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etwork of Workstations (NOW)
Connected by High-speed LAN

CAD Design Environment
Changed from Uni-processor (Vax)
to Network of Workstations (NoW)

1. High Communications costs through
Local Area Network (LAN)

2. Distributed Cohesive Search-space
Solver for VLSI Chip Layouts

3. Linear Speed-up and High-quality
Chip Layouts.

4. Increasing Chip Complexity & Complex
Search-space.

Why Genetic Algorithms are Better Suited for
NoW Platform than Stochastic Algorithms

/\ Simulated annealing uses a single configuration

Global Optimum

Local Optimum

1

Cost of the Objective Function

+ Stochastic - Adaptive Lesson #1:

+ Sequential - Parallel GA's are

+ Slow “Fast Suited for

- Single-processor . Distributed Distributed
* Global Optimum + Local Optimum Optimization

Solution Configurations
®|GA uses population of configurations
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Lesson #2: GA's have Many Parameters Requiring a Meta Optimization Process |

Infeasible crossover
ABODE | FOHLJ
BAJUH GFOEL

ABCDE GFDET

Feasible crossovers

Crossever Point
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OFrder Crossover PMX Crossover Cycle Crossover
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Lesson #3: O(N ) Time is Required to Generate Feasible Crossover Operations.

L s Lhs w o 0o o |
— o
e e .
. Y Y {
§ oo L i
F o | J
— 3 P
frrooms
[~ 120800
— e

| :
- H
H

| e i
| - -

! Lesson #4: GA is Fast, but Tends to Optimize Locally
' || for Problems with Very Large Search Space.

Multi-Dimensional Search Space for
Macro-Cell Placement with Translation,
Mirroring, Rotation, etc. Operations.

. The slgori s harved on a g of the
[} i fonal bin packing problem

The search is restricted to the subset of placements
in wiich no cell can be moved further left or down

The genetic encoding of a macro cell placement

®
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L
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Lesson #5: GA is Effective for Many Real
World Problems that Require MULTI-
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Why Genetic Algorithms are Better Suited for NOW than Stochastic Algorithms

/\  Simulated annealing uses a single configuration

® (A uses population of configurations —

S

Cost of the Objective Function

+ Stochastic + Adaptive 7
- Sequential o Pampllel
* Slow Fi
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- Single-processor - Distributed ;
« Global Optimum - Local Optimum S b

Solution Configurations
Why GA's are Suited for Distributed Optimization?
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Connected by High-speed LAN

CAD Design Environment
Changed from Uni-processor (Vax)
To Network of Workstations (NOW)

1. High Communications costs through
Local Area Network (LAN)
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Solver for VLSI Chip Layouts

3. Linear Speed-up and High-quality
Chip Layouts.

4. Increasing Chip Complexity & Complex
Search-space.
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VARIOUS ASPECTS OF GA'S FOR VLSI
DESIGN, TEST AND LAYOUT OPTIMIZATION

Adaptive, learns from experience

Intrinsic Parallelism

. Bfficient for complex problems with hilly search spaces
. Can handle various cost functions and constraints
® = asy to parallelize on a workstation network,

without much communication overhead.

and with near-linear speedup

\ University af Michigan —

Opportunities for Future Research:

Mathematical Modeling of Genetic Process

Simulated annealing uses Markov Chain to

give polynomial time solution.

Probability analysis & Empirical modeling
is needed for sequential and distributed
Genetic optimization.

| Circuit partitioning
Macro cell routing, including Steiner problems and global routing

| Standard cell and macro cell glacement

L Circuit seamentation, FPGA m:nnmn and nseudo-exhaustive testing
rcult seg Lation, 1g and pseudo 1austive testing

Automatic test generation |nc|ud|ng compaction, deterministic/genetic test
hybrids and integration of finite state machine sequences

| Peak power estimation

OPEN PROBLEM #1: Markov Chain can be used to model the Simulated
Anneadling by representing each solution configuration by a State in the Markov
Chain and by using the probability of an Incremental transformation as the
Transition Probability between different states.

It will lead to a Markov Chain of Length, L such that at the end one can
obtain near Global Optimal solution. The Length, L can be controlled by
selecting suitable Annealing Parameters and Inner Loop stopping criteria
up to 4 or 5 Variables only.

However, the Genetic Algorithm applies Crossover that Causes Multiple Changes
in the Chromosome. It cannot be represented by the Markov Chain model. A
better way to apply very rigorous Probability Modeling Technique that will
simultaneously optimize parameters such as Crossover rate, Mutation rate,
Inversion rate, Population Size, etfc.

OPEN PROBLEM #2: Distributed Genetic Algorithm will require a more
complex Mathematical Modeling to compute the Epoch rate, Search
cohesion, Speedup, efc.

OPEN PROBLEM #3: Are 6A's suited for Constrained Combinatorial
Optimization like in VLSI layouts? How to devise clever Crossover

Operators for such cases? Are there advantages of Multidimensional
yal A iate Ontimizations?

Outline of the Talk

+ Evolutionary Approach to Distributed
VLSI Layout Synthesis

+ Self-Healing of VLSI Chips by Neurally
Inspired Hardware Methods

+ Neuromorphic Nanoarchitecture using
Cellular Nonlinear Network Model

* Reinforcement Learning Hardware

Biologically Inspired Computing
MODELS TECHNOLOGIES

Wetware
Computing
Evolutionar, Social l -
Neural Networks Compu’fnﬂa);\ Systems r’-ﬂair:b

(Connectionism) (Survival of the fittest)

/ Molecular
\ \ Genetic Genetic ?l‘flflcu]l
Programming | | Algorithms mmune

Systems

A
Multilayer || Hopfield || Cellular Grammatical Swarm
Perceptrons || Networks | | Neural Evolution
Networks

s=|f-h=ui€@, k= l

Self-repairable
VLSI Chips

Nanoarchitectures * VLSI Cell Placement
. Self-assembled + Chip Wire Routing
E:::_:r“;ﬁ"; Quantum Dot Array + Chip Floorplanning
with A’::gﬁon-pCritic for image processing, + Chip Testing
el video motion detection, - Logic Synthesis My research employs
M; el to perfor'm & spatial & temporal BIC in Micro & Nano
Adaptive Dynamic e ring (Gabor, VTF) Systems Design

Programming

Manufacturing Yield
Qver 114 - | ff the Proposed R reduces bramatically
As Chips Become
Larger. Self Healing
Is Needed to Improve
Yield and Reduce Chip
Manufacturing Cost.

U
Cirtuits and Systems ts Be Built

286 1982 | 120 K

Intel386 | 105 | 275k Subcircuits:  SRAMS, PLAs, ROMs, Arithmetic and Legic Amays H Eea=
Square Processar Aerays, Hex Mesh, Systeie Amays |
“xmuse 1989 | 1.1 M Systems. __ WCMs. PCBS

Objective: Show the concept

Pentium® | 1993 | 3.1 M

of self-healing by restructuring

Ttanium® | 2002 | 220 M

a megabit Memory array of RAM

Ztanum® | 5003 | 410




Spare
Rows &
Columns

Given an NxN memory array which can have
an arbitrary defect pattern, can we repair the
memory by using at most p rows and q columns?
NP-Complete Problem (Restricted Node Cover)

Cost air_Scheme)

®* Spare Allocation Criteria

* To encourage all available spares be used

= C71 = A2 [(Zsq1-P)2 + (£s2-q)2]

* To encourage the min. usage of spares
= C'y = A/2] (251;)2 + (2521 121
® Fault Coverage Consideration

* To encourage all defects be covered

P G2 =58 [ZZ dj1-s0)(1-53)]

® Cost Function CMR =C4y + C or C'qy + Ca
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1024 x 1024 = 1 Mb Memory Array
with 4 spare rows and 4 columns

Spare Columns

0o
108
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Let MR = EMNN, we get
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Wy sy= -B dy. We, = -B dpi.

Bas= (P - 1/2) A + B X, oy .

L2y= (g - 1/2) A + B Zidy.,

whore Sy =0 if i=j , othorwisc 1.

ill Cli i Neural Nets

Let CMA = ENN with self-feedback allowed, we ge
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Wy 2= -B dy, Wz 1 = -B dj,
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Adaptive Circuit for Memory Array
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& EIGITAL NFIRAL SFTPORE CIRCLTL THAT AUTUMATICALLY KRFAIR:
FAULTY VLS1 CHEFS 70 IMPROVE CHIF MANUFACTURABLITY & SURVIVARILITY

Only 10,000 transistors are needed to heal
1 6B of RAM array

Faulty Faulty
Row Column

Manufacturing Yield

100%
With BISR

Without
BISR

™~ 20%

' feigai ¥, e 1995

Neural-inspired Maximum Matching
Problem on a Bipartite Graph.
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CNN-based Image Processing
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Nanoarchitectures with 0-D RTD &

Self-Assembled Quantum Dots

] Scalability

Quantum Dots
Having 5 nm
diameter

Lo

Self- bled metal/molecule/TTeraT

nanostructures for nanoscale devices

Pyramidal
Quantum
Dots using
GaAs
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Quantum Dot Array
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Modeling &
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Courtesy: 1. I. Oleynik & M. A Kozhushner

\V (Zm . Zn ) =Z-transform of a QD pair =

'R,
2[1— cos (22f, )]+ 2[L — cos (2f, )]+

Connecting Resistance Defines the
Mutual Voltage between a pair of QD's

Nanoscale Nonlinear Circuit Theory

Edge Detection by QDA

Image Processor is being fabricated and tested under a NIRT project




Circuit parameters based on
measured values

ko4

single dot: Ry, 4. ™ 640 MC
Single 0ot Gispds = 5 aF
Singledot: €_, ., = 0.5aF
Single dot: Peak current = BT pA

+ Superdot (1 plxel = 8400 dots):
Rrmer cuperace = 8 MO

+ Superdot: G ks = 4 F
. Superdot: C,, o= 2.2F
+  Superdot: Paak surrent = 0.1 pA

. Nanoarchitucture for Motion Estimation

Quantum Dot based
Cellular Nonlinear
Network with

Motion Estimation
Capability
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Quantum Dots
are underneath
the top metal

HSPICE Result of BD VTF forv=10

To get filtered outout. S value should be above 1.45 for
high valt 0.75 (RTD mid voltage)+0.7(diode threshold voltage)

V = +2 pixel/sec - u
V= +1pixellsec | ¢ L q
V=0pixelisec | R

. | K |
V =-1 pixel/sec

V =-2 pixel/sec

Filtered Output

Input Images

H =

1+27%(ag +b,)f2+27%(as +bN)ff+ i2z[(a, =b,)f, +(a,=b))f, +7f]
a. +b, =ag+by >0;and C >0.
o _r/R b _r/R a8 —rJ/R h _r/R 7 C

3-D Self-Assembled Architectures

Applications of 3-D
Self-Assembled Architectures
(Random Boolean Networks)

+ Genetic Regulatory Networks (Kauffman 1993,
Gershenson 2005)
Understanding of disease treatment
Genomic interaction and data mining
+ Evolutionary Computing & Evolvable Hardware (JPL)
+ Artificial Neural Networks (Huepe & Aldana, 2002)

+ Social Modeling (Shelling 1971)

+ Robotics (Quick, et al. 2003)

+ Cellular Automata (Wuensche and Lesser, 1992)

+ Percolation Theory (Stauffer, 1985)

- Biologically Inspired Computing (Swarm, Ant forage, ..)

Outline of the Talk

+ Evolutionary Approach to Distributed
VLSI Layout Synthesis

+ Self-Healing of VLSI Chips by Neurally
Inspired Hardware Methods

+ Neuromorphic Nanoarchitecture using
Cellular Nonlinear Network Model

* Reinforcement Learning Hardware h
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Self-assembled + Chip Wire Routing
Quantum Dot Array + Chip Floorplanning
for image processing, + Chip Testing
video motion detection, + Logic Synthesis

& spatial & temporal

filtering (Gabor, VTF)

Reinforcement
Learning Chips
with Action-Critic
Model to perform
Adaptive Dynamic

My research employs|
BIC in Micro & Nano
Systems Design

Programming

EVOLUTION OF
NEUROMORPHIC |2
COMPUTING:

Perceptron ('60)
(10 E 1 neurons)

Neural Net ('80)
(10 E 3 Neurons)

Neuromporphic
Hardware ('90)
(10 E 6 neurons)

Nanocrossbar
(10 E 10 neurons)

Figure from Principles of
Neural Science [2] p.22

Inhibitory Synapse

Analog a-Si Memristors

Uniform motion of the conducting front - analog switching (memristor)
+Creation of uniform conducting front by co-sputtering of a-Si & metal

DARPA SyNAPSE PROJECT
WITH HRL LABORATORIES

{ sputtered a-Si only

co-sputtered Si & Ag (~ 20nm)
renixture ratio (rough # of atoms), gradual chang

1 bBuitbrét=sPBni (Pottom) 10: 1 (top)
All Credits Go to Prof. ;2 Successive

witing

Wei Lu's Outstanding

Research Group Z o.4] Successiveerase p
] rocesses

Incremental conductance change
+Conductance oc total charge through the device

*Highest process temperature < 260°C Voltage (V)
Pinaki Mazumder m

U of Michigan — NDR Group
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The Holy 6rail of Computing --
Can we spill human brain on Silicon?

Current Capabi

= The Exponential
Growth Driv
the Sdcietal

Economics ——=

Facets of Neuromorphic or Brain-like Computing:

Self-Healing (Robust)
Cognition (Visual,
Auditory, Tactile)

Spike Learning

Huge Memory
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Memristor: A New Paradigm Circuit Design

Programming pulses with different pulse widths

4 . - Conductance
zs controlled by
E the pulse
£ oL — width, and can
g | | |H ww  be changed
B I R | L incrementally.
F Conductance change after each pulse
:‘;:,?D 1. Digitally Controlled
£ [T I
§oln - 2. Constant Amplitude
g'm 3. Temporal Correlation
3-3”

10
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Neuron Spiking Signals and STDP Control SPDT with Memristor
Neurons that "FIRE" together.
Hebbian-Type STDP Learning Model  also "WIRE" together. - D. Hebb
-y 7 . . . . Pulse Width vs. Pre and Post Neuron Spike Times
7170 ] 1 gl ] Ting Dot g :
dt Ta Ty timeslots Prop: tpRE— tPOST <0 tPRE — tPOST >0
u(t—t, ult—t, ) =w" Tif |t -t N - Long Term Potentiation can
¢ er_) ) — N M_I onlygoccur in the 2nd timeslot
sel ¥ ; UF  spke; gud Duie  selhe) g g UTF ; LTP ‘"=
v - Long Term Depression can only
} r l_l /ﬂ occar in the 1st timeslot E,,“ S T TR T O
' § - Inpufs are considered only in 5 3 LTD
the Oth timeslot H TP =
: \/-
Each pulse of amplitude V is
not gr?ough 1-1; m"r\xFl)(e a Pulse Width ys tpre - trosT
significant change to e
memristance Neuron Pulse Width Curves ned usi )
(acr‘oss a synapse) STDP obtained using memristor
When there's a net is at - Synapse
v > . For LTP case: The Post neuron is at —V while the Pre neuron at +'
difference with amplitude For LTD case: The Pre neuron is at -V while the Post neuron at +V
ZV, memristance changes LTP case is taken as positive while the LTD case negative
61 62
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STDP Neural Circuit for Position Detector STDP Based Position Detector
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\ NN = ,
(VI . =] Noisy
- ORI =
{ 'J:Lu-ri-n—r\-%-:—k-? = P
NN NNy E
{J_,li_,l}_,ii-s U ! ;
T W Sy S | - =
N ]
Bases Memristor CMOS ™
Design Design L
Synaptic area < (0.5um x 17pm x ‘Period:1014
0.5um) 16pm ;
Synaptic Density | >4 devices/um? 0.0037 — — n —
x1000 devices/pm? L . Period:660  Period:660
Neuron area 20pm x 10pm | 8pm x 12pm - =_‘j i
Neuron Density 0.005 0.0104 ‘ '
devices/pm? devices/pm? - . Period:1506 Period:7266'
X2
Volatility Nonvolatile Volatile
VERILOG SIMULATION
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Perceptrons || Networks | | Neural Evolution
Networks
/
Self-healing,
Self-repairable
VLST Chips Nanoarchitectures * VLSI Cell Placement
N Self-assembled + Chip Wire Routing
E:::;t:r‘ceg‘ein: Quantum Dot Array + Chip Floorplanning
with A';gﬁan—pCritic for image processing, + Chip Testing
video motion detection, - Logic Synthesis My research employs
Model to perform & spatial & temporal BIC in Micro & Nano
Adaptive Dynamic filtering (Gabor, VTF) Systems Design

Programming
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- Evolutionary Computing plays a critical role in
Layout Synthesis and Testing of VLSI Chips.

Neural fnspir‘ed Self -Healing plays a critical
role in improving manufacturing yield and
Survivability of chips.

Cellular Nonlinear Networks
provide architectures for
Nanoelectronics.

Learning-based VLSI chips
will require major innovations
in nanoelectronics from
materials to architectures
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My research group is also
working on THz Sensing of
DNA, RNA and Other
Biomolecules
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