
Data and Text Mining

A deep learning architecture for
metabolic pathway prediction
Mayank Baranwal 1,∗, Abram Magner 2, Paolo Elvati 3, Jacob Saldinger 3,
Angela Violi 3,4 and Alfred O. Hero 1,∗

1Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA,
2Department of Computer Science, University at Albany, SUNY, Albany, NY 12222, USA,
3Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA, and
4Department of Chemical Engineering and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Understanding the mechanisms and structural mappings between molecules and pathway
classes is critical for design of reaction predictors for synthesizing new molecules. This paper studies the
problem of prediction of classes of metabolic pathways (series of chemical reactions occurring within a
cell) in which a given biochemical compound participates. We apply a hybrid machine learning approach
consisting of graph convolutional networks used to extract molecular shape features as input to a random
forest classifier. In contrast to previously applied machine learning methods for this problem, our framework
automatically extracts relevant shape features directly from input SMILES representations, which are atom-
bond specifications of chemical structures composing the molecules.
Results: Our method is capable of correctly predicting the respective metabolic pathway class of 95.16% of
tested compounds, whereas competing methods only achieve an accuracy of 84.92% or less. Furthermore,
our framework extends to the task of classification of compounds having mixed membership in multiple
pathway classes. Our prediction accuracy for this multi-label task is 97.61%. We analyze the relative
importance of various global physicochemical features to the pathway class prediction problem and show
that simple linear/logistic regression models can predict the values of these global features from the shape
features extracted using our framework.
Availability: https://github.com/baranwa2/MetabolicPathwayPrediction
Contact: mayankb@umich.edu, hero@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Metabolic pathways are comprised of a linked series of chemical reactions
occurring within a cell, where chemical products from one reaction act as
substrates for the next reaction. The substrates in each pathway are cataly-
zed into structurally similar products by catalytic enzymes. Understanding
the mechanisms and structural mappings between molecules and pathway
classes is critical for design of reaction predictors for synthesizing new
molecules Pireddu et al. (2006); Sankar et al. (2017) or optimizing drug
metabolization Cho et al. (2010). Knowledge of metabolic pathways can

also elucidate compound toxicity mechanisms Nicholson et al. (2002).
The primary focus of this paper is to develop and assess a high-fidelity
model that, given a chemical structure representation of a molecule, can
accurately predict its pathway class associations.

A number of approaches have been employed for correlating protein
annotations to pathway templates in order to derive organism-specific path-
ways. These range from data retrieval strategies Boudellioua et al. (2016);
Hamdalla et al. (2015); Covell (2017) to machine learning methods Dale
et al. (2010); Khosraviani et al. (2015); Wang et al. (2017); Fang and Chen
(2017); Zelezniak et al. (2018); Moore et al. (2019), molecular fragments
representation Chen et al. (2016), and network integration methods Guo
et al. (2018). As a result, several popular tools for analyzing metabolic
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2 Baranwal et al.

pathways have appeared in the literature, including PathComp Kaneh-
isa et al. (2006), PathPred Moriya et al. (2010), Pathway Tools Karp
et al. (2009), UM-BBD Pathway Prediction System Ellis et al. (2008),
MRE biosynthesis pathway finding tool Kuwahara et al. (2016), and
TrackSM Hamdalla et al. (2015). Several methods have been developed
specifically for the problem of classification of compounds into metabolic
pathway classes. These have been validated on publicly available metabo-
lic pathway databases. These databases include the Kyoto Encyclopedia
of Genes and Genomes (KEGG) Kanehisa and Goto (2000) database,
EcoCyc/MetaCyc database Karp et al. (2000), Expert Protein Analysis
System (ExPASy) database Gasteiger et al. (2003), Cell-Signaling Netw-
orks Database (CSNDB) Takai-Igarashi et al. (1998), PathDB Mendes
et al. (2000), UM-BBD Ellis et al. (2008) and Signaling Pathway Data-
base (SPAD) Tateishi et al. (1995). Among them, KEGG is often used
for benchmarking classification performance of pathway prediction meth-
ods. KEGG is a manually curated database of pathway maps consisting of
links to specific information about compounds, enzymes and genes. Seve-
ral pathways in KEGG are characterized by the chemical structures of
their main compounds, such as, carbohydrates, lipids, polyketides, amino
acids. Molecules are represented with names, chemical and structural for-
mulas, metabolic pathways in which the molecules occur, and enzymes
that catalyze reactions containing the molecules.

In Cai et al. (2008), the authors proposed a nearest-neighbor (NN) algo-
rithm to map small molecules to pathway classes by utilizing the functional
group composition of these molecules. A set of 2764 compounds, with
each compound belonging exclusively to one of the 11 identified path-
way classes, was retrieved from the KEGG database for analysis. The
authors obtained an overall accuracy of 73.3% for the NN predictor of
metabolic pathway classes. The approach of Cai et al. (2008) is not dire-
ctly extendable to compounds belonging to more than one pathway class.
In Macchiarulo et al. (2009), the authors used a random forest classifier
on 32 physicochemical and topological descriptors to predict association
of 681 molecules with 7 manually identified KEGG pathway classes, and
obtained an average Matthews correlation coefficient of 0.73.

Hu et al. (2011) proposed a multi-class model for predicting associa-
tion of a query compound to one or more of the previously identified KEGG
pathway classes. For the single-class prediction task, i.e., predicting com-
pounds belonging to only one pathway class, they obtained an overall
average accuracy of 77.97% using 5-fold cross-validation on a benchmark
dataset consisting of 3137 compounds. Gao et al. (2012) further extended
the work by Hu et al. (2011) and obtained an average prediction accuracy
of 77.12% on a dataset comprised of 3348 small molecules using leave-
one-out cross-validation (LOOCV) study. A major drawback with both
these approaches is that they require knowledge about interactions betw-
een compounds in the dataset. As a result, the authors in Hu et al. (2011);
Gao et al. (2012) could not process 1229 small molecules due to the lack
of sufficient interaction information.

Hamdalla et al. (2015) overcame the above limitation by finding
scaffolds (substructures) that are shared commonly among structurally
similar compounds. They hypothesized that compounds that share com-
mon scaffolds are associated with biochemically related pathways. A tool
(TrackSM) was developed to extract scaffolds from compounds belonging
to the same KEGG pathway classes and an average accuracy of 84.92%
was obtained on 3190 small molecules using LOOCV. For a query com-
pound with previously unknown metabolic pathway class, its scaffolds are
matched against scaffolds of the compounds with known pathway associ-
ations, and the classifier declares the query compound to be a member of
the class with largest match score.

In the past few decades, there has been significant growth in biomo-
lecular databases Fiehn (2002); Dunn and Ellis (2005). However, the use
of these databases for predicting properties of novel biomolecular com-
pounds remains a major challenge. To this end, machine learning (and

deep learning in particular) has been applied to a variety of computa-
tional chemistry applications, including drug discovery Sliwoski et al.
(2014), toxicity prediction Mayr et al. (2016), genomic prediction Men-
den et al. (2013), protein-protein interaction prediction Shoemaker and
Panchenko (2007); Zhang et al. (2019), enzymatic function prediction Li
et al. (2017), biological reaction energy prediction Alazmi et al. (2018),
quantitative structure activity relationship (QSAR) modeling Goh et al.
(2017), and predicting the outcome of biological assays Ma et al. (2015).
In many such applications, the input data (e.g., chemical compounds) is
highly structured, and so there is potential for specialized machine learning
methods to extract relevant shape features more effectively than general
purpose deep neural networks Tsubaki et al. (2018). Extensions of these
methods have additionally been used for the generation and optimization
of chemical structures You et al. (2018).

In this paper, we propose a graph convolutional network approach to
classify query compounds into metabolic pathway classes and to deter-
mine discriminating features. The primary contributions of this paper are
summarized as follows:
• Hybrid deep learning and ensemble learning approach: A combi-

nation of a graph convolutional network (GCN)-based deep learning
architecture for graph representation learning and a random forest clas-
sifier is proposed to predict the set of pathway classes to which a query
compound may belong. A feature of the proposed architecture is that
our prediction engine only requires the chemical structure (SMILES
string) of the query compound. From this, it is able to perform the
classification with an accuracy that is statistically significantly better
than that of methods that are instead given access to global molecu-
lar features (such as MACCS keys, molecular weight, water-octanol
partition coefficient, etc.).

• Multi-class classification: Unlike existing methods on pathway pre-
diction that do not naturally extend to multi-class classification,
our architecture extends to mixed-membership classification of com-
pounds into multiple pathway classes. To this end, we have suitably
modified the original GCN architecture to account for multi-class
classification.

• General framework: While the primary focus of this work is to predict
the set of pathway classes for a query compound, the proposed GCN
architecture can be easily applied for prediction of other metabolic
properties, such as, logP , toxicity and enzymatic functions.

• Feature importance analysis: The relative importance of 173 global
molecular features is quantified, and their ranking is produced based
on their discriminative capability. The analysis provides insights into
features that contribute the most to distinguishing pathway classes. We
find that the values of the top-ranked features for a given molecule can
be predicted using the shape features generated by our GCN archite-
cture, indicating the promise of the GCN approach as a data-driven
substitute for laborious expert-driven feature engineering in chemical
classification applications.

• Interpretability of learned features in terms of chemical graph
parameters: In the supplementary material, we provide a methodo-
logy by which shape features learned by the GCN architecture can be
observed to be tied, at least statistically, to chemical graph parame-
ters, such as diameter. This hints that the problem of classification of
compounds into pathway classes is related to global graph structural
features of the molecules.

2 Materials
Among the publicly available biological pathway databases, one of the
most commonly used pathway database is the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database Kanehisa and Goto (2000). The
KEGG database consists of eleven manually curated pathway maps that
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Metabolic pathway prediction using deep learning 3

Fig. 1. Proposed graph convolutional network for Metabolic pathway prediction.

represent molecular interaction and reaction networks. These pathway
classes are strongly correlated to biological functions of molecules. A total
of 6669 compounds belong to one or several of these 11 identified meta-
bolic pathway classes: Carbohydrate Metabolism, Energy Metabolism,
Lipid Metabolism, Nucleotide Metabolism, Amino Acid Metabolism,
Metabolism of Other Amino Acids, Glycan Biosynthesis and Metabo-
lism, Metabolism of Cofactors and Vitamins, Metabolism of Terpenoids
and Polyketides, Biosynthesis of Other Secondary Metabolites, and Xeno-
biotics Biodegradation and Metabolism. Each of these 11 pathway classes
further consists of several individual pathways.

A dataset of 6669 compounds belonging to one or more of these
11 constituent pathway classes was downloaded (February 2019) from
the KEGG database: https://www.genome.jp/kegg/pathway.html. Of these
6669 compounds, a total of 4545 compounds belong to only one constituent
metabolic pathways. Most prior work on predicting pathway classes focu-
ses primarily on predicting pathway classes only for compounds belonging
to a single class. While this approach greatly simplifies the overall predi-
ction task, this viewpoint provides only partial information on biological
functions of the remaining 2124 compounds. Our work builds upon the
single class prediction solution and extends it to multi-class classification,
where the objective is to identify all constituent pathway classes to which a
compound may possibly belong. Thus, the approach prescribed in our work
goes beyond the existing work on metabolic pathway prediction. Figure 1
in the Supplementary material shows the distribution of compounds across
11 constituent pathway classes in the KEGG database.

3 Methods

3.1 Graph convolutional networks for classifying molecular
graphs

We propose a multi-layer graph convolutional network (GCN)-based arch-
itecture for metabolic pathway prediction, summarized in Figure 1. The
GCN outputs a single probability distribution over classes in case of single
class prediction, while it outputs a vector of class membership probabili-
ties in case of mixed membership prediction. The input to the architecture
consists of a graphG representing the molecule to be classified, along with
a vector ~w of curated properties of the molecule. These properties include
molecular fingerprints and the number of aromatic rings. The nodes of G
correspond to atoms, and the edges G correspond to bonds between the
atoms. Each node is labeled with its atom type, and each edge is weighted
by the multiplicity of its bond.

The trained architecture works as follows: G is passed through the
GCN, which results in a graph embedding vector ~vG ∈ Rd, where the
embedding dimension d is a hyperparameter. Then, we concatenate ~vG
and a vector ~w consisting of the global molecular features of the molecule,
resulting in a combined feature vector ~vemb. This is passed through a
feed-forward discriminative neural network, which is fully connected. The

output of the network is a vector of class prediction probabilities summing
to 1.

The embedding portion of the GCN works as follows: to each node u
of G, we associate an initial d-dimensional feature vector, which encodes
the r-radius subgraph – the subgraph induced by all nodes within r hops
of u (for a hyperparameter r) as a vector Tsubaki et al. (2018). This is
in contrast to explicit inclusion of atom and bond features as likely fea-
ture vectors in Coley et al. (2019). In particular, each distinct possible
r-radius subgraph is assigned a random unit-norm vector. Each layer of
the GCN updates all node embedding vectors by first replacing each vector
with the average over all neighboring vectors. This is followed by a linear
transformation given by the trained model parameters. Each coordinate of
the result is then passed through a rectified linear unit (ReLU) activation
function. Finally, after a number of layers given by another hyperparame-
ter, all of the final node embedding vectors are averaged, resulting in a
d-dimensional graph embedding vector. In essence, the aggregation step
of each successive layer stores increasingly coarse information about the
graph in the node embedding vectors. The influence of a given level of
coarseness is governed by the magnitudes of the weights corresponding
to the given layer. The model parameters include the weight matrices of
the GCN and of the fully connected feed-forward network. They are trai-
ned together by minimizing the standard cross-entropy objective function
over the training set Goodfellow et al. (2016). The use of the feed-forward
network at the output allows for this to be done via stochastic gradient
descent. The computation of gradients is done via backpropagation. The
GCN architecture was implemented similarly to Kipf and Welling (2017).
More precisely, given an input graph G with adjacency matrix A con-
sisting of N nodes (atoms), and quantity X(0) ∈ RN×d representing
the d-dimensional embedding of the nodes, an l-layer GCN updates node
embeddings using the following transition function:

X(t+1) = ReLU
(
ÃX(t)W (t)

)
, for all t ∈ {0, 1, . . . , l− 1}, (1)

where Ã = D̂− 1
2 ÂD̂− 1

2 is the normalized adjacency matrix. Here, Â =

A + I and D̂ is the degree matrix of Â. Parameters W (t) ∈ Rd×d

denote the weight-matrix of the tth-layer of the GCN. The embedding
X(l) generated by the final layer of GCN is averaged across its nodes to
produce the graph embedding vector ~vG given by:

~vG =
1

N

(
N∑

n=1

X(l)[n, :]

)T

. (2)

The graph embedding vector is concatenated with vector of global mole-
cular features ~w to produce a combined feature vector ~vemb, which is
then passed through a neural-network represented by f(·) to produce an
11-dimensional output vector z , f(~vemb). A final SoftMax layer
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Goodfellow et al. (2016) is applied to produce a probability vector yout,
which sums up to 1, i.e.,

yout = SoftMax (f(concat[~vG ~w])) (3)

The training produces the following:
• A chemical structure feature extraction component, which takes che-

mical structures and outputs structural feature vectors relevant to the
classification problem. We will also refer to these structural feature
vectors as GCN embeddings. This component is extracted from the
layers prior to the feed-forward network.

• A classification component, which takes as input the extracted structu-
ral features and global molecular features and yields class membership
probabilities.

After training, the structural feature extraction component can be used
to generate input features to train ensemble classifiers, such as a random
forest (RF) classifier Breiman (2001). RF aggregates outputs from mul-
tiple decision tree classifiers to decide the final class (label) of the query
object. This results in a classification accuracy that is better than competing
methods. This is in contrast to the architecture in Tsubaki et al. (2018),
which does not use ensemble methods and instead only considers a feed-
forward neural network for the classification component of the problem
that it considers.

4 Experiments
Six different machine learning models are compared for the prediction
task: (a) Random forest (RF) classifier with local graph features, which
takes as input the concatenation of the initial GCN node embedding vectors
encoding the shapes of the 2-radius subgraphs of the nodes; (b) Random
forest (RF) classifier with global molecular features, which takes 166-
dimensional MACCS (Molecular ACCess System) strings, as well as 7
additional molecular descriptors as inputs. These additional descriptors
are widely applied Oprea (2000); Ghose et al. (1999); Veber et al. (2002);
Lipinski et al. (1997) in drug discovery to determine bio-availability and
activity of small molecule compounds due to their known influence on
characteristics of molecules that affect their propensity to react in given
settings, such as size (captured by molecular weight), rigidity (captured
by rotatable bonds and ring counts Lawson et al. (2018)), lipophilicity
(captured by logP Wildman and Crippen (1999) and aromaticity Ritchie
and Macdonald (2009)), and polarizability (captured by molar refracti-
vity Wildman and Crippen (1999); Melville and Hirst (2007)). We refer
to these 173 total features as global molecular features. (c) Random forest
(RF) classifier with GCN embeddings, which takes as input the output
node embedding vectors (i.e., learned shape features) of the trained GCN;
(d) Graph convolutional network (GCN) which takes only chemical stru-
cture (via SMILES) as input; (e) GCN that takes chemical structure and
global molecular features as input; (f) GCN for multi-class classification,
which takes SMILES and the global molecular features described above
as inputs.

For both GCN and RF, the hyperparameters of the models are tuned
in order to achieve the reported accuracies. In both cases, this tuning is
done by performing a grid search over the set of possible hyperparame-
ter settings. The parameters for the RF classifier include the number of
base classifiers (300), maximum tree depth (60), and splitting criterion
(Gini impurity). The hyperparameters of our GCN implementation are as
follows: optimizer: Adam optimizer (Kingma and Ba (2014)) with lear-
ning rate λ = 10−3; loss function: cross-entropy; number of epochs =
100; embedding dimension d = 50; number of GCN layers l = 3; subgraph
radius r = 2. For the above choice of hyperparameters, the GCN comprises
of nearly 8,364 weights to be trained during the learning phase.

Method
Accuracy score (%)

Top-1 Top-2 Top-3

Hu et al. (2011) 77.97 NA NA
Cai et al. (2008) 73.30 NA NA
Gao et al. (2012) 77 79 85
Hamdalla et al. (2015) 84.92 92.82 95.39
RF w/ local graph features 21.47±1.0 39.96±1.5 59.76±1.5
RF w/ global features 88.01±.47 95.05±.52 96.70±.69
RF w/ GCN embeddings 95.16±.68 98.20±.63 98.99±.54
GCN 88.79±.95 93.49±.74 95.44±.98
GCN + global features 90.21±.92 94.73±.61 96.70±.72

Table 1. Performance analysis of several machine learning methods. Note that
the differences between RF with global features, GCN, and GCN plus global
features were found to be statistically insignificant. The difference between
these and RF with GCN embeddings was found to be statistically significant.

All models are implemented in Python 3.6.5 on an Intel i7-7700HQ
CPU with 2.8GHz x64-based processor. The SMILES are converted to
a graph representation using the RDKit Landrum et al. (2006) (version
2018.03.2). For RF classifier, we use the readily available implementation
in the scikit-learn Pedregosa et al. (2011) module (version 0.21.3), while
our GCN is implemented in PyTorch Ketkar (2017) (version 0.4.1).

4.1 Single-class classification

Of the 4545 KEGG compounds that belong to only one pathway class,
3635 (80%) compounds are selected randomly for the purpose of training
the models. The remaining 910 (20%) compounds are split equally into
cross-validation and test sets. The test examples are kept separate and the
model performances are evaluated on the test set at the end of the training
process. This process is repeated ten times, and the mean statistics of
these ten runs are reported with randomly selected training, test and cross-
validation sets. For each experiment, we report in Table 1 statistics for
top-n accuracy (n = 1, 2, 3), where a classifier is said to have correctly
characterized the pathway class for a query compound if the true class is
among the top n classes predicted by the classifier. Below we discuss the
results of the application of the various classifiers to the test data.

4.1.1 Random forest classifier with local graph features.
We apply the random forest classifier to local graph features in order to
compare the abilities of RF and the GCN architecture to extract graph
structural feature information. In particular, the local graph features are
the 2-radius subgraphs of all nodes in the input graph. The performance of
RF with local features is substantially worse than that of all other methods
tested, indicating the inability of the random forest classifier to extract
relevant features directly from graph-structured information.

4.1.2 Random forest classifier with global molecular features.
With access to the global molecular features, the random forest method
significantly outperforms the other state-of-the-art methods with overall
average accuracies of 88.01% (top-1), 95.05% (top-2) and 96.7% (top-
3), respectively. However, as we will show in subsequent sections, our
graph convolutional network architecture, using only molecule structure
as input, is capable of achieving the same performance without the need
for careful hand-selection of features. Furthermore, a combined approach
will be shown to yield even better performance.

4.1.3 Random forest classifier with GCN embeddings.
Here we use the shape features extracted via the trained GCN as inputs to
a random forest (RF) classifier. To that end, we first train a GCN classifier
to produce representations of molecules that can be easily distinguished
by the feed-forward neural network at the output of GCN. We then use
this trained GCN model to produce embedding vectors (at the output of
last graph convolutional layer after activation) and feed them to a RF
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classifier. The intuition behind this hybridization is that a simple classifier
is capable to learn complex functional relationship as long as the features
provided to it are sufficiently rich. We find that this method achieves better
performance than all competing methods. In particular, using McNemar’s
test to compare RF with GCN embedding input and RF with global feature
input, we find p-values 0.0059, 0.0165, 0.0125 for the null hypotheses
that the two classifiers have equivalent performance in terms of top 1,
top 2, and top 3 accuracy, respectively. This indicates the efficacy of the
GCN as a method for extracting relevant structural features from graph
representations of chemical compounds.

4.1.4 Graph convolutional network with chemical structure input.
The difference in performance between the GCN (with feed-forward netw-
ork output) and the RF classifier with global molecular features is not
statistically significant (McNemar’s test Dietterich (1998) with the null
hypothesis that the accuracies of the two methods are the same yields
p-values of 0.9999, 0.3105 and 0.6291 for the top-1, top-2 and top-3 clas-
sification tasks. Moreover, unlike the RF classifier, the GCN works with
only SMILES as input and does not require additional global molecular
features.

4.1.5 GCNs with additional global molecular features.
Upon inclusion of global molecular features, we find that the GCN
(again, with feed-forward network output) is equivalent in terms of
performance to the random forest with global molecular feature input.
McNemar’s test cannot reject the null hypothesis that the accuracies of RF
and GCN+global molecular features are equal (the p-values are 0.9999,
0.5716 and 0.7905).

4.2 Multi-class classification

We now discuss the task of classification of compounds into multiple
pathway classes (i.e., the multi-class classification problem). To our know-
ledge, the existing works that categorize compounds into pathway classes
do not directly address this task. Instead, for example, Hu et al. (2011); Gao
et al. (2012) produce rankings of pathway classes for a query compound,
based on similarity to other compounds in the dataset. Such rankings may
be converted to estimates of membership in multiple pathway classes by
fixing a number k ∈ {1, ..., 11} and declaring that all of the top k path-
way classes contain the query compound, while none of the remaining
classes do. Our approach to mixed membership multi-class classification
is fundamentally different. For each of the 11 identified pathway classes,
our modified GCN-based model outputs a probability that captures the
likelihood of the query compound belonging to the class. If the probability
for a given class is at least 1/2, then the compound is declared to be a
member of the class.

We modify the output layer in our GCN model and replace the SoftMax
layer with a layer of element-wise sigmoid activation functions Zeng et al.
(2018). Recall that the output of a sigmoid unit is restricted between 0 and
1, and therefore can be used to represent probabilities of association to
pathway classes. The GCN is trained to minimize the sum of the binary
cross-entropy losses at the sigmoid units. The performance of our multi-
class GCN model is depicted in Table 2. For the multi-class classification
problem, accuracy is defined as follows:

Accuracy =

N∑
i=1

11∑
c=1

(Correct predictions)i,c
N × 11

× 100%,

where (Correct predictions)i,c is 1 if the classifier correctly predicts the
label for the ith compound for pathway class c, and 0 otherwise. Here, N
represents the total number of compounds. In other words, the accuracy
is the fraction of all correctly predicted associations between compounds
and pathway classes. Performance of a classifier is not only measured by
the overall average accuracy, but also by the observed precision and recall.

Method
Scores (%)

Accuracy Precision Recall

Hu et al. (2011) 94.64 77.97 67.83
kNN classifier 90.52±.81 56.25±3.2 57.99±2.8
Ensemble logistic
regression

85.48±.61 23.68±1.6 18.30±1.5

Independent RFs 97.58±.12 83.69±.78 83.63±.68
GCN + additional features 97.61±.12 91.61±.52 92.50±.44

Table 2. Performance analysis of multi-class classification

For a binary classifier, precision captures the positive predictive rate (i.e.,
the fraction of examples that are declared to be positive that actually are
positive), whereas recall captures the sensitivity of a model (the fraction
of examples that actually are positive that are declared to be positive).
In order to evaluate precision and recall, we look at average classifica-
tion/misclassification rate for each query compound. For instance, let us
assume that a query compound is associated with 3 out of 11 pathway
classes, described by the association bit-string “10100100000", where ‘1’
at ith position indicates that the compound is associated with ith metabolic
pathway class, while ‘0’ at jth position indicates that the compound does
not belong to the jth pathway class. Let us further assume that our classi-
fier predicts the association bit-string “10001100100". Then the number
of true positives (TPs), true negatives (TNs), false positives (FPs) and false
negatives (FNs) in this example are 2, 6, 2 and 1, respectively. Here, TPs
correspond to correct identification of classes 1 and 6, while TNs corre-
spond to correctly identified non-associations with classes 2, 4, 7, 8, 10
and 11. This process is repeated for all the compounds in the test set and
the cumulative statistics for TPs, TNs, FPs and FNs are used to evaluate
precision and recall as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

,

We note a counterintuitive feature of accuracy, precision, and recall as
performance measures: accuracy may be high while, simultaneously, pre-
cision and recall may be low. This can happen if there are many negatives
(i.e., compound-pathway class pairs for which the compound is not in the
pathway class) and many true negatives, but few positives. Thus, accu-
racy alone can be a misleading measure of performance of the different
classifications methods.

We evaluate the performance of the proposed GCN-based multi-class
classifier against the described approach by Hu et al. (2011) with k set to
maximize precision (i.e., k = 1). Additionally, we compare with approa-
ches based on the k nearest neighbor (k NN) classifier Keller et al. (1985),
the ensemble logistic regression classifier with multiple base learners
Verma et al. (1887), and eleven random forest classifiers trained sepa-
rately to recognize each class. The inputs to these classifiers are the global
molecular features associated with query compounds. As can be seen in
Table 2, the proposed multi-class GCN classifier outperforms the classi-
cal machine learning approaches. Note that the GCN model does not use
the MACCS bits as input features, but rather relies on input embeddings
generated by the r-radii molecular subgraphs. Additionally, the top two
performing methods, namely the multi-class GCN classifier and the inde-
pendent RF classifier, are further evaluated based on the averaged bit-wise
hamming loss and exact match scores. These are obtained as (0.024, 0.825)
and (0.024, 0.81), respectively for the two classifiers 1.

Our performance measures listed in the columns of Table 2 are useful
as summaries of overall accuracy on the multi-class prediction problem.
However, there remains a possibility that our classifier does poorly with

1 Bold numbers indicate best performance
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Fig. 2. Class-wise performance statistics for the multi-class GCN classifier.

respect to certain underrepresented pathway classes. In order to probe this
possibility, we show in Figure 2 accuracy, precision, recall and MCC for
our method on each individual pathway class. We see that there is no
pathway class for which our method performs particularly poorly.

5 Discussion
Given the success of the GCN embedding approach in predicting pathway
classes, it is of interest to understand better what these embeddings are
capturing about the data. To this end, we performed an experiment in
which we trained our architecture without the global molecular features,
which yielded a trained GCN that could produce an embedding vector for
each molecule in the dataset.

We then performed a linear/logistic regression analysis on the
continuous-valued/binary-valued global molecular features, respectively,
using the GCN embedding vectors as independent variables. In Figure 3,
we give measures of the fit of these models for each of the most impor-
tant global molecular features. For continuous-valued features, we give
the adjusted R2 score, and for binary-valued ones, we give the empirical
prediction accuracy (fraction of correct classifications) on a holdout set.
These results indicate that the GCN embedding effectively captures the
important global molecular features.

In addition to our exploration of the GCN embedding vectors in rela-
tion to global molecular features, we performed experiments to elucidate
the interpretation of the embedding elements in terms of class-wise and
purely graph-theoretic properties of the molecules. We also use Shapley
additive explanations (Molnar, 2019, Chapter 5.10) to estimate the ave-
rage contribution of each feature to the classifier’s output in the presence
of a uniformly random subset of other features. Detailed analysis of these
experiments are included in the supplementary material.

6 Conclusion
This paper proposes a GCN-based classifier to predict all metabolic path-
way classes of which a query compound is a member. The experimental
results demonstrate that a relatively low-dimensional feature embedding
learned from graph structures, when used as input features to a RF clas-
sifier, outperforms classifiers based on global molecular features. Our
GCN-based classifier achieves state-of-the-art performance on both sin-
gle and multi-class classification problems. Moreover, Shapley analysis
of molecular descriptors provides insights into structural and physical
properties that are relevant to determining associated pathway classes.

It is also worth noting that while GCN does not directly use mole-
cular descriptors as input features, its output embeddings can be used to
determine relevant molecular descriptors. This connection between the

Fig. 3. Prediction accuracy measures for regression models predicting global molecular
feature values from GCN embeddings.

short range connectivity and molecular properties is possible thanks to
the somewhat limited type of atoms and bond patterns that commonly
occur in biological molecules, which allow to characterize properties on
local atomistic arrangements. For all the stems that share this locality, we
conjecture that GCN embeddings retain relevant molecular information
and can potentially be employed to develop novel molecular fingerprints
in applications such as drug design. Overall, the proposed framework is
quite general and, while subject to availability of corresponding training
data, the GCN-based framework can be made to learn and predict other
useful molecular properties, such as toxicity and interaction with proteins.
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