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Biologically Inspired Algorithms for 
Micro and Nano System Design
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Outline of the Talk

• Evolutionary Approach to Distributed 
VLSI Layout Synthesis

• Self Healing of VLSI Chips by Neurally• Self-Healing of VLSI Chips by Neurally
Inspired Hardware Methods

• Neuromorphic Nanoarchitecture using 
Cellular Nonlinear Network Model

• Reinforcement Learning Hardware
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500,000,000 MOSFETs

Year Transistors

4004 1971 2.25 K

8080 1974 5 K

8086 1978 29 K
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Intel386™ 1985 275 K 

Intel486™ 1989 1.1 M
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Itanium® 2002 220 M
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CAD Design Environment
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 N k f W k i  (N W)

Network of Workstations (NOW)Network of Workstations (NOW)
Connected by HighConnected by High--speed LANspeed LAN

to Network of Workstations (NoW)

1. High Communications costs through
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2. Distributed Cohesive Search-space
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GA’s are
Suited for
Distributed
Optimization
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Adjustments of crossover, 
inversion, mutation rates; 
population size; selection criteriapopulation size; selection criteria

Lesson #2: GA’s have Many Parameters Requiring a Meta Optimization Process

Infeasible crossover

Feasible crossovers

Lesson #3: O(N ) Time is Required to Generate Feasible Crossover Operations.
Lesson #4: GA is Fast, but Tends to Optimize LocallyLesson #4: GA is Fast, but Tends to Optimize Locally
for Problems with Very Large Search Space. for Problems with Very Large Search Space. 

Multi-Dimensional Search Space for
Macro-Cell Placement with Translation,
Mirroring, Rotation, etc. Operations. 

Lesson #5: GA is Effective for Many Real
World Problems that Require MULTI-
DIMENSIONAL  CROSSOVER 
OPERATORS
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Lesson #6: “GA + SA” Performs Better than Pure GA

CAD Design Environment
Changed from Uni-processor (Vax)
To Network of Workstations (NOW)

Network of Workstations (Network of Workstations (NoWNoW))
Connected by HighConnected by High--speed LANspeed LAN

1. High Communications costs through
Local Area Network (LAN)

2. Distributed Cohesive Search-space
Solver for VLSI Chip Layouts

3. Linear Speed-up and High-quality 
Chip Layouts.

4. Increasing Chip Complexity & Complex
Search-space. 

CHILDREN PROCESSORSCHILDREN PROCESSORSCONTROLLER PROCESSORCONTROLLER PROCESSOR CHILDREN PROCESSORSCHILDREN PROCESSORS

Communication Time v.
Epoch Length

Lesson #7: GA’s are Suited for Distributed Optimization
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Simulated annealing uses a single configuration

Why Genetic Algorithms are Better Suited for NOW than Stochastic Algorithms
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• Adaptive
• Parallel
• Fast
• Distributed
• Local Optimum

• Stochastic
• Sequential
• Slow
• Single-processor
• Global Optimum

Why GA’s are Suited for Distributed Optimization?
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VARIOUS ASPECTS OF GA’S FOR VLSI
DESIGN, TEST AND LAYOUT OPTIMIZATION

Opportunities for Future Research:

Mathematical Modeling of Genetic Process

Simulated annealing uses Markov Chain to
give polynomial time solution.

Probability analysis & Empirical modeling
is needed for sequential and distributed
Genetic optimization  Genetic optimization. 

OPEN PROBLEM #1:OPEN PROBLEM #1: Markov Chain can be used to model the Simulated 
Annealing by representing each solution configuration by a State in the Markov 
Chain and by using the probability of an Incremental transformation as the 
Transition Probability between different states. 

It will lead to a Markov Chain of Length, L such that at the end one can 
obtain near Global Optimal solution. The Length, L can be controlled by 
selecting suitable Annealing Parameters and Inner Loop stopping criteria 
up to 4 or 5 Variables only.  

However, the Genetic Algorithm applies Crossover that Causes Multiple Changes 
in the Chromosome. It cannot be represented by the Markov Chain model. A p y
better way to apply very rigorous Probability Modeling Technique that will 
simultaneously optimize parameters such as Crossover rate, Mutation rate, 
Inversion rate, Population Size, etc. 

OPEN PROBLEM #2:OPEN PROBLEM #2: Distributed Genetic Algorithm will require a more 
complex Mathematical Modeling to compute the Epoch rate, Search 
cohesion, Speedup, etc.

OPEN PROBLEM #3:OPEN PROBLEM #3: Are GA’s suited for Constrained Combinatorial 
Optimization like in VLSI layouts? How to devise clever Crossover
Operators for such cases? Are there advantages of Multidimensional
Crossover operators in  Multivariate Optimizations?

Outline of the Talk

• Evolutionary Approach to Distributed 
VLSI Layout Synthesis

• Self-Healing of VLSI Chips by Neurally
Inspired Hardware MethodsInspired Hardware Methods

• Neuromorphic Nanoarchitecture using 
Cellular Nonlinear Network Model

• Reinforcement Learning Hardware

Biologically Inspired Computing Biologically Inspired Computing 

Neural Networks
(Connectionism)

Evolutionary 
Computation

(Survival of the fittest)

…
Genetic Genetic 

Social 
Systems Memb-

rane

Artificial
I  

Wetware
Computing

DNA

Molecular

MODELSMODELS TECHNOLOGIESTECHNOLOGIES

Multilayer
Perceptrons

Hopfield
Networks

Cellular
Neural 
Networks

Nanoarchitectures
Self-assembled 
Quantum Dot Array
for image processing,
video motion detection,
& spatial & temporal 
filtering (Gabor, VTF)

Self-healing,
Self-repairable
VLSI Chips

Genetic 
Programming

Genetic 
Algorithms

Grammatical 
Evolution

• VLSI Cell Placement
• Chip Wire Routing
• Chip Floorplanning
• Chip Testing
• Logic Synthesis

Swarm Ant

Immune 
Systems

My research employs 
BIC in Micro & Nano 
Systems Design

Reinforcement 
Learning Chips
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Model to perform
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Programming

Manufacturing Yield 
Reduces Dramatically
As Chips Become
Larger. Self Healing 
Is Needed to Improve
Yield and Reduce Chip
Manufacturing Cost. 

Year Transi
stors

4004 1971 2.25 K

8080 1974 5 K

8086 1978 29 K

286 1982 120 K

Intel386
™ 1985 275 K 

Intel486
™ 1989 1.1 M

Pentium® 1993 3.1 M

Itanium® 2002 220 M

Itanium® 
2 2003 410 M

Objective: Show the concept 
of self-healing by restructuring 
a megabit Memory array of RAM   
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Spare 
Rows &
Columns
Are
Needed
For 
Replacing
Bad cells.

Given an NxN memory array which can haveGiven an NxN memory array which can have
an arbitrary defect pattern, can we repair thean arbitrary defect pattern, can we repair the
memory by using at most p rows and q columns? memory by using at most p rows and q columns? 
NPNP--Complete Problem (Restricted Node Cover)Complete Problem (Restricted Node Cover)

Data Data

EV68 CoreP
0
1
2
3

P
4
5
6
7

Faulty Row

Faulty 
Column

Faulty Cell

1024 x 1024 = 1 Mb Memory Array1024 x 1024 = 1 Mb Memory Array
with 4 spare rows and 4 columnswith 4 spare rows and 4 columns

Defect PatternDefect Pattern

Spare Rows

Spare ColumnsSpare Columns

CompactedCompacted
Defect PatternDefect Pattern

Lyapunov EnergyLyapunov Energy
FunctionFunction

•• THE ENDTHE END
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COMPARISON BETWN. NUROMORPHIC COMPARISON BETWN. NUROMORPHIC 
v. SOFTWARE TECHNIQUESv. SOFTWARE TECHNIQUES

Only 10,000 transistors are needed to healOnly 10,000 transistors are needed to heal
1 GB of RAM array1 GB of RAM array

Manufacturing Yield

Faulty 
Column

Faulty 
Row

100%

20%

With BISR

Without
BISR

Manufacturing Yield

1995

Neural-inspired Maximum Matching 
Problem on a Bipartite Graph. 
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VLSI Implementation – CMOS 
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Nth feedback weight output stage
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Mn4 Mn7 Mn14 Mn10 Mn14 Mn10
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Vp1
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Current InverterIntegrator

Source: L. Ravezzi, G.F. Dalla Betta, G. Setti
Cellular Neural Networks and Their Applications, 1998. (CNNA 1998). Proceedings of 
the 1998 5th IEEE International Workshop on , April 1998 Pages:253- 258

VLSI Implementation VLSI Implementation –– QMOS QMOS 
CNN Nucleus for HCCDCNN Nucleus for HCCD
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Initial Condition
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4 transistors & 4 RTDs for one cell

CNN-based Image Processing
Edge Extraction-128x128
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The structure of the synaptic The structure of the synaptic 
Network between the  base Network between the  base 
cell and neighboring cells.cell and neighboring cells.

Roadmap

Year Transist
ors

4004 1971 2.25 K

8080 1974 5 K

Generation #1 Generation #5

Exponential Economic Growth

The Law of Accelerating Returns
By Ray Kurzweil

#2 #3 #4

MolecularMolecular
SwitchSwitch

QuantumQuantum
ComputingComputing

QD’s

8080 1974 5 K

8086 1978 29 K

286 1982 120 K

Intel386™ 1985 275 K 

Intel486™ 1989 1.1 M

Pentium® 1993 3.1 M

Pentium® II 1997 7.5 M

Pentium® 4 2000 42 M

Itanium® 2002 220 M

Itanium® 2 2003 410 M

ECONOMIC GROWTH HINGES ONECONOMIC GROWTH HINGES ON
BOOSTING OF EMT RESEARCHBOOSTING OF EMT RESEARCH

The Trajectory of
Exponential Growth

Technology Grows Exponentially

* Ultimate Device Size: 10-40 Å
* Three-Dimensional Integration
* Exponential Processing Power
* Molecular & Quantum Devices 

AI-based
Nanobot

Technology Does Not
Change Linearly

100 Billion Fold Growth 
Between 1900-2000 Will
Occur in the Twenty First 
Century in 20 Years!!

Molecular Diode
Univ. of Chicago
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Nanoarchitectures with 0-D RTD & 
Self-Assembled Quantum Dots

Quantum Dots
Having 5 nm 
diameter

Scalability

Self-assembled metal/molecule/metal 
nanostructures for nanoscale devices 

Pyramidal
Quantum 
Dots using
GaAs 

Quantum Dot Array
Fig. 2 Schematic view of the pyramid-shape In0.5Ga0.5As quantum dot.
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Multiscale Multiscale 
Simulation:Simulation:
Quantum DeviceQuantum Device

Multiscale Multiscale 
Simulation:Simulation:
Quantum DeviceQuantum Device
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Quantum Device Quantum Device 
Modeling &Modeling &
Quantum SpiceQuantum Spice

Quantum Device Quantum Device 
Modeling &Modeling &
Quantum SpiceQuantum Spice

Negative Differential Resistance of C60 & BPDN Molecules Negative Differential Resistance of C60 & BPDN Molecules 
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Tight-binding Hamiltonian model:

   
2

, ,mol
s l l sI V V    

bipyridyl-dinitro oligophenylene-
ethylene dithiol (BPDN)

Courtesy: I. I. Oleynik & M. A. Kozhushner 

Quantum Dot Array
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),( ZZ--transform of a QD pairtransform of a QD pair ==

Connecting Resistance Defines the Connecting Resistance Defines the 
Mutual Voltage between a pair of QD’sMutual Voltage between a pair of QD’s

Nanoscale Nonlinear Circuit TheoryNanoscale Nonlinear Circuit Theory

Edge Detection by QDA

0 ns 2 ns1 ns

Gray Gray  BinaryBinary
ConversionConversion

V l L  D  (VLD)

5 ns 6 ns

Vertical Line Detection (VLD)

6 ns0 ns

Image Processor is being fabricated and tested under a NIRT projectImage Processor is being fabricated and tested under a NIRT project
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15 pA

Nanoarchitucture for Motion EstimationNanoarchitucture for Motion Estimation

Quantum Dot

Quantum Dot based
Cellular Nonlinear
Network with 
Motion Estimation 
Capability

Quantum Dots
are underneath
the top metal
particles

.;/;/;/;/

.0  and ;0
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HSPICE Result of QD VTF for v = 0

To get filtered output, S value should be above 1.45 for 
high value =0.75 (RTD mid voltage)+0.7(diode threshold voltage)

V = +2 pixel/sec

Input Images Filtered Output 

V = +1 pixel/sec

V = 0 pixel/sec

V = -1 pixel/sec

V = -2 pixel/sec

3-D Self-Assembled Architectures

Raenssler Polytechnique Inst Los Alamos National Laboratory

Applications of 3-D 
Self-Assembled Architectures 
(Random Boolean Networks) 

• Genetic Regulatory Networks (Kauffman 1993,
Gershenson 2005)

Understanding of disease treatment
Genomic interaction and data miningGenomic interaction and data mining

• Evolutionary Computing & Evolvable Hardware (JPL)
• Artificial Neural Networks (Huepe & Aldana, 2002)
• Social Modeling (Shelling 1971)
• Robotics (Quick, et al. 2003) 
• Cellular Automata (Wuensche and Lesser, 1992)
• Percolation Theory (Stauffer, 1985)
• Biologically Inspired Computing (Swarm, Ant forage, …)

Outline of the Talk

• Evolutionary Approach to Distributed 
VLSI Layout Synthesis

• Self-Healing of VLSI Chips by Neurally
Inspired Hardware MethodsInspired Hardware Methods

• Neuromorphic Nanoarchitecture using 
Cellular Nonlinear Network Model

• Reinforcement Learning Hardware
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The Holy Grail of Computing The Holy Grail of Computing ----
Can we spill human brain on Silicon?Can we spill human brain on Silicon?

Current CapabilityCurrent Capability

The ExponentialThe Exponential
Growth DrivesGrowth Drives
the Societalthe Societal
EconomicsEconomics

1 GW digital1 GW digital

Facets of Facets of NeuromorphicNeuromorphic or Brainor Brain--like Computinglike Computing::

SelfSelf--Healing  (Robust)Healing  (Robust) Spike LearningSpike Learning
Cognition (Visual, Cognition (Visual, 

Auditory, Tactile)        Huge MemoryAuditory, Tactile)        Huge Memory

1 GW digital 1 GW digital 
computercomputer

< 50 W Brain< 50 W Brain

Excitatory synapse

Dendritic TreeEVOLUTION OFEVOLUTION OF
NEUROMORPHICNEUROMORPHIC
COMPUTING:COMPUTING:

Perceptron (’60)Perceptron (’60)
(10 E 1 neurons)(10 E 1 neurons)

Neural Net (’80)Neural Net (’80)
(10 E 3 Neurons)(10 E 3 Neurons)

NeuromporphicNeuromporphic
Hardware (’90)Hardware (’90)
(10 E 6 )(10 E 6 )

Axon Hillock

Figure from Principles of 
Neural Science [2] p.22

Inhibitory Synapse

(10 E 6 neurons)(10 E 6 neurons)

Nanocrossbar Nanocrossbar 
(10 E 10 neurons)(10 E 10 neurons)

Biological Neuron Model
Ionic Transport in Biological Neuron & its Silicon Implementation

HodgkinHodgkin--Huxley ModelHuxley Model

•Uniform motion of the conducting front – analog switching (memristor) 
•Creation of uniform conducting front by co-sputtering of a-Si & metal 

Analog a-Si Memristors

Top Electrode
sputtered a-Si only
co-sputtered Si & Ag (~ 20nm)
mixture ratio (rough # of atoms) gradual chang

DARPA SyNAPSE PROJECTDARPA SyNAPSE PROJECT
WITH HRL LABORATORIESWITH HRL LABORATORIES

Pinaki Mazumder
U of Michigan – NDR Group

-2 -1 0 1 2 3
-0.4
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V lt (V)

Successive Successive 
writingwriting

Successive erase pSuccessive erase p
rocessesrocesses

Voltage (V)

I (
A

)

•Incremental conductance change
•Conductance      total charge through the device

Bottom Electrode

sputtered a-Si only

mixture ratio (rough # of atoms), gradual chang
e
i.e. Si : Ag =  20: 1 (bottom)          10: 1 (top) 

•Highest process temperature < 260°C

All Credits Go to Prof. All Credits Go to Prof. 
Wei Lu’s OutstandingWei Lu’s Outstanding
Research GroupResearch Group

Memristor: A New Paradigm Circuit Design

Conductance 
controlled by 
the pulse 
width, and can 
b  h n d 

Programming pulses with different pulse widths

be changed 
incrementally.

Conductance change after each pulse

100 s

1.1. Digitally ControlledDigitally Controlled

2.2. Constant AmplitudeConstant Amplitude

3.3. Temporal CorrelationTemporal Correlation
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• Time Division Multiplexing
– Events occur at proper 

timeslots
– Long Term Potentiation can 

only occur in the 2nd timeslot
– Long Term Depression can only 

occur in the 1st timeslot
I   id d l  i  

Neuron Spiking Signals and STDP ControlNeuron Spiking Signals and STDP Control
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postpre
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post
b

a

pre
a

LTPLTP
ij

ttwttuttu
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d

tt
dw

dt

d




HebbianHebbian--Type STDP Learning ModelType STDP Learning Model
Neurons that “FIRE” together.Neurons that “FIRE” together.
also “WIRE” together. also “WIRE” together. –– D. HebbD. Hebb

– Inputs are considered only in 
the 0th timeslot

• Each pulse of amplitude V is 
not enough to make a 
significant change to 
memristance

• When there’s a net 
difference with amplitude 
2V, memristance changes

Neuron spikes in first frame
61

Pulse Width vs. Pre and Post Neuron Spike Times

SPDT with Memristor

LTPLTP

ttPRE PRE –– ttPOST > 0POST > 0ttPRE PRE –– ttPOST < 0POST < 0

Neuron Pulse Width Curves 
(across a synapse)
For LTP case: The Post neuron is at –V while the Pre neuron at +V

For LTD case: The Pre neuron is at –V while the Post neuron at +V

LTP case is taken as positive while the LTD case negative

62

STDP obtained using memristor STDP obtained using memristor 
synapsesynapse

LTDLTD

Pulse Width  vs tPulse Width  vs tPREPRE -- ttPOSTPOST

STDP-Based Position Detector
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STDP Neural Circuit for Position DetectorSTDP Neural Circuit for Position Detector

Bases Memristor 
Design

CMOS 
DesignDesign Design

Synaptic area < (0.5μm x 
0.5μm)

17μm x 
16μm

Synaptic Density 4 devices/μm2

x1000
0.0037 

devices/μm2

Neuron area 20μm x 10μm 8μm x 12μm

Neuron Density 0.005 
devices/μm2

x2

0.0104 
devices/μm2

Volatility Nonvolatile Volatile
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Biologically Inspired Computing Biologically Inspired Computing 

Neural Networks
(Connectionism)

Evolutionary 
Computation

(Survival of the fittest)

…
Genetic Genetic 

Social 
Systems Memb-

rane

Artificial
I  

Wetware
Computing

DNA

Molecular

MODELSMODELS TECHNOLOGIESTECHNOLOGIES

Multilayer
Perceptrons

Hopfield
Networks

Cellular
Neural 
Networks

Nanoarchitectures
Self-assembled 
Quantum Dot Array
for image processing,
video motion detection,
& spatial & temporal 
filtering (Gabor, VTF)

Self-healing,
Self-repairable
VLSI Chips

Genetic 
Programming

Genetic 
Algorithms

Grammatical 
Evolution

• VLSI Cell Placement
• Chip Wire Routing
• Chip Floorplanning
• Chip Testing
• Logic Synthesis

Swarm Ant

Immune 
Systems

My research employs 
BIC in Micro & Nano 
Systems Design

Reinforcement 
Learning Chips
with Action-Critic
Model to perform
Adaptive Dynamic
Programming

• Evolutionary Computing plays a critical role in
Layout Synthesis and Testing of VLSI Chips.

Neural Inspired Self-Healing plays a critical
role in improving manufacturing yield and
Survivability of chips. 

Cellular Nonlinear Networks 
provide architectures for
Nanoelectronics. 

E EE ETHE ENDTHE END

My research group is also 
working on THz Sensing of 
DNA, RNA and Other 
Biomolecules

Learning-based VLSI chips
will require major innovations 
in nanoelectronics from 
materials to architectures


