Biologically Inspired Algorithms for Micro and Nano System Design

Prof. Pinaki Mazumder, Univ. of Michigan Ann Arbor, MI 48105

VARIOUS ASPECTS OF GA'S FOR VLSI DESIGN, TEST AND LAYOUT OPTIMIZATION Adaptive, learns from experience Intrinsic Parallelism Efficient for complex problems with hilly search spaces Can handle various cost functions and constraints Easy to parallelize on a workstation network, without much communication overhead, and with near-linear speedup

University of Michigan .

<u>OPEN PROBLEM #1:</u> Markov Chain can be used to model the Simulated Annealing by representing each solution configuration by a State in the Markov Chain and by using the probability of an Incremental transformation as the Transition Probability between different states.

It will lead to a Markov Chain of Length, L such that at the end one can obtain near Global Optimal solution. The Length, L can be controlled by selecting suitable Annealing Parameters and Inner Loop stopping criteria up to 4 or 5 Variables only.

However, the Genetic Algorithm applies Crossover that Causes Multiple Changes in the Chromosome. It cannot be represented by the Markov Chain model. A better way to apply very rigorous Probability Modeling Technique that will simultaneously optimize parameters such as Crossover rate, Mutation rate, Inversion rate, Population Size, etc.

OPEN PROBLEM #2: Distributed Genetic Algorithm will require a more complex Mathematical Modeling to compute the Epoch rate, Search cohesion, Speedup, etc.

OPEN PROBLEM #3: Are GA's suited for Constrained Combinatorial Optimization like in VLSI layouts? How to devise clever Crossover Operators for such cases? Are there advantages of Multidimensional Conserver operators. In Multivariate Ontimizations?

n ENT & ITT p for Archi are Consi	is numeros tocturos stont : : :		0	0	
Architecture Implementations	Collular Array Implementations		Defect Tolerant Implementations	Biologically Inspired Implementations	Coherent Quantum Computing
Application Domain	Quantum Cellular Automatu • Not demonstrated	Collular Novilinear Natuarik: • Fast image processing • Associative memory • Complex signal processing	Rehable computing with numbiable derives (such as SETs with background noise) Historical examples include WM Teranac FPCA amplementations	Goal-driven computing using simple and recursive algorithms High computational efficiency through data compression vlaurithme	 Special algorithms such as factoring and deep data searches QIS
Device And Instrument Implementations	 Arrays of nanodots or molecular assemblies 	Resonant tunneling devices	 Molecular switches, Cassed anays of 1D structures Switchable indexcounces 	Molecular organic and bio-molecular devices and interconnects BIC	 Spin resonance transistors NMR device Single flux quantum devices

Applications of 3-D Self-Assembled Architectures (Random Boolean Networks)

· Genetic Regulatory Networks (Kauffman 1993, Gershenson 2005)

Understanding of disease treatment Genomic interaction and data mining • Evolutionary Computing & Evolvable Hardware (JPL) • Artificial Neural Networks (Huepe & Aldana, 2002) • Social Modeling (Shelling 1971) • Robotics (Quick, et al. 2003) • Cellular Automata (Wuensche and Lesser, 1992) • Percolation Theory (Stauffer, 1985) • Biologically Inspired Computing (Swarm, Ant forage, ...

