinite tayered 3-D space into a 1-Dinfinite fong rod:




Solution Using Transmission Line
Analogies

Green’s Function Formulation
. /Of Temperature Distribution v.
Analogies Transmission Line Equation
FG(s,7) 8
—oz ~ T =5
v 21r T=SLV(T)=GS Z=L
e — TV = —1Zd(?) e

Evaluation of Layered Green’s Function
o Evaluation of transmission line impedance Z(s)

o From Z(s) obtain Green’s function by taking
inverse Hankel transform

Glpr2) = Hlp, Z(s)] = 5= ]f Z(s)a(ps)ds

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Properties and Merits
o Leads to fast evaluation of Green’s Function

o Leads to fast evaluation of temperature
distribution

o Does notincur sampling overhead of Green’s
Function for interpolation

o Considers both far-field and near-field
calculations




Problems using Interpolation Method

Evaluation of Z(s) and Green’s Function: Interpolation method

o Given specific (zg, z;), Obtain Z(S), function of complex
frequency S, and Evaluate G(p, Z(S)) and Construct library of
G(p, Z(S)) by sampling with respect to (s, t) and p.

o Problems:

How to decide the number of sampling points and the
position of the sampling points.

Use of Fast Hankel transform method to calculate G(p, Z(S))
1I‘rom Z(S) is still time-consuming if sampling points are too
arge.

Temperature evaluation is costly since numerical integration
might involve too many space partitions.

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Analytical reformulation of Z(S) for (s, t) in the same
layer

2(5)= 2 _ S Ba)K (2 — 20)

i 7e{1,2}
Two parts broken into:
o Independent of (s, t),

Bii(s) = B8 (e =1 Z[E R (a)H(—1) Z.]

Cia)
Cls) =
Zj[Z 1.(8) + Zr(s)] cosh[sl] + [ZL(s)Zr(s) + Z2] sinh[sl]

o Independent of transmission line properties: Kernel
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Proposed Semi-analytical Green’s

Function for 3-D VLSI Chips

Analytical reformulation of Z(S) for (s, t) in multiple

layers L et e e
Z(s) = Va(s) _ Z D'J—'{S)K\.?'(zg I ‘““;1 'z:zs'zz y I, E‘ L
=== : 2 (7
Iin(s) cieTim :;/L]] v, V|22 v, v, v,
Two parts broken into:
o Independent of (s, t) EXs) =F(s){ Za1[ZL1(8) + Zr1(s)] cosh[sli]

+[ZZ + Z11(s) Zra(s)] sinh[sh] }
- {Zrn(s) coshlsly] + Z.n(s)sinh[sL.]}
Fis)= H (c:osh[s.!k] + j:i E:i.rﬂl[s-h-])

Z<h<p—1

o Independent of transmission line properties: Kernel

K,y = Z2LL=Dp+ (Ll

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Summary for Formulations

o Formulations separate the items which are dependent on
positions of source and target points from the intrinsic
transmission line impedance properties at different sections.

o It avoids sampling of Z(S) with respect to (s, t) since the
transmission impedance properties between different
sections can be pre-characterized, either entirely analytically
or approximately analytically.

Then combine with Kernels to get the complete impedance
representation




Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

The object is to pursue fast thermal simulation

Spatial convolution with Green’s function to obtain
temperature distribution

AT = I:I:JLG(X y. Xy, z')dens(x, y, z)dxdydz

The spatial convolution is usually done by numerical
integration of Green’s function.

Problems
o Accuracy is related to number of spatial partitions.
Large number of partitions increase the computation time.

o The effect of self heating cannot be considered accurately due
to the singularity of Green’s function at that point.

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Moments matching technique leads to analytical
temperature evaluation procedure.

Representing transmission line impedance by

By(s) and D;(s) with exponential functions using
modified Prony’s algorithm, which is usually used in
statistics for estimating the distribution of data.

. m N Ll ady,
2 m Y Kk — 203 egeesplsdy]| |F) =D ae

#7E{1,2} k=1 k=1
Inverse Hankel Transform can be done analytically.
Hp, e* K (pq)] = n

VIH=1)iptA{=1)iq]2+52
ford < (=1)'p+ (=1Y'q
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Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

o We have introduced weighted coefficients to account for the
square-root decreasing rate of Bessel function w.r.t. to the
radius in order to improve the accuracy in specific regions
during the moments matching procedure by using modified

Prony’s algorithm. For instance
discriminated.

o To improve accuracy, the weigh

, hear/far field can be

ted version of modified

Prony’s algorithm, known as pre-conditioned modified

Prony’s algorithm, is designed.

o The modification is made for the B-matrix as given below

By = y" XiAXTy — y" XAXTW2X; AXTy

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Temperature Evaluation
o Superposition principle for such al

inear system

hacl’
AT™ (2o, 30, 20) = Y

AT (30, yo,70) =y dens(hs)AT"*(zo, yo, z0)
s

#,j 11,2} dedi

o Simple implication of integration than general numerical integration

IEJ{ZI: z‘J:IO - 31_-.:] =
T = It (21, 2,00 — z0) T8 = { FI s o0, 22,0+ (L)) P S S 2

IJ+

Lz, 2220+ (=1DI" ), otherwise

IE 20, 20y 2e) =

sl

Fa Sl = 1P sH(— 1) 1Pz —za )2 Hy—vo)?

ol
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Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Validation of Semi-analytical Green’s function
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=003 T
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Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Validation of Semi-analytical Green’s function
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Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Thermal Simulation Results
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Fig. 5. Temperature distribution in layer 1 and layer 3 for the struc-

Fig. 3(b): (a) Plot of temperature intensity in layer 1 at

z=3pm: (b) Isothermal contour plot of temperature in layer 3 al
Z=3pm.

Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Discussion

o Semi-analytical Green’s Function is space-
efficient without incurring sampling overhead

of Green’s Function

o Thermal analysis using semi-analytical
Green’s Function is time-efficient.

o Self-heating effect due to singularity of

Green’s Function is addressed by semi-

analytical Green’s Function.

13



Proposed Semi-analytical Green’s
Function for 3-D VLSI Chips

Conclusion and Future Work

o Fast thermal analysis approach using Green’s
Function is proposed.

o The thermal analysis approach is shown to be
efficient.

o Efficient semi-analytical Green’s Function
technique is proposed. This is shown to be
accurate vis a vis conventional numerical
techniques.

14
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Solutions to Sub-90 nm VLSI Problems
Involve Advanced Mathematics

There is no branch of mathematics, however
abstract, which may not some day be applied
to phenomena of the real world. --- Nikolai
LObGTCheVSkY, N. Rose Mathematical Maxims and Minims

To create a good philosophy you
should renounce metaphysics but
be a good mathematician.

- Bertrand Russell




Manufacturing Challenges at Sub-90 nm

Transistor Scaling
Courtesy: Intel We
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Process Variations

— Lithography: L, (15%)

— Doping: Vv, (£30%), L., (£15%)

— Gate oxide: T, (x4%)

— Metal definition: line size (£20%)
Circuit Operation

— Power supply: V 4 (£10%)

— Crosstalk noise: AT,/ T, (>50%)

— Temperature fluctuation




Trends in Chip Integration Technology
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2-D Lateral Integration

Example: DEC EV Microprocessor
500 Million transistors

Goal: 3.5 billion transistors

3-D Vertical Integration

Multiple Active Layers

Future Goal: 200 Active Layers




Environmental and Operating Conditional Variations

Thermal Distribution
in a 3-D Chip by Layered
Green’s Functions

Accurate Estimation of Full-Chip
IR-drop at Sub 1 V Supply Voltage

Wang and Mazumder, ISCAS 2004,
Fast Thermal Analysis via Semi-analytic
Green’s function in Multi-layer Materials




Layered Green's Function in 3-D
Thermal Modeling

Thermal Equation in Cylindrical coordinate system

PGlp.z) | 106(p.z) | 00(pz) __ig) i)
Jdp* p o Op Oz 2rp k(z)

==
Apply Hankel transform G(s, %) EL‘ G(p, z)pJa(ps)dp

Map the infinite layered 3-D space into a 1-D infinite long rod.




Green's Function based Thermal

Mapping in a 3-D VLSI Chip

 QObtain Green’s function values and then the steady state
temperature profile on each layer

ENs) =F () {Z:1[ZL1(8) + Zr1(s)] cosh[sly] .
(72, + Z11(5) Zms(s)] sinh{sta]} Moment Matching
' {Zrn(s)coshsl,] + Z.n(s)sinh[sl.]} y Moditied Frony s
Algorithm

F(s) = (c-c-sh[-ﬂh] 4 Zex - sink [&:,1])

T-{.i,{-i-'.-.—l

ad rra f ] p— :
'HLO:E Kf;(p.q)] Td+H{—1iipti{—1)d g]2+p2

ford < (=1)'p + (~1¥'q

!'-c]- ':-3-:1 1~y -“-:-E') —

JoidylSed

[ =13P 24 =112 512 iz =20 )2y —ya )2



Thermal Modeling for 3-D VLSI Chip

Pre-computed Green’s Function

On Circuit Parameters

* Mobility Degradation

* Threshold Voltage Shift

- Source/Drain Sheet
Resistance Variation

O Mobility
B V-thresh
B S/D Res.




CMOS Manufacturing Tolerances

Principal Component Analysis (PCA)

BSIM 4.0 has 184 model parameters. however, using
PCA it has been found that only 21 Independent Process
Parameters account for 82% of variance for the

original correlated parameter sets.

(20.5%),
(19.1%), K1, Bias coefficient (16.0%),
, Mobility of PMOS (13.3%), and
of NMOS (12.8%).

PCA is used for selecting the basis function
in Global Projection of Global Variables




Gate Delay Scattering

Canonical Gate
Delay Model:

Sources of variations Xg:
+ Global Sensitivities are o,
Gate Delay Variation, X l/

' u1]'h111 m /| & l-:u hal Sensitvibes
Gate |} »ow Vad [ Temgp

Data Source: Li Zheng Zhang, et al., University of Wisconsin




Canonical Delay Models at
Fan-in and Fan-out Nodes

Fan-in Node Delay Model:
COVinerge (Ap + Dpr. Aq + Dgr)

n . -
:Cov(Ap,Aq)+ > [Gg)r COV(Ap,Xd)+
j=1

O'g)r cov (Aq’XgJ)JFG;J)ch{r]

Fan-out Node Delay Model:

COVSplit(Ap + Dpr , Ap + DpS)

Ap Der °

n ) )
Q = Var (Ap) + Z[(Gg)r-l-ﬂg)s)
j=1

Dps e COV(Ap,Xd-)‘FGFj)rGg)S]




Propagation of Covariance
Through Gated Network

Question:

How to Derive

The Output

Covariance

by propagating

Arrival times
Derivation of Sum, Min and Max Values From inputs

from Input Variables and Gate Model To output?

A(ﬂA,ZA) E(IUA-l'M ’ZA+M) X(ﬂmin(E,F)1zmin(E,F))

|

\ 7

Blup. Zp) F(ugom 25w Y(ﬂrrax(E,F)’zrmx(E,F)




Multivariate Normal Distribution

Existing techniques:
Can Handle Only Bi-variate Normal Distributions

- Difficult to compute covariance of
Min/Max of more than 2 Variables

Objectives of Wang-Mazumder's Paper:
To handle multiple input gates

To improve accuracy (using )
To improve speed of analysis by unifying
smaller gates into a multi-input larger block
To handle re-convergence paths problem
(using )
To develop mathematical framework for general
class of circuits using k-normal multivariate statistics




Theory of Covariance

Generalized Siegel's formula

There is no branch of mathematics, however
abstract, which may not some day be applied

to phenomena of the real world. --- Nikolai

Lobatchevsky, N.Rose Mathematical Maxims and

IZRLipie. SZls ST VG Triis G paiit o,
A22 arrlval Tlme at path 2

Cov (Y, MGX(AZI, AzZ"")):
Cov (A, Y) P (A, is the max) +
Cov (A, Y) P (A is the max) +




Theory of Moments

* Mean/variance of the Min/Max of arrival times using
derived recursive moment functions.

Here, the w - th Moment of

o b, b
the Standard k - Normal Ditribution :mg (x{")= [ " [ - | dg (X)dxq...dX,.
—00 a, a
Tp-1
with ¢E (xl,---,xk):exlo[ 05X B X],whereBisthe Covariance/Correlation Matrix.

JB1@a)"

A r | 5 (i—1)
: ) c(b, 7. r']'n.'ﬁi(,ari )
4 j
r=I(



Theory of Moments

- Mean/Variance formulas

;]
L

var [f(Aryp, ... .. Arg,] = Z [o(A;, )2 m E?(iﬁ]
1=1

+2p( A;y :ZIfT[;—’lir)-'na.%?(yl) + [;r.i:;-’lir]]g-{I% H(-y c Ry)
V17 2
o Jlgr'[-f[".;]'ll‘” T 1-';]-;;1'?.'] l‘ .




The General SSTA Algorithm

Arrival Time at anode p,
=l Gcnoted by Ay, isgivenbya4-tuple:
SAp{Ap; 1,0,T, L } where

T — Global Projection; L — Local Expansion [

.. - h :
Global Projection isgiven asa vector of Cov: s

| th
T(Ap) = (Cov(Ay, Xg),.... COV(Ay, X)) :gﬁf;ph €

— Covariance between A, and arbitrary Dg, =

N ;
Cov(Ap, Dgr) = j;lanrT(Ap)

Local Expansion is given by
L (Ap) ={Cov(Ap, Ax)| Xe LSy}



Property of Local Set

Set Theoretic Model for
Identifying Re-convergent Paths

- Each node can be at most in one local set.

* Merge multiple local sets when arrival times
meet at one node.

+ Add a multiple fan-out node to its parents’

local set, or create a new local set.

- The total number of elements in all the local

sets doesn't exceed the maximum number of
nodes in one BFT level, space ~O(AN/d).

* Local expansion is defined as the covariance
structure of a local set.




Flow Chart of the SSTA algorithm

Initial Local Sets & BF traversal
|

Update signal arrival times and

covariance to node ¢
!

Compute g and o of SA at q using

p-normal moment functions
|

Compute g’s global projection

Establish g’'s local set and its local
expansion using Siegel’s formula

Next Node? Yes
NO

END




Example
Record covariance

Add e to c’s local set éf%‘?%@!%ﬁéiﬁ E%Wé"a
, g:dr&&qrd covariances

petween arrival times

f "‘e qrct%/a(ﬁ floS

betweenarrival times

IHAIBEL) sets

}O'glnce

~QERIS t@r-d{c e,d,g}
{d} g ﬂggerg;cgyarlance
Add g to d’s local set gFasrigal times along
{d, g} df and dg

ULS, = Uy {LSi,} — SF, — MF,
LS, = ULS, U {p} if ULS,is non-empty or p
Is a multiple fan-out node




Experimental Results

+ ISCAS 85 benchmark to verify the algorithm
50% global, 50% local variations, respectively

COMPARISON OF MAXIMUM CIRCUIT DELAY BETWEEN THE PROPOSED METHOD AND RANDOM SIMULATION

Circust
Example

Random Simulation

The Proposed Method

Mean(ps)

SD.(ps)

CPU Time(s)

Mean(ps)

SD.(ps)

CPU Time(s)

Mean
Eir.

SD.
Err

C432

C499

CS880

C1355
C1908
C2670
C3540
C5315
C6288
C7552

20329
13244
25699
28154
42843
3556.6
50691
51535
1367.1

4490

125.6

05.6
175.1
1499
2219
207.5
240.6
275.6
580.6

26.0

50.1

64.6
146.5
2115
3154
441.7
593.2
880.7
937.8
12713

20313
1326.1
25705
2821.7
43254
3556.1
5066.8
51576
1367.0

4499

1215

89.7
1747
156.1
2095
201.0
223.0
2719

5775

26.0

8.0
1.1
0.3
0.6
7.8
1.3
18.6
6.2
0.2

- -
i i
i I

0.1%
0.1%
0.1%
0.3%
1.0%
0.1%
0.3%
0.1%
0.1%

0.2%

5.5%
0.0%
0.2%
4.1%
5.6%
3.3%
1.3%
1.3%
0.5%
0.0%

Speed up Achieved is between 6 and 4,500 for circuits up to 2,000

gates while accuracy is between 0.1% and 0.2%.




Conclusion

* Global Projection handles global variations
which cause correlations across the chip

- General moments, mean/variance, covariance
formulas for k-normal distribution

* Local Expansion handles correlation from local
variations due to re-convergent paths

+ Development of a fast Statistical Timing
Analysis Tool that utilizes Multivariate Normal
Distributions

To create a good philosophy you should renounce
metaphysics but be a good mathematician.
- Bertrand Russell




Alternate Robust Solution?

Can we Solve the Manufacturing Problem
by Adopting Novel Nanotechnologies?

Self-assembled Quantum Dot structures
are intrinsically more Robust because of

their collective neuromorphic computation
Edge Extraction

Intrinsically
Robust in
Presence
Of Many
Faults

¥ 0,050 pm/div
Z 0 5.000 nm/Sdiv




Global Projection

» Independent normal V.V.'s as a 'basis’,
derived by Principal Component Analysis

* Project timing variables onto the basis X=(X;,
Xo,y X))o A= aX, A, = aX, Dg = d9X
A+D, = (a.+d,)X Cov(A,, A,)=Cov(a.XX"a,")

a 1. Summation of eval time with gate delay
2. Evaluate eoVariance™{ arrival times at fan-ins
1. f"““ Bt drrived dimieawitlacgadé delay Min operation
2. Evuitgft@gaverinneesot arrival titwes at fan-ins
3. Cﬁh\mﬂ Z-Vﬁ?!“‘ AR NS o LA L Qmm
of arsfvBlihimes< into the basis usifg Siegel's formula
4. Calculaiethe Global Projectigrof the results
of Min/Max into ke bi 1sing Siegel's formula

g




Correlation by Local Variations

* Independent local variations can cause
path delay correlation due to re-
Conver‘genf pa1'hs Gate c has local variation x,

N X:1sndependent of any
' other gate delays.
Sitmilarly Gates b, d, ...

path scfand path sbdf only
requires global projection




Properties of Local Set

- Each node can be at most in one local set.

* Merge multiple local sets when arrival
times meet at one node.

+ Add a multiple fan-out node to its parents’
local set, or create a new local set.

* The total number of elements in all the
local sets doesn't exceed the maximum
number of nodes in one BFT level, space
~O(N/d).

* Local expansion is defined as the
covariance structure of a local set.




Local Expansion

» Using local expansion

- Local set, LS: for each node ain its local
set, there at least is another node which
shares one multiple fanout node with a.

LS,=ULS,U {p}, if ULS,is non-empty or pisa
mul‘rlple fan- ou‘r node ”

ULS, = U.; LS} - SF, - MF,
SF, The set of nodes only fan out to p.

/MF the set of multiple fan-out nodes which
has p as their last visited fan-out node.

* Local expansion is defined as the
covariance structure of a local set.




Some Theoretical Results

+ Lemma 1: for two nodes where no shared
paths from primary inputs, covariance of
arrival times at the two nodes equals to the
inner product of their two global projections

Cov (Afc , Afd )= Cov (chxxTGde)

ao




Some Theoretical Results

- Lemma 3: In the breadth-first traversal of
timing graph, if a re-convergent node is
visited, then those of its fan-in nodes in
the re-convergent paths must already be in
the same local set.

A set {e, f, g}

g




Experimental Results

- Moments and mean/variance formulas are
verified using MATLAB

TABLE I
COMPARISONS OF MEAN/VARIANCE OF MAX/MIN USING FORMULAS IN
SECTION III-C AND RANDOM SIMULATION USING MATLAB

Example

SAP

DEG

PWD

GMX

GEN

LAG

Dimen.

3

A

6

.lq

&

EQ. u
War.

0.999
0.623

1.412
0.457

1.517
0.735

1.426
0.625

=
|

~1 LA

1.853
0.445

ED. u
ar.

1.008
0.624

1.412
0.456

1.517
0.739

1.416
0.641

iLh

el

1.854
0.448

EQ. —pu

War.

0.611
0.598

0.812
0.457

0.514
0,735

0.614
0.654

~1 gl d=fea

0.853
0.445

RD. —pu
War.

0.602
0.627

0.812
0.456

0.514

0.737

0.616
0.642

| -

LA
lad =] g = el ] el
L

QoL Qe e
-]

=

[

0.853
0.4435




General Framework of SSTA

» Basic operations required in Statistical
Static Timing Analyzer (SSTA)

- Sum and Min/Max BB H et
Approach:

Breadth-first
a Search on the

& Timing Graph

¥>f

d
b B
b

* Normal distribution approximations of
timing
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Interconnect
Modeling using

Differential Quadrature Method

Prof. P. Mazumder and Q. Xu

University of Michigan
JELECTRICAL ENGINEERING and COMPUTER SCIENCE NDODR
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Why modeling interconnects

Chip size and operating speed increasing
& System-on-a-chip (SOC)
& Multi-chip module (MCM)

¢ GHz signals
s ET delay, attenuation ﬁ; _ /S
dlst()rtlon crosstalk L{ |—1‘

Interconnect effects
< interconnection delay dominates
# crosstalk, dispersion, attenuation and reflection

Interconnect Modeling using Differential
Quadrature Method 1
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How to model interconnects

1 2 N

z

Substrate

1. TEM or quasi-TEM assumptions

2. Parameter extraction of metal interconnect

3. Multiport models of interconnects

4. Incorporation of multiport into simulator frame

JELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Basis of interconnect modeling

Telegrapher’s equations
¢ Time-domain

d.. d
ﬁf(,\,{) = —C(x)m\.(,\,{) G(x)v(x, )

%v(.‘-, fH=- fo);?—,,f(.v.- )= RX)iCx, 1)
¢ s-domain
%f(x,s) = [sC) + GV (x5)

—iV(_r,s) = [sL(x)+ R(x)1I(x,s)
ox

Common goal: time-domain model
¢ ready to be incorporated into SPICE frame

Interconnect Modeling using Differential
Quadrature Method
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Existing modeling methods

Finite difference

& lumped elements =
MC )

¢ special cases
AWE

¢ reduced order
Reduction

# Krylov subspace
DQM

Subnetwark including
interconnects

ELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Finite difference method

=

Substrate

Tlﬁ TI ﬁ
SPICE early version
Short interconnect

Interconnect Modeling using Differential
Quadrature Method 3
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Method of Characteristics

Basis: uniform interconnect terminals

YV(0,s)—1(0,5) = exp(yd)[¥YV(d,s)—1(d, s)]
YV(d, s)+1(d,s) = exp(yd)[YV(0, s)+ 10, 5)]

y = ,";i:g,y = dJGCTO)GLTR)

Most useful for lossless interconnect

r—— - - — — — —— —— — — — — — — —

V(0,5 |

77777777777777777777

w(0,8)—i(0,1) = yv(d, t—1)—i(d, 1 -1T)
ywld,t)y+i(d, 1) = yw(0,t-T)+i(0,1—1T)

LECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Asymptotic waveform evaluation

Pade approximation

H(g‘)zﬁ[(g‘) = % = [’z‘aﬁs"}/[ibmsm} — i I
i=1

'-=|S+pJH

i=1

Recursive convolution
< turn convolution to time linear operation
¥() = 20y h(1) = x(DF Y q,exp(-=p,1)

Stability problem
< right half plane poles

i=1

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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Quadrature method
Integral
' N
jl u(x)dx = z au(x;)
[ I_= |
u(x)
XID; X; e Xn=b
ELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Differential quadrature method

Derivative

N

;—xu(ﬁc), %u(x){\_:_r_; = Y a;u(x;)

i=1

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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Determination of DQM coefficient

Select test functions u(x) to fit

9
dx

¢ PDQ: Power functions
g(x) = {],x,xz,x':, e X
¢ CDQ: Chebyshev polynomials
g(x) = {To(x), T, (), To(x), .o, Ty }

¢ HDQ: Harmonic functions

. . . N-1 -
g(x) = 41, sinTx,cosTx,sin2mx,cos2Mx,..., SN —— 70X, C08 —— X

d N
u(o), u)l, = Y au(x;)

i=1

N-1

}

JELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

DQM operator

Operator

N
{
a?—xu(x), %u(x){\_:_‘_j = Y a;u(x,) éu(;tr) = Au

i=1
Accuracy example: derivative of f(x)=(sin x)?
& average squared error

N 5 10 15 20 25 50 s 100
FD 0.0181 0.0043 0.0019 0.0010 6.657le-4 1.6430e-4 | 22705¢-5 | 4.0807¢-5
N 5 7 9 11 13 15 17 19

PDQ 4.3367e-5 | 7.5297¢-9 | 4.6001e-13 | 1.3445¢-13 | 1.4850e-13  1.4085¢-13 | 1.2589¢-13 | 1.9603e-13

CDQ 0.0169 0.0342 0.0596 0.0909 0.1266 0.1659 0.2080 0.2525

HOM 0.0101 6.9302e-4 | 5.2277e-5 | 4.1760e-6 3.4524e-7 2.9192e-8 2.5292¢-9 | 2.1988e-10

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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Discretization of interconnect

DQM operation

N

d N =
ﬁv(%ﬁ) = ;';LQHV(IP )

3 N
a.’(x,,.\') = Z(IU[(XJ.,.\')

i=1

Single line example: step 1
L’=360nH/m, C’=100pF/m
G’=0.01S/m, R’=50Q/m

%I(x,s) = [5Cx) + GOV (x, 5)

—iV(,\',x) = [sL{x)+ R(x)]I(x,5)
ax
& normalize parameters
L=dL’, C=dC’, G=dG’, R=dR’
& let 5 grid points equally space
& 5th order HDQ operator
-6.014 10726 -7.584 4443 1571
-1571 -2221 5363 -2221 0651
A=| 0651 -3142 0 3142 -0.651

-0.651 2221 -5363 2221 1571
1571 -4.443 7584 -10.726 6.014

ELECTRICAL ENGINEERING and COMPUTER SCIENCE

- NOR

Discretized model---single line

Single line

AV = -(sL+R)I

Al = -(sC+G)V

A = [uy] g BVAY,

Vo= [Vieys), Viea,s)h ..., Viey,s)]T
I = [Iays), Ilxa,s),. . Haxs)|,
L = diag{Ll(z1),L(z2),..., Llzx),}
R = diag{R(x.), Rlaz),... Rlay) }
C = diag{Clay), Claz) ... Clax), ]}
G = diag{Gle1). Glwa) ... Glan),}

Vinner, linner

>

>

Single line example: Step 2
[V (x,s) sL+R 0 0 0 0 T1(x.s)

V(X,,8) 0 sL+R 0 0 0 1(x,,s)
V(%38 | = =R 1(X3,5)
V(X,,8) 0 0 0 sL+R 0 1(x,,8)
|V (%) 0 0 0 0 sL+R | 1(xs,5)
[1(,,8) sC+G 0 0 0 0 TV(x.9)]
1(x,,s) 0 sC+G 0 0 0 |[V(x,s)
1(x;,5) | =] + V(%,5)
1(x,,S) 0 0 0 sC+G 0 | V(x,s)
| 1(%,S) 0 0 0 SC+G | V(x,S) |

¢ with equations at mid-point removed
¢ (adding boundary conditions)

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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Eliminate internal variables

1{0.8) - -1 lid,s)
L — !_-_
v(o.8) ABCD/Y |
¢ ABCD model

V(0,5)| _ |A B||V(d.s)
10, 5) C D||I(d.s)

¢ Admittance (Y) model

1O, 5)] _ [vI1 y12{|V(0,s)
I(d, s) 13 yv14] | V(d, 5)

ELECTRICAL ENGINEERING and COMPUTER SCIENCE

Compact model---single line

W(d.s)

- NOR

Single line example: step 3
¢ eliminate V(x,,s), V(X3,S),
V(X4,9), 1(X2,S), 1(X3,S), 1(X4,S)

vio, .ﬂ _ [a B][via.»
10,9 ||l 1d.s
10, _ [y 2] [veo,s))
i(d, 5) y13 vl [Vid. s)]
e A B,C,D,yl1,y12, y13,

and y14 are rational
approximation

A+ a5 +...+as" :25: q,
Dy +bs+..+0s®  Hs+p,

& order of
denominator/numerator is
2*N-4 (N: DQM order)

ELECTRICAL ENGINEERING and COMPUTER SCIENCE

Companion model---single line

Take inverse Laplace transform
Apply recursive convolution

- NOR

Single line example: step 4
¢ companion model

¢ add boundary
conditions

& orincorporate into
simulator frame

& time-stepping

transient results

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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Discretized model---multi-line
Multiconductor line
Virn linn
I I 1
VD - } : : Vi
| .
lo i i o I
} X1 Xz Xa Xa Xnz X XNi
|
x=0__ Reference ___xw=1
ELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Companion model---multi-line

Eliminate internal variables
Take inverse Laplace transform
Apply recursive convolution

fio]_[vo] [

o . - [V1]1=[i|]1
[io]z_[vo]z | ioe | [ite

[vi]z_[i1]2

‘ .
[io]fV:[vU]M @ @ i | I O P

I

I

\ LI

L O
Reference | | Reference

T T

[ I

Interconnect Modeling using Differential
Quadrature Method 9
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DQM application: step by ste_‘p

Preparation
¢ Telegrapher’s equations
¢ DQ coefficient matrices: PDQ, CDQ, HDQ

+ Select a kind of DQM

Discretization of Telegrapher’s equations
Compact s-domain models

Companion models

Incorporation into MNA or simulator frame
Transient simulation results

NOR

ELECTRICAL ENGINEERING and COMPUTER SCIENCE

Two different incorporations

Discretized model
companion model

ffffffffffffff
Ry

LI h#
JE@M

Companion model

NOR

Interconnect Modeling using Differential

Quadrature Method

3/7/2013
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A of ABCD matrix

JELECTRICAL ENGINEERING and COMPUTER SCIENCE

Error of 9th order DQM
Error of 15th order DQM

i }\.f\—j\ " T
A 'RI,’ wi o - mgees) I

o
'
i ]
]
|

1

1

Frequency response
Transient response

JELECTRICAL ENGINEERING and COMPUTER SCIENCE

Example 2---single line

- NOR

500 10nH

Vout
1pF
é I

Vo g
—

rrrrr

Interconnect Modeling using Differential
Quadrature Method

3/7/2013
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Example 3---coupled line
Transient response gg,_‘iﬁ;i P v

(_+, = ::I:I—:*F:r]_sm

ol | ; ==
n A
i /\ P I bj 1|¥ -
2 \ L ool l } |
j ! B !

JELECTRICAL ENGINEERING and COMPUTER SCIENCE - N D R
Example 4---nonuniform line
Two coupled line |
. Y .f"/\“" EE=9
Transient responses N
Running time on Ultra-1 |
# HSPICE 3.6s y N\
e 7th-orderDQM 0.95s "7 77~
¢ 9th-order DQM 1.2s _ A =
NI |
e A PR WL e
@ : : A ERYY. |
. iq‘! v

Interconnect Modeling using Differential
Quadrature Method

12
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Example 5---nonuniform line

Three coupled line B
Transient response . /
Running time on Ultra-1 ) '\

& HSPICE 5.527s
& 9th-order DQM 1.56s

—
| ‘é'_- —__ :“‘: ......

JELECTRICAL ENGINEERING and COMPUTER SCIENCE N D R

Comparison of existing methods

Propertics
Existing methods Feature | Applicability | Accuracy | Efficiency | Stability | Passivity
Finite Difference Direct numerical uniform/nonuniform | fair poor fair fair
MMC Deviee model uniform good good good g0od
AWE Reduced-order (explicit) | uniform/subnetwork | fair good poor poor
Krylov subspace || Reduced-order (implicit) subnetwork goad good fair fair
DQM global numerical uniform/nonuniform | good good good faid

Interconnect Modeling using Differential
Quadrature Method

3/7/2013

13
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Conclusions

Derivative of a function can be approximated by
a weighted linear sum of all the function values
at every mesh point. DQM

¢ a simple direct numerical technique

& less sample points needs (1/10 of FD grid points)
# considerable accuracy

+ high efficiency

# a general formulation of such kind of methods

< applicable to both uniform and nonuniform line

Interconnect Modeling using Differential
Quadrature Method 14
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Topics

General Finite Difference Quadrature Method
Compact FDQ method

Numerical dispersion analysis

Resolution heuristic



FDQ Method Formulation

0 -1 i-1/2 i i+1/2  1+1 1+1+1/2 i+2 N
@ @ @ @ | i)

General Approximation framework for FDQ
¢ Integer grid points and half grid points

Finite difference of integer grid points

(Xi+1)_ f(Xi) AX Ij uf (Xj+1/2)
inite differences of ha\f Iérid points

F(2) = F Otz ) A 3w, ()

Quadratures:
Summatlons 0
grivative

Mte differe




Matrix Representation

General Approximation framework for FDQ

f (Xi+1) —f (Xi) = A)(ij\l:_olaij f I(Xj+1/2)

fl_ fo d; S - alN__f'1/2 ]
fz_ fl — Ax Ay 8y v Ay 1“1+1/2
B fN o fN—l_ _aNl Ay aNN__ f lN—1/2_

Determine the coefficients by using testing functions
Accuracy: O(AxN-T)



Application to Transmission Lines

I [ [z Fnv o

F ) i ha E Tz E i Iz E I

-
D I .I"|'|. I

S-domain Telegrapher’s equation
V'=(sL+R)I
I'=(sC+G)V
Voltage grid points: integers {x}, i=0..N
Current grid points: halves {x;,,,}, iI=0..N-1
Approximation framework

N-1 \
V(%.1,8) =V (X%,5) = AXijl aij (Xj+1/21 S)

| (sa1208) = 1 (X 172,8) = A Il (x;,9)




Matrix Representation

Discrete Telegrapher’s equations

A,
a22

-1 1
-1

1

=(sL+R)

=(sC+G)

Ay
a21




Original FDQ Scheme

LN

d;y AN
A=| © . i |B=
| Ay N _bNO bNN 1

Problem: dense matrices, computationally expensive



Dense Matrices: Computationally Expensive

Suitable for small scale problems (< 3~5 wavelengths)
¢ N~10

Expensive for larger scale problems

¢ N~100



Solution: Compact FDQ Scheme

Compact approximation framework for FDQ
¢ A Sliding window with length of n for central grid points

(n-1)/2 ,
f (Xi-l—l) o f (XI) — AX j:—(n—l)IZCj f (Xi—l—j+1/2)
A
o | / i-1/g}<< i i+1,/2\i‘+1¥1‘+1/2k£. N

¢ For boundary grid points, use the original FDQ schemes



Improvement: Keep Large Matrices Sparse

firrz o fir2
= cmies cmiec cwec cmec omiec sl o
fia  fia fir o fi 0 fin fiz fia
1 Ay ¢t

Use a scheme with fixed bandwidth

X X X
X X X X X X X
X X X X X X X X X
X X X X X X X X X X
A= B=
X X X X X X X X X X
X X X X X X X X X
X X X| X X X X
X X X|

Result in sparse diagonal matrices



Formulation of Compact FDQ Schemes

firn  fir2

1z fle fior o fi o fla filro fifs

i
FDQ4 (4™ order accuracy)

FDQS8 (8™ order accuracy)



How Accurate: Fourier Analysis for
Numerical Dispersion

firn  fir2
fix  fiz fir o fi o fin fin fis

1 ‘l\ 1

Assume a wave f(x,t) =gl
FD2 F(Xia2) = (X 02) = AXT(X)
Plug in and simplify, comparg the wave-numbers
sin(kAx/2) ok
AX /2
LHS is numerical dispersion caused by discretization
Normalized wavenumber of FD2:
sin(kAx/2)
KAX /2




On Numerical Dispersion: FDQ4, etc

FDQ4 T (X.y2) — T (Xi_y0) =af "(X_y) +bf(X) +af "(x,)
Plug in wave| f(x,t) =el(@)
sin(kAx/2)
AX /2

Normalized wave-number of FDQ4:
sin(kAx /2)
KAX /2(2a cos(kAXx) + b)

<> k(2acos(kAx) + b)




Comparison of Numerical Dispersion

ldea normalized wave number = 1

R ST .I

1 it 1P

098 |

0.96 |

0.94 |

0.92

09 F

0.88 F

Normalized wave number

088 |

0.84

0.82

accu raCy error (%a) FD2 | FDO4 | FDOQ6 | FDOQS

l > 12.8 4.6 3.5 3.1

0.1 408 | 8.2 5.3 4.3




Numerical Results: 1

B0mm

- . ¥
r T 2T
M// EN

L~ |

L=360nH/m, C=100pf/m
R=1 KOhm/m
f =14 GHz
Amin=1.2 cm :
Phase error: 1% | |

Numbers of cells: |
o FD2: 64 ;
¢ FDQ4: 23 \

Magnitude

Phase
(]

¢ FDQG6: 17




Numerical Results: 2

Phase error: 0.1%

Numbers of cells
& FD2: 204
¢ FDQ4: 41
¢ FDQG: 27

Heuristics for resolution:
¢ 1% phase error is OK
¢ 0.1% is good

fFOGHz)



Summary

Modified FDQ method to reduce the matrix density and
therefore computational expense

Accuracy comparison by using Fourier analysis
Heuristic for Number of cells per wavelength needed
Suggested resolutions at 1% of phase error, CPW:
¢ FD2: 128
¢ FDQ4: 4.6
¢ FDQG: 3.5
¢ FDQ8: 3.1
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