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Abstract

We analyze a sublinear RA‘SFA (randomized algorithm for Sparse Fourier analysis) that finds a near-optimal B-term
Sparse representation R for a given discrete signal S of length N, in time and space polyðB; logðNÞÞ, following the
approach given in [A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-Optimal Sparse Fourier Rep-
resentations via Sampling, STOC, 2002]. Its time cost polyðlogðNÞÞ should be compared with the superlinear XðN logNÞ
time requirement of the Fast Fourier Transform (FFT). A straightforward implementation of the RA‘SFA, as presented
in the theoretical paper [A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-Optimal Sparse Fourier
Representations via Sampling, STOC, 2002], turns out to be very slow in practice. Our main result is a greatly improved
and practical RA‘SFA. We introduce several new ideas and techniques that speed up the algorithm. Both rigorous and
heuristic arguments for parameter choices are presented. Our RA‘SFA constructs, with probability at least 1� d, a near-
optimal B-term representation R in time polyðBÞ logðNÞ logð1=dÞ=�2 logðMÞ such that kS � Rk22 6 ð1þ �ÞkS � Roptk22.
Furthermore, this RA‘SFA implementation already beats the FFTW for not unreasonably large N. We extend the algo-
rithm to higher dimensional cases both theoretically and numerically. The crossover point lies at N ’ 70; 000 in one
dimension, and at N ’ 900 for data on a N � N grid in two dimensions for small B signals where there is noise.
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1. Introduction

We shall be concerned with discrete signals S ¼ ðSð0Þ; . . . ; SðN � 1ÞÞ 2 CN and their Fourier transforms

Ŝ ¼ ðŜð0Þ; . . . ; ŜðN � 1ÞÞ, defined by ŜðxÞ ¼ 1ffiffiffi
N

p
PN�1

t¼0 SðtÞe�2pixt=N . In terms of the Fourier basis functions

/xðtÞ ¼ 1ffiffiffi
N

p e2pixt=N , S can be written as S ¼
PN�1

x¼0 ŜðxÞ/xðtÞ; this is the (discrete) Fourier representation
of S.

In many situations, a few large Fourier coefficients already capture the major time-invariant wave-like
information of the signal and very small Fourier coefficients can thus be discarded. The problem of finding
the (hopefully few) largest Fourier coefficients of a signal that describe most of the signal trends, is a fun-
damental task in Fourier analysis. Techniques to solve this problem are very useful in data compression,
feature extraction, finding approximating periods and other data mining tasks [3], as well as in situations
where multiple scales exist in the domain (as in, e.g., materials science), and the solutions have sparse modes
in the frequency domain.

Let S be a signal that is known to have a sparse B-term Fourier representation with B � N , i.e.,
SðtÞ ¼ 1ffiffiffiffi
N

p ða1ei2px1t=N þ � � � þ aBei2pxBt=N Þ; ð1:1Þ
and let us assume that it is possible to evaluate S, at arbitrary t, at cost Oð1Þ for every evaluation.
To identify the parameters a1; . . . ; aB;x1; . . . ;xB, one can use the Fast Fourier Transform (FFT). Start-

ing from the N point-evaluations Sð0Þ; . . . ; SðN � 1Þ, the FFT computes all the Fourier coefficients; one can
then take the largest B coefficients and the corresponding modes. The time cost for this procedure is
XðN logNÞ; this can become very expensive if N is huge. (Note that all logarithms in this paper are with
base 2, unless stated otherwise.) The problem becomes worse in higher dimensions. If one uses grids of size
N in each of d dimensions, the total number of points is Nd and the FFT procedure takes XðdNd logNÞ
time. It follows that identifying a sparse number of modes and amplitudes is expensive for even fairly mod-
est N. Our goal in this paper is to discuss much faster algorithms that can identify the coefficients a1; . . . ; aB
and the modes x1; . . . ;xB in Eq. (1.1). These algorithms will not use all the samples Sð0Þ; . . . ; SðN � 1Þ, but
only a very sparse subset of them.

In fact, we need not restrict ourselves to signals that are exactly equal to a B-term representation. Let us
denote the optimal B-term Fourier representation of a signal S by RB

optðSÞ; it is simply a truncated version of
the Fourier representation of S, retaining only the B largest coefficients. We are then interested in identi-
fying (or finding a close approximation to) RB

optðSÞ via a fast algorithm. The papers [3,6,4] provide such
algorithms; all compute a (near-)optimal B-term Fourier representation R in time and space
polyðB; logð1=dÞ; logN ; logM ; 1=�Þ, such that kS � Rk22 6 ð1þ �ÞkS � RB

optðSÞk
2
2, with success probability

at least 1� d, where M is an a priori given upper bound on kSk2. The algorithms in these papers share
the property that they need only some random subsets of the input rather than all the data; they differ
in many details: the different papers assume different conditions on N, (for example, N is assumed to be
a power of 2 or a small prime number in [6]; N may be arbitrary but is preferably a prime in [3]); the algo-
rithms also use different schemes to locate the significant modes. (Here, we say a mode x is significant if for
some pre-set g, jŜðxÞj2 P gkSk2.) Mansour and Sahar [7] implemented a similar algorithm for Fourier anal-
ysis on the set Zn

2, where our algorithm is for Fourier analysis on ZN .
The results of [3] can be extended to more general representations, with respect to a particular basis or a

family of bases; examples are wavelet bases, wavelet packets or Fourier bases. We shall use the acronym
RA‘STA (randomized algorithm for Sparse transform analysis) for this family of algorithms. We here
restrict ourselves to the Fourier case and thus RA‘SFA.

For a wide range of applications, the speed potential suggested by the sublinear cost of these algo-
rithms is of great importance. In this paper, we concentrate on the approach proposed in [3]. Note that
[3] gives a theoretical rather than a practical analysis in the sense that it does not discuss parameter
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settings; it gives few hints about the order of the polynomial in B and logN ; in fact, a straightforward
implementation of RA‘SFA following the set-up of [3] turns out to be too slow to be practical. In
addition, [3] did not discuss extensions to higher dimensions, where the pay-off of RA‘SFA versus
the FFT is expected to be larger.

Ourmain result in this paper is a version ofRA‘SFA that addresses these problems.We give theoretical and
heuristic arguments for the setting of parameters; we introduce some new ideas that produce a practicalRA‘S-
FA implementation. Our new version can outperform the FFTW when N is around 70,000 and B is small.
1.1. A motivating example

RA‘SFA is an exciting replacement for the FFT to solve multiscale models. Typically, one wants to sim-
ulate a multiscale model in several dimensions with both a microscopic and a macroscopic description. The
solution to the model has rapidly oscillating coefficients with period proportional to a small parameter �.
For examples of multiscale problems of size N that are dominated by the behavior of B � N Fourier com-
ponents, see e.g [1]. In a traditional (pseudo-)spectral method, one computes the spatial derivatives by the
FFT and Inverse FFT at each time iteration; consequently the time to find the Fourier representation of a
signal is the determining factor in the overall time of simulation. In multiscale problems, where only a small
number of Fourier modes contribute to the energy of an initial condition and coefficient functions, we ex-
pect that RA‘SFA will significantly speed up the calculation for large N. In fact, a preliminary study has
shown [9] that for some transport and diffusion equations with multiple scales, using only significant fre-
quencies to approximate intermediate solutions does not substantially degrade the quality of the approxi-
mate final solution to the multiscale problem. By using the most significant frequencies and RA‘SFA
instead of all frequencies and the FFT, we could replace a superlinear algorithm by a poly-log (polynomial
in the logarithm) algorithm. The corresponding decrease of the running time would make it possible to han-
dle a larger number of grid points in high dimensions. We shall present detailed applications of this algo-
rithm in multiscale problems in [12,13].
1.2. Notation and terminology

For any two frequencies x1, x2, where x1 6¼ x2, we say that Ŝðx1Þ is bigger than Ŝðx2Þ if

jŜðx1Þj > jŜðx2Þj. The squared norm kSk22 ¼
PN�1

t¼0 jSðtÞj
2 of S is also called the energy of S; we shall refer

to jŜðxÞj2 as the energy of the Fourier coefficient ŜðxÞ. Similarly, the energy of a set of Fourier coefficients
is the sum of the squares of their magnitudes. We shall use only the ‘2-norm in this paper; for convenience,
we therefore drop the subscript from now on, and denote kF k22 by kF k2 for any signal F.

We denote the convolution by F � G, ðF � GÞðtÞ ¼
P

sF ðsÞGðt � sÞ. It follows that dF � G ¼
ffiffiffiffi
N

p
F̂ Ĝ. We

denote by vT the signal that equals 1 on a set T and zero elsewhere. The index to vT may be either time
or frequency; this is made clear from context. For more background on Fourier analysis, see [11]. The sup-
port suppðF Þ of a vector F is the set of t for which F ðtÞ 6¼ 0. A signal is 98% pure if there exists a frequency
x and some signal q, such that S ¼ a/x þ q and jaj2 P 0.98kSk2.

RA‘SFA is a randomized algorithm. By this, we do not mean the signal is randomly chosen from some
kind of distribution, with our timing and memory requirement estimates holding with respect to this dis-
tribution; on the contrary, the signal, once given to us, is fixed. The randomness lies in the algorithm. After
random sampling, certain operations are repeated many times, on different subsets of samples, and averages
and medians of the results are computed. We set in advance a desired probability of success 1� d, where
d > 0 can be arbitrarily small. Then the claim is that for each arbitrary input S, the algorithm succeeds with
probability 1� d, i.e., gives a B-term estimate R such that kS � Rk2 6 ð1þ �ÞkS � RB

optk
2. For given �, d,

numerical experiments show that the algorithm may take OðB2 log NÞ time and space.
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1.3. Organization

The chapters are organized as follows. Section 2 shows the testbed and numerical experiments about the
comparison of our RA‘SFA and the FFTW. In Section 3, we introduce all the new techniques and ideas of
RA‘SFA (different from [3]) and its extension to multi-dimensions.
2. Testbed and numerical results of RA‘SFA

In this section, we present numerical results of RA‘SFA. We begin in Section 2.1 with comparing the
running time of RA‘SFA and the FFTW for some one-dimensional test examples. In Section 2.2, the per-
formances of two dimensional RA‘SFA and the FFTW for some test signals are shown.

The randomness of the algorithm implies that the performance differs each time for the same group of
parameters. Hence, we give the average data, bar and quartile graph based on 100 runs as well as the fastest
data among these experiments. The popular software FFTW [2] version 2.1.5 is used to determine the tim-
ing of the Fast Fourier Transform for the same data.

The test signals are either superpositions of B � N modes in the frequency domain, that is,
S ¼

PB
j¼1cj/xj

, contaminated with Gaussian white noise, or signals for which the Fourier coefficients exhi-
bit rapid decay, so that a B-mode approximation with B � N will already be very accurate. Different
choices of the xj were checked; these did not influence the whole execution time. These choices included
cases where some frequencies were close; note that this is the ‘‘hard’’ case for most estimation algorithms.
For RA‘SFA, which contains random scrambling operations (that are later described), the distance be-
tween the modes does not matter if N is prime. If N is not prime, then gcdx1 � x2;N cannot decrease
by the scrambling operation, so that different ðx1;x2Þ pairs may (in theory) lead to different performances;
in practice, this doesn�t seem to matter. In all these situations, RA‘SFA reliably estimates the size and loca-
tions of the few largest coefficients. We also set other parameters as follows: accuracy factor � ¼ 10�2kSk,
failure probability d ¼ 0.05.

The parameter choices in the algorithm are quite tricky. The theoretical bounds given in [3] do not work
well in practice; instead much smaller parameters and heuristic settings work more efficiently.

Two kinds of running time for each algorithm are provided. One is the total running time and another is
the running time excluding the sampling time. As we know, the FFT takes XðNÞ to compute all signal values.
On the other hand, our algorithm does not need all the sample values. All our conclusions are based on the
time excluding the sampling. However, we still list the running time including sampling time as well because
of the existence of various forms of data in practice. For example, in pseudospectral applications, the data
need to be computed from a B-superposition, which may take OðBÞ per sample. It is possible to sample more
quickly, which is addressed in [4]. On the other hand, if the data is already stored in a file or a disk, we simply
get themwithout any computation. In all these cases, we assume the data is either already in memory or avail-
able through computation. Thus, we do not need to go through every data, which would take time OðNÞ.

All the experiments were run on an AMD Athlon(TM) XP1900+ machine with Cache size 256KB, total
memory 512 MB, Linux kernel version 2.4.20–20.9 and compiler gcc version 3.2.2.

2.1. Numerical results in one dimension

The first implementation results of RA‘SFA were not published; the program was basically a proof of
concept, not optimized. With the choices and parameters described in [3], it was extremely slow and thus
not practical for real-world applications. The implementation we present here runs several order of mag-
nitude faster; this involves introducing many adjustments and ideas to the algorithm of [3] (see Section 3
for details).
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The goal of this paper is to check the possibility to replace the FFT with RA‘SFA for sparse and long
signals. Therefore, we focus on comparing the performance of RA‘SFA and FFTW in the following
subsections.

2.1.1. Experiments for an eight-mode representation
We begin with the experiments for recovering a signal consisting of eight modes (with and without

noise). In the noisy signal case, the noise is a Gaussian white noise with signal-to-noise ratio (SNR, defined
as 10 log10

kSk2
Nr2 ) approximately 5 dB. The coefficients are randomly taken from the interval [1, 10] and the

significant modes from ½0;N � 1�.
Table 2.1 provides a comparison of the running times of the FFTW and RA‘SFA for eight-mode clean

and noisy signals. In the beginning when N is small, the FFTW is almost instantaneous. As the signal length
N increases, its time grows superlinearly. On the contrary, RA‘SFA takes longer time in smaller N cases;
however, the time cost remains almost constant regardless of the signal length. In addition, the benchmark
FFTW software fails to process more than 108 data because it runs out of the memory space. In contrast,
RA‘SFA has no difficulty at all since it does not need all the data. A simple interpolation from the entries in
Table 2.1 predicts that RA‘SFA beats the FFTW when N > 15,200 for eight-mode signals, all the more
convincingly when N is larger. If we compare the time including sample computation, the cross-over point
would be N = 70,000. The table also shows the linear relationship between the time cost and the logarithm
of the length N.

As can be expected from a randomized algorithm, RA‘SFA has a different performance in each run.
Fig. 2.2 illustrates the spread of the execution time (including sampling) for pure signals over 100 runs.

2.1.2. Experiments with different levels of noise

In the experiments above, we compared the performance of clean and slightly noisy signals. Here, we
shall push the noise level much higher, keeping N and B fixed to illustrate the effect of noise. Also, instead
of allowing the algorithm to run for polyðB; logN ; 1=�; logð1=dÞ; logMÞ iterations, we set a smaller fixed
upper bound (so that the success probability is no longer 1� d). When noise is present, it influences the
success probability with which modes with small amplitude are detected. To explore this, we ran an exper-
iment with only a single mode; we kept the amplitude of the mode constant and increased the noise. Fig. 2.3
(left) shows the success probability of the detection of the single mode by the algorithm (estimated by run-
ning 100 trials each time and recording the number that were successful) for three different settings of the
maximum number of iterations.

The dependence of the running time on the SNR in the case of detection of a single mode is illustrated in
Fig. 2.3 (right), where we show the results of the average over 100 runs for every data point, with only a
very loose a priori restriction on the running time (61000 iterations); only parameter settings with over
50% success probability were taken into account.
Table 2.1
Time comparison between RA‘SFA and FFTW (B = 8) based on 100 runs

Length N Time of RA‘SFA Time of FFTW Time of RA‘SFA
(excluding sampling)

Time of FFTW
(excluding sampling)

Clean Noisy Clean Noisy

103 0.22 0.25 0 0.01 0.02 0
104 0.25 0.29 0.04 0.03 0.04 0.01
105 0.32 0.34 0.46 0.05 0.05 0.17
106 0.37 0.41 5.01 0.07 0.08 2.23
107 0.44 0.48 54.57 0.10 0.11 26.24

‘‘Clean’’ means that the test signal is pure. ‘‘Noisy’’ means the signal is contaminated with noise of SNR ¼ 5 dB. ‘‘Excluding
Sampling’’ column lists the running time without precomputation of sample values.
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This experiment indicates that it is possible to detect modes that are significantly weaker than the
noise, within limits, of course. If the amplitude of the signal is too weak, then trying to detect it
may waste many resources. In practice we shall put our cut-off on the amplitude at about one sixth
of the noise level, i.e., at r=6; this can of course be adjusted depending on whether one wishes fast
speed or not.

Although SNR is the standard characterization of noise intensity, it is not clear that it is the parameter
that matters most for our algorithm. We therefore also ran an experiment in which we compare the results
for two different values of N: 10,009 (as in the figures above) and 100,003, respectively. The second value of
N is about 10 times larger than the first; for the same choices of r and c (the amplitude of the single mode),
the SNR for the second N is smaller by 10 dB. Table 2.4, comparing the performance for these two values of
N and several choices of r, shows that the value of r itself rather than SNR governs the running time and
success probability.



Table 2.4
Exploring the dependence on r versus SNR of the influence of the noise on processing the signal S ¼ /0 þ noise, where the noise is
gaussian Nð0;rÞ
r N1 = 10,009 N2 = 100,003

Success probability (%) Time SNR Success probability (%) Time SNR

2 100 0.11 �46.02 100 0.19 �56.02
2.5 93 0.32 �47.96 77 0.55 �57.96
3 49 0.38 �49.54 27 0.61 �59.54
3.5 21 0.45 �50.88 10 0.38 �60.88
4 13 0.38 �52.04 1 0.37 �62.04

For two different values of N, N1 = 10,009 and N2 = 100,003 � 10N1, respectively, and a range of values for r, we determined the
success probability within 100 runs, and the average running time for successful runs. In both cases, we see a clear transition as r
increases; the location of the transition (between 2.5 and 4 for N1, between 2 and 3.5 for N2) shifts slightly with N, but it is nevertheless
clear that r is a better parameter to track than SNR: in fact, the largest choice for r, r ¼ 4, still has lower SNR in the case N ¼ N1 than
the smallest choice, r ¼ 2, for N ¼ N2, yet the success probability and running time are much worse.
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2.1.3. Experiments with different numbers of modes

The crossover points for N are different for signals with different B; the number of modes has an impor-
tant influence on the running time. To investigate this, we experimented with fixed N (we took a prime num-
ber N = 2,097,169 (a prime number) for RA‘SFA and N = 221 = 2,097,152 for FFTW) but varying B. In all
cases, we take S to be a superposition of exactly B modes, i.e., SðtÞ ¼

PB
i¼1ci/xi

for some B. Table 2.5 com-
pares the running time for different B using the FFTW and RA‘SFA. For small B, RA‘SFA takes less time
because N is so large. The execution time for the FFT can be taken to include the time for evaluation of all
the samples (which increases linearly in B) or not (in which case the execution time is constant to B). In both
cases, the FFTW overtakes RA‘SFA as B increases; the execution time of the FFTW is constant or linear in
the number of modes B (depending on whether the evaluation of samples is included), while that of RA‘S-
FA is polynomial of higher order. For N = 2,097,169, the FFTW is faster than RA‘SFA when B P 33. By
regression techniques on the experimental data, one empirically finds that the order of B in RA‘SFA is qua-
dratic. This is the main disadvantage of RA‘SFA. (Although this nonlinearity in B was expected by the
authors of [3], the observation that it played such an important role even for modest B was the motivation
for Gilbert, Muthukrishnan and Strauss [4] to construct in a different version of RA‘SFA that is linear in B

for all N.) Hence, RA‘SFA is most useful for a long signal with a small number of modes.

2.1.4. Experiments with signals that have infinitely many modes with rapid decay in frequency

For our final batch of one-dimensional experiments, we ran the algorithm on the signal
S ¼ 1=ð1.5þ cos 2ptÞ þ noise. In continuous time, the clean signal has infinitely many modes with ampli-
tudes that decay exponentially as the frequency of the mode increases. We ran the experiment with a white
Gaussian noise once with SNR �20 dB and a second time with SNR ¼ �8 dB, with N ¼ 1000. The thresh-
old for the amplitudes of modes we wished to find was adjusted to the noise level in both cases.
Table 2.5
Time comparison between RA‘SFA and FFTW for different B when N � 2,097,169

Number of modes B Time of RA‘SFA Time of FFTW Time of RA‘SFA
(exclude sampling)

Time of FFTW
(exclude sampling)

2 0.05 7.49 0.03 5.46
4 0.14 9.38 0.05 5.46
8 0.35 13.22 0.07 5.46
16 2.48 20.92 0.83 5.46
32 15.53 36.28 4.13 5.46
64 107.55 67.16 39.55 5.46
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The results are shown in Fig. 2.6 ðSNR ¼ �20 dBÞ and Fig. 2.7 ðSNR ¼ �8 dBÞ, respectively. For
SNR ¼ �20 dB, the Fourier coefficients obtained by FFTW are all very close to the ‘‘noise floor’’, i.e., they
lie in a band of amplitude close to the value of r. For SNR ¼ �8 dB, r is smaller ðr ¼ 2.6Þ, and we find the
‘‘noise floor’’ in the FFTW computation at this lower level. The three largest modes of the signal have
amplitudes significantly higher than this r, and FFTW finds them with reasonable accuracy. In contrast,
RA‘SFA (shown on the left in both figures; only 1 run is shown) hits all the coefficients exceeding r
‘‘on the nose’’, in both cases; it also finds all the central 15 modes exactly in the SNR ¼ �8 dB case, even
if they have values significantly smaller than r. This experiment illustrates the great robustness of RA‘SFA
to noise and its ability to detect harmonic components with smaller energy than the white noise, already
seen in Section 2.1.2.

2.2. Numerical results in two dimensions

The number of grid points depends exponentially on the dimension. To achieve reasonable accuracy, a
minimum N is required in each dimension; however, when d > 1, the FFTW has great difficulty in handling
the corresponding Nd points for even modest N. RA‘SFA does not have this problem.



Table 2.8
Time comparison between RA‘SFA and FFTW (B = 8) based on 100 runs

Length N Time of RA‘SFA Time of FFTW Time of RA‘SFA
(excluding sampling)

Time of FFTW
(excluding sampling)

Clean Noisy Clean Noisy

100 3.41 3.64 0.05 0.88 1.05 0.04
1000 4.11 4.54 4.87 1.04 1.25 0.20
2000 4.76 4.91 20.86 1.31 1.44 2.12
3000 4.55 5.37 47.73 1.33 1.70 5.62
4000 5.41 5.59 85.89 1.41 1.51 10.74
5000 6.03 6.20 138.27 1.56 1.66 20.98

‘‘Clean’’ means that the test signal is pure. ‘‘Noisy’’ means the signal is contaminated with noise of SNR ¼ �4 dB. ‘‘Excluding
Sampling’’ column lists the running time without including precomputation of sample values.

Table 2.9
Time comparison between RA‘SFA and the FFTW for signals with different B in 2 dimensions when N ¼ 3000

Number of modes B Time of RA‘SFA Time of FFTW Time of RA‘SFA
(exclude sampling)

Time of FFTW
(exclude sampling)

2 0.15 16.45 0.08 5.64
4 0.52 26.81 0.14 5.64
8 4.55 47.73 1.343 5.64
12 19.37 68.47 8.82 5.64
16 48.69 89.13 9.13 5.64
20 114.80 109.88 22.75 5.64
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2.2.1. Experiments for eight-mode signals in two dimensions

We take the signal S ¼
PB

k¼1ck/xx;k
/xy;k

, where B ¼ 8; � ¼ 10�2kSk; d ¼ 0.05. The parameter N is the
number of grid points in each dimension, random complex constants ck with real and imaginary parts in
[1, 10], and xx;k and xy;k are random integers from 0; . . . ;N � 1. As Table 2.8 shows, two-dimensional
RA‘SFA surpasses two dimensional FFTW when N P 1500. In particular, when N ¼ 5000 and the com-
putation for samples is not included, the FFTW takes 21 s and RA‘SFA only less than 5 s. When we in-
clude the sampling time, the crossover point becomes N ¼ 900. The crossover point for N is 70,000 for
d ¼ 1, and 900 for d ¼ 2; if we conjecture that the crossover N for 2-mode in d dimensions is given by
c2n

1
d
2, then this leads us to guess that the crossover N for d ¼ 3 may be close to 210.

2.2.2. Experiments for signals with different number of modes B

As in one dimension, the number of modes B is the bottleneck for applying RA‘SFA freely to signals
that are not so sparse. Suppose the signal is of the form SðtÞ ¼

PB
k¼1ck/xx;k

/xy;k
, with N ¼ 3001 for RA‘S-

FA and 3000 for FFTW. Table 2.9 illustrates the relationship between running time and the number of
modes B. Time increases depends polynomially on the number of terms B. When N ¼ 3001, the crossover
points for the FFTW to surpass RA‘SFA are at B ¼ 10 and B ¼ 17, respectively, for including and exclud-
ing sample computation cases. This implies the influence of B on the execution time is far from negligible.
3. Theoretical analysis and techniques of RA‘SFA

We hope the numerical results have whetted the reader�s appetite for a more detailed explanation of the
algorithm. Before explaining the structure of RA‘SFA as implemented by us, we review the basic idea of
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the algorithm. Given a signal consisting of several frequency modes with different amplitudes, we could split
it into several pieces that have fewer modes. If one such piece had only a single mode, then it would be fairly
easy to identify this mode, and then to approximately find its amplitude. If the piece were not uni-modal, we
could, by repeating the splitting, eventually get uni-modular pieces. In order to compute the amplitudes, we
need to ‘‘estimate coefficients’’. To verify the location of the modes in the frequency domain and concen-
trate on the most significant part of the energy, we use ‘‘group testing’’. An estimation that recurs over and
over again in this testing is the ‘‘evaluation of norms’’. The first splitting of the signal is done in the ‘‘iso-
lation’’ step.

The different steps are carried out on many different variants of the signals, each obtained by a random
translation in the frequency domain (corresponding to a modulation and the inverse dilation in the time
domain). Because the signal is sparse in the frequency domain, the different modes are highly likely to
be well separated after these random operations, facilitating isolation of individual modes.

The main skeleton of the algorithm was already given in [3]; in our discussion here, we introduce new
ideas and give the corresponding theoretical analysis. We also explain how to set parameters that are either
not mentioned or loose in [3]. In Section 3.1, the total scheme of RA‘SFA is given. In Section 3.2, we show
the theoretical basis to choose parameters for estimating coefficients, and introduce some techniques to
speed up the algorithm. In Section 3.3, we set the parameters for norm estimation. Section 3.4 presents
the heuristic rules to pick the filter width for the isolation procedure. This is one of the key factors deter-
mining the speed. A new filter is proposed for group testing in Section 3.5, which works more efficiently.
Section 3.6 discusses how to evaluate a random sample from a signal. Finally, we discuss the extension
to higher dimensions in Section 3.7.
3.1. Set-up of RA‘SFA

The following theorem is the main result of [3].

Theorem 3.1. Let an accuracy factor �, a failure probability d, and a sparsity target B 2 N;B < N be given.

Then for an arbitrary signal S of length N, RA‘SFA will find, at a cost in time and space of order

polyðB; logðNÞ; 1� ; logð1dÞ; logMÞ and with probability exceeding 1� d, a B�term approximation R to S, so

that kS � Rk2 6 ð1þ �ÞkS � RB
optðSÞk

2
2.

It is especially striking that the near-optimal representation R can be built in sublinear time, i.e.,
polyðlogNÞ instead of the OðN logNÞ time requirement of the FFT. RA‘SFA�s speed will surpass the
FFT as long as the length of the signal is sufficiently large. In particular, if S ¼ RB

optðSÞ (that is, ŜðxÞ van-
ishes for all but B values of x), then kS � Rk2 ¼ 0, i.e., RA‘SFA constructs S without any error, at least in
theory; in practice this means the error is limited by accuracy issues.

The main procedure is a Greedy Pursuit with the following steps:

Algorithm 3.2 (Total scheme). Input: signal S, the number of nonzero modes B or its upper bound,
accuracy factor �, success probability 1� d, an upper bound of the signal energy M, the standard deviation
of the white Gaussian noise r, a ratio i for relative precision.

1. Initialize the representation signal R to 0, set the maximum number of iterations
T ¼ B logðNÞ logðdÞ logM=�2,

2. Test whether kS � Rk2 6 ikRk2. If yes, return the representation signal R and the whole algorithm ends;
else go to step 3.

3. Locate Fourier Modes x for the signal S � R by the isolation and group test procedures below.
4. Estimate Fourier coefficients at x : dðS� RÞðxÞ.
5. If the total number of iterations is less than T, go to 2; else return the representation R.
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The test at stage 2, which is not in [3], can allow us to end early. The criterion kS � Rk2 6 ikRk2, where i
is a small number chosen heuristically, is suitable when one expects that S is sparse, up to a small energy
contribution. (Note that step 2 does not use the exact value of kS � Rk2, which is not known; we use a pro-
cedure called norm estimation (see below) to give a rough estimate; this is good enough for the stop crite-
rion. Other criteria could be substituted when appropriate.)

In practice, we would not know how many modes a signal has. In fact, the algorithm does not really
need to know B: it can just proceed until the residual energy is estimated to be below threshold. (The
value of B is used only to set the maximum number of iterations, and the width of a filter in the isolation
procedures below. For the maximum number T, a loose upper bound on B suffices; the isolation filter
width depends only very weakly on B.) If either the residual energy or the threshold is large, the program
would continue. Note that for each iteration of the algorithm, we take new random samples from the
signal S.
3.2. Estimate individual Fourier coefficients

The original RA‘SFA only shows the validity of estimating coefficients without mentioning parameter
settings. Here we introduce a new technique to achieve better and faster estimation; in the process, we give
another proof of Lemma 2 in [3] that contains explicit parameter choices.

Algorithm 3.3 (Estimate Individual Fourier Coefficients). Input: signal S, success probability 1� d, and
accuracy factor �.

1. Randomly sample from signal S with indices ti;j : Sðti;jÞ; i ¼ 1; . . . ; 2 logð1=dÞ; j ¼ 0; . . . ; 8=�2.
2. Take the empirical mean of the hSðti;jÞ;/xðtjÞi; j ¼ 0; . . . ; 8=�2, store as meanðiÞ.
3. Take the median y ¼ medianðmeanðiÞÞ; i ¼ 1; . . . ; 2 logð1=dÞ.
4. Return y.

Lemma 3.4. Every application of Algorithm 3.3 constructs a realization of a random variable Z, that esti-

mates the Fourier coefficient ŜðxÞ, good up to tolerance �2kSk2 with high probability 1� d, i.e.,
Prob jZ � ŜðxÞj2 P �2kSk2
� �

6 d. ð3:1Þ
Proof. Define a random vector V as follows:
V ¼ ð0; 0; � � � ;NSðtÞ; 0; � � � ; 0Þ ¼ NdtSðtÞ; ð3:2Þ

where t is chosen uniformly and randomly from fl : l ¼ 1; � � � ;Ng. Then the expectation of V is
EðV Þ ¼ 1

N

X
t

NSðtÞdt. ð3:3Þ
Let X be the random variable X ¼ hV ;/xi, where /xðtÞ ¼ N�1
2e�2pixt=N . We have
E½X � ¼ 1

N

X
t

NSðtÞ/xðtÞ ¼ ŜðxÞ; ð3:4Þ
and
E jX � ŜðxÞj2
� �

6 EðjX j2Þ ¼ 1

N

X
t

Nffiffiffiffi
N

p SðtÞe�2pixt=N

���� ����2 ¼ kSk22. ð3:5Þ
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Define another random vector W as the average of L independent realization of V, with L ¼ 8��2. Let a
random variable
Y ¼ hW ;/xi. ð3:6Þ
Then E½Y � ¼ ŜðxÞ and var½Y � ¼ var½X �=L ¼ �2kSk2=8, so that ProbðjY � ŜðxÞj2 P �2kSk2Þ 6 1=8.
Set Z ¼ medianKY , where K ¼ 2 logð1=dÞ. If jZ � ŜðxÞj2 P �2kSk2, then for at least half of the Ys, we

have
jY � ŜðxÞj2 P �2kSk2. ð3:7Þ

Therefore
P jZ � ŜðxÞj2 P �2kSk22
� �

6

XK
j¼K=2

K
j

� �
1

8

� �j

6 8�K=22K ¼ 2�K=2
6 d. ð3:8Þ
So with probability 1� d, Z is a good estimate of the Fourier Coefficient ŜðxÞ, good up to tolerance
�2kSk2. h

Several observations and new techniques can speed up the coefficient estimation even further.
One observation is that fewer samples are already able to give an estimation with desirable accuracy and

probability. Our arguments indicate that 16��2j logðdÞj samples per coefficient suffice to obtain good
approximations of the coefficients. The estimates used to obtain this bound are rather coarse, however.
In a practical implementation, if a multi-step evaluation is used (see below), it turns out that three steps,
in which every step uses 10 samples per mean, and 5 means per median, for a total of 150 samples (per coef-
ficient) already determine the coefficient with accuracy � ¼ 10�4. The major factor in this drastic reduction
from (16� 108 j log d j) to 150 is the much smaller number of means used; in practice, the dependence on �
grows much slower than ��2 as � ! 0. If the signal is contaminated by noise or has more than one signif-
icant mode, we need more samples for a good estimation of the same accuracy.

An additional difference with the sampling described in [3] is that one can replace individual random
samples by samples on short arithmetic progressions with random initial points. This technique became
one of several components in the RA‘SFA version of [4] that adapted the original algorithm in order to
obtain linearity in B. For a description of the arithmetic progression sampling, we refer to [4]. Surprisingly,
this change not only improves the speed, but also gives a closer approximation than simply random sam-
pling, using the same number of samples.

Another idea is a coarse-to-fine multi-step estimation of the coefficients. There are several reasons for not
estimating coefficients with high accuracy in only one step. One of them is that increasing the accuracy �
means a corresponding quadratic increase of the number of samples Oðj log d j ��2Þ. A multi-step proce-
dure, which produces only an approximate estimate of the coefficients in each step, achieves better accuracy
and speed. To explain how this works, we need the following lemma.

Lemma 3.5. Given a signal S, let x1; . . . ;xq be q different significant frequencies, and define

b :¼ ½kSk22 �
Pq

i¼1jŜðxiÞj2�=kSk22. Estimate the coefficients ŜðxiÞ where i ¼ 1; . . . ; q by the following iterative

algorithm: apply Algorithm 3.3 with precision �̂ and probability of failure d; keep the parameters fixed
throughout the iterative procedure, and let Zn

i , i ¼ 1; . . . ; q, be the estimate (at the nth iteration) of the xith

Fourier coefficient of S �
Pn�1

k¼1

Pq
j¼1Z

k
j/xj

. The total estimate Rn after the nth iteration is thus

Rn ¼
Pn

k¼1

Pq
j¼1Z

k
j/xj

. Then
Xq
j¼1

jŜðxjÞ � R̂nðxjÞj2 6
q�̂2

1� q�̂2
bkSk2 þ ðq�̂2ÞnkSk2; ð3:9Þ
with probability exceeding ð1� d̂Þnq.
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Proof (This is essentially a simplified version of proof for Lemma 10 in [3]). By Lemma 3.4,
jZn
i þ

Xn�1

k¼1

Zk
i � ŜðxiÞj2 6 �̂2kS � Rn�1k2; ð3:10Þ
with probability exceeding 1� d̂. It follows that
Xq
i¼1

jŜðxiÞ �
Xn
k¼1

Zk
i j
2
6 q�̂2kS � Rn�1k2; ð3:11Þ
so that
kS � Rnk2 6
X

x62fx1;...;xqg
jŜðxÞj2 þ q�̂2kS � Rn�1k2 ¼ kSk2 �

Xq
i¼1

jŜðxiÞj2 þ q�̂2kS � Rn�1k2

¼ bkSk2 þ q�̂2kS � Rn�1k2 ð3:12Þ
with probability exceeding ð1� d̂Þq.
Consider now the sequence ðanÞ, defined by an ¼ bkSk2 þ q�̂2an�1, where a0 ¼ kSk2. It is easy to see that
an ¼ bkSk2
Xn�1

k¼0

ðq�̂2Þk þ ðq�̂2ÞnkSk2 ¼ bkSk2 1� ðq�̂2Þn

1� ðq�̂2Þ
þ ðq�̂2ÞnkSk2. ð3:13Þ
It then follows by induction that kS � Rnk2 6 an, with probability exceeding ð1� d̂Þnq, for all n; we have
thus
kS � Rnk2 6 bkSk2 1� ðq�̂2Þn

1� ðq�̂2Þ
þ ðq�̂2ÞnkSk2 6 bkSk2 1

1� ðq�̂2Þ
þ ðq�̂2ÞnkSk2; ð3:14Þ
or equivalently,
Xq
j¼1

jŜðxjÞ � R̂nðxjÞj2 ¼ kS � Rnk2 � bkSk2 6 bkSk2 q�̂2

1� q�̂2
þ ðq�̂2ÞnkSk2; ð3:15Þ
with probability exceeding ð1� d̂Þqn. h

The above lemma shows that repeated rough estimation can be more efficient than a single accurate esti-
mation. To make this clear, if we set
q�2 ¼ b
q�̂2

1� q�̂2
þ ðq�̂2Þn; ð1� dÞq ¼ ð1� d̂Þnq; ð3:16Þ
then a one-step procedure with parameters �, d will achieve the same precision as an n-step iterative pro-
cedure with parameters �̂, d̂. The one-step procedure will use Cq��2j logðdÞj sampling steps; the iterative pro-
cedure will use Cnq�̂�2j logðd̂Þj. It follows that the n-step iterative procedure will be more efficient, i.e.,
obtain the same accuracy with the same probability while sampling fewer times, if
n�̂�2j logðd̂Þj 6 ��2j logðdÞj; ð3:17Þ

under the constraints (3.16). If b ¼ 0 (that is, if S is a pure q-component signal), then this condition reduces
(under the assumption that d̂, d and �̂, � are small, so that q�̂2

1�q�̂2
’ q�̂2, ð1� d̂Þn ’ 1� nd̂) to
n j log d j þnð Þðq�̂2Þn�1
6 j log d j; ð3:18Þ
which is certainly satisfied if �̂ is sufficiently small and n sufficiently large. If b 6¼ 0, matters are more com-
plicated, but by a simple continuity argument we expect the condition still to be satisfied if b is sufficiently
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small. If b is too large, (e.g., if b > n�1
0 , where n0 is the minimum value of n for which (3.18) holds), then

there are no choices of n, �̂, d̂ that will satisfy (3.16) and (3.17). On the other hand, b can be large only if S
has important modes not included in x1; . . . ;xq. In practice, we use the multi-step procedure after the most
important modes have been identified so that b is small. For sufficiently small b, we do gain by taking the
iterative procedure. For example, assume that b ¼ 10�2, for a signal of type S ¼ /1 þ /2 with N ¼ 1000,
q ¼ B ¼ 2, d ¼ 2�7, � ¼ 4� 10�4, and with n ¼ 3, theoretically we would then use 450,000 samplings for
the one-step procedure, versus 150 samples for the iterative procedure. Note that we introduced the param-
eter b only for expository purposes. In practice, we simply continue with the process of identifying modes
and roughly estimating their coefficients until our estimate of the residual signal is small; at that point, we
switch to the above multi-step estimation procedure.

3.3. Estimate norms

The basic principle to locate the label of the significant frequency is to estimate the energy of the new
signals obtained from isolation and group testing steps. The new signals are supported on only a small
number of taps in the time domain and hopefully have 98% of their energies concentrated on one mode.
The original analysis in [3] only gave its loose theoretical bound. Here we find the empirical parameters,
i.e., the number of samples for norm estimation.

Here is a new scheme for estimating norms, which uses much fewer samples than the original one and
still achieves good estimation. It can ultimately be used to find the significant mode in conjunction with
group testing and MSB, below.

Algorithm 3.6 (Estimate norms). Input: signal S, failure probability d.

1. Initialize: the number of samples: r ¼ b12.5 lnð1=dÞc.
2. Take r independent random samples from the signal S: Sði1Þ; . . . ; SðirÞ, where r is a multiple of 5.
3. Return N� ‘‘60th percentile of’’ jSði1Þj2; . . . ; jSðirÞj2.

The following lemma presents the theoretical analysis of this algorithm.

Lemma 3.7. If a signal S is 93% pure, the number of samples r > 12.5 lnð1=dÞ, the output of Algorithm 3.6
gives an estimation X of its energy which exceeds 0.3kSk2 with probability exceeding 1� d.

Proof. Without loss of generality, suppose that kSk ¼ 1. Suppose the signal S ¼ a/x þ e, where
jaj2 > 0.93kSk2, and /x and e are orthogonal. We shall sample the signal S independently for r times, as
stated in Algorithm 3.6. Note that we do not impose that samples be taken at different time positions; with
very small probability, the samples could coincide. Let T ¼ ft : N j SðtÞj2 < 0.3kSk2g. Hence, for any t 2 T ,
we have

ffiffiffiffi
N

p
jSðtÞj <

ffiffiffiffiffiffiffi
0.3

p
¼ 0.5477. Also by the purity of S, we have kek2 6 0.07. Since

jSðtÞj P ja/xðtÞj � jeðtÞj, we obtain
ffiffiffiffi
N

p
jeðtÞj > ja j �

ffiffiffiffi
N

p
jSðtÞj. ð3:19Þ
then for any t 2 T ,
ffiffiffiffi
N

p
jeðtÞj >

ffiffiffiffiffiffiffiffiffi
0.93

p
�

ffiffiffiffiffiffiffi
0.3

p
. ð3:20Þ
Therefore,
0.07N P Nkek2 P N
X
t2T

jeðtÞj2 P ð
ffiffiffiffiffiffiffiffiffi
0.93

p
�

ffiffiffiffiffiffiffi
0.3

p
Þ2jT j . ð3:21Þ
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It follows that
jT j6 0.403N ð3:22Þ
Let a ¼ jT j
N ; the above inequality becomes 0 6 a 6 0.403.

Consider now the characteristic function vT of the set T,
vT ðtÞ ¼
1 if t 2 T ;

0 otherwise;

�
ð3:23Þ
and define the random variable XT as vT ðiÞ, where i is picked randomly. Then we have
EðXT Þ ¼
jT j
N

6 0.403; ð3:24Þ
and
EðeXT zÞ ¼ e0ProbðvT ðiÞ ¼ 0Þ þ ezProbðvT ðiÞ ¼ 1Þ ¼ 1� aþ aez. ð3:25Þ
Suppose now we sample the signal S r times independently, and obtain Sðt1Þ; . . . ; SðtrÞ, where
t1; . . . ; tr 2 ½0;N �. Take the 60th percentile of the numbers N j Sðt1Þj2; . . . ;N j SðtrÞj2. By Chernoff�s standard
argument, we have for z > 0
Probð60th percentile < 0.3kSk2Þ ¼ Probð0.6r of the samples’ t belong to TÞ

¼ ProbðvT ðt1Þ þ � � � þ vT ðtrÞ > 0.6rÞ 6 e�0.6rzEðe
z
Pr
j¼1

vT ðtjÞ
Þ

¼ ½ð1� aÞe�0.6z þ ae0.4z�r. ð3:26Þ
Take z ¼ lnð1.5ð1� aÞ=aÞ, then
ð1� aÞe�0.6z þ ae0.4z ¼ 1.96a0.6ð1� aÞ0.4. ð3:27Þ

The right hand side of (3.27) is increasing in a on the interval [0, 0.403]; since a 6 0.403, we obtain an upper
bound by substituting 0.403 for a:
½ð1� aÞe�0.6z þ ae0.4z�r ¼ ½1.96a0.6ð1� aÞ0.4�r 6 e�0.08r. ð3:28Þ

So for r P 12.5 lnð1=dÞ, we have
ProbðOutput of Algorithm 3.6 P 0.3kSk2Þ ¼ Probð60th percentile of N j SðtÞj2 P 0.3kSk2Þ
P 1� d. �

ð3:29Þ
In practice, we often generate signals that are not so pure and thus need more samples for norm
estimation. Although the estimation is sometimes pretty far away from the true value, it gives a rough
idea of where the significant mode might be. When we desire more accuracy, a smaller constant C in
the number of samples C logð1=dÞ is chosen. In the statement of the algorithm, we choose r to be a
multiple of 5, so that the 60th percentile would be well-defined. In practice, it works equally well to
take r that are not multiples of 5 and to round down, taking the b3r=5cth sample in an increasingly
ordered set of samples.

We shall also need an upper bound on the outcome of Algorithm 3.6, which should hold regardless of
whether the signal S is highly pure or not. This is provided by the next lemma, which proves that for general
signals, Algorithm 3.6 produces an estimation of the energy, that is less than 2kSk2 with high probability.
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Lemma 3.8. Suppose Algorithm 3.6 generates an estimation X for kSk2, then
ProbðX P 2kSk2Þ 6 1

2

� �0.144 lnð1=dÞ
¼ d0.1. ð3:30Þ
Proof. Suppose r independent random samples are Sðt1Þ; Sðt2Þ; . . . ; SðtrÞ, then
ProbðN j SðtiÞj2 P 2kSk2Þ 6 NEðjSðtiÞj2Þ
2kSk2

¼ 1=2. ð3:31Þ
Since X is the 60th percentile of the sequence NSðt1Þ; . . . ;NSðtrÞ, with r ¼ 0.36 lnð1=dÞ,
ProbðX P 2kSk2Þ 6 ðProbðN j SðtiÞj2 P 2kSk2ÞÞ0.144 lnð1=dÞ 6 1

2

� �0.144 lnð1=dÞ
¼ d0.1. � ð3:32Þ
3.4. Isolation

Isolation processes a signal S and returns a new signal with significant frequency x, with 98% of the en-
ergy concentrated on this mode. A frequency x is called ‘‘significant’’ for S, if jŜðxÞj > gkSk2, where g is a
threshold, fixed by the implementation, which may be fairly small. More precisely, the isolation step returns
a series of signals F 0; F 1; . . . ; F r, such that, with high probability, jF̂ jðxÞj2 P 0.98kF jk2 for some j, that is, at
least one of the F 0; F 1; . . . ; F r is 98% pure.

Typically, not all of the F is are pure. We shall nevertheless apply the further steps of the algorithm to each
of the F is, since we do not know which one is pure. An impure F i may lead to a meaningless value for the
putative mode ~xi located in F i. This is detected by the computation of the corresponding coefficients: only
when the coefficient corresponding to a mode is significant do we output the mode and its coefficient. Some
impure signals might output an insignificant mode. Hence, we estimate and compare their coefficients to
check the significance of the modes. Finally, we only output the modes with significant coefficients.

The discussion in [3] proposes a B-tap box-car filter in the time domain, which corresponds to a Dirichlet
filter with width N

B in the frequency domain. The whole frequency region would be covered by random dila-
tion and translations of this filter.

Notation: as in [11], we define a box-car filter Hk as HkðtÞ ¼
ffiffiffi
N

p

2kþ1
v½�k;k�, where k 2 N.

Lemma 3.9.

1. For all k,
Ĥ kðxÞ ¼
1

2k þ 1

Xk
t¼�k

e
�2pixt

N ¼ sinðpð2k þ 1Þx=NÞ
ð2k þ 1Þ sinðpx=NÞ . ð3:33Þ
2. Notation: Hk;jðtÞ ¼ e2pijt=ð2kþ1ÞHkðtÞ in the time domain, which is equivalent to a shift of Ĥ kðxÞ by

jN=ð2k þ 1Þ in the frequency domain.

3. Notation: Define Rh;rSðtÞ by Rh;rSðtÞ ¼ e�2piht=rNF ðt=rÞ, so that dRh;rS ¼ Ŝðrxþ hÞ, where dRh;r is a dilation
and shift operator in the frequency domain.

More detailed description of the Box-car filter can be found in [3].
The isolation procedure in [3] randomly permutes the signal S and then convolves it with a shifted ver-

sion of Hk;j to get a series of new signals F j ¼ Hk;j � Rh;rS, where j ¼ 0; . . . ; 2k. This scheme does not work
well in practice. In the new version of the isolation steps, each F j ¼ Hk � Rhj;rjS corresponds to different
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randomly generated dilation and modulation factors, with j ¼ 0; . . . ; logð1=dÞ, the parameters rj and N are
relatively prime. These factors are taken at random between 0 and N � 1. The following lemma is similar to
Lemma 8 in [3] for the new isolation step, with more explicit values of the parameters.

Lemma 3.10. [3]Let a signal S and a number g be given, and create logð1=dÞ new signals: F 0; . . . ; F logð1=dÞ with
F j ¼ Hk � Rhj;rjS, where j ¼ 0; . . . ; logð1=dÞ. If k P 12.25ð1� gÞp2=g, then for each x such that

jŜðxÞj2 P gkSk2, there exists some j such that with high probability 1� d, the new signal F j is 98% pure.

Proof. Suppose r�1
j ðx� hjÞ falls into the pass region of the Hk filter, i.e., that jr�1

j ðx� hjj 6 N
2ð2kþ1ÞÞ. We

know that
Ĥ k r�1
j ðx� hjÞ

� ���� ���P 2=p; ð3:34Þ
so that
jF̂ jðr�1
j ðx� hjÞÞj2 P ð2=pÞ2jŜðxÞj2 P ð2=pÞ2gkSk2. ð3:35Þ
greater than the average value, 1=ð2k þ 1Þ, of jHkj2. Since jĤ kðr�1
j ðx� hjÞÞj2 is greater than the average va-

lue of Ĥ k, we have
P
x0 6¼r�1

j ðx�hjÞjĤ kðx0Þj2

N � 1
6

kHkk2

N
¼ 1

2k þ 1
. ð3:36Þ
Moreover,
P

x00 6¼xjŜðx0Þj2 6 ð1� gÞkSk2. In particular, jŜðx0Þj2 6 ð1� gÞkSk2 if x0 6¼ x. We then have
E
X

x0 6¼r�1
j ðx�hjÞ

jF̂ jðx0Þj2
������� 1

2
N=ð2k þ 1Þ 6 r�1

j ðx� hjÞ 6
1

2
N=ð2k þ 1Þ

24 35 6
ð1� gÞkSk2

2k þ 1
. ð3:37Þ
Define X to be the random variable
X ¼
X

x0 6¼r�1
j ðx�hjÞ

jF̂ jðx0Þj2
������� 1

2
N=ð2k þ 1Þ 6 r�1

j ðx� hjÞ 6
1

2
N=ð2k þ 1Þ

8<:
9=;. ð3:38Þ
For this random variable, we have
Prob
X

jF̂ jðr�1
j ðx� hjÞÞj2

P 1=49

 !
¼ Prob X Pj F̂ jðr�1

j ðx� hjÞÞj2=49
� �

6
EðX Þ

jF̂ jðr�1
j ðx� hjÞÞj2=49

6
49ð1� gÞp2

4gð2k þ 1Þ . ð3:39Þ
Since k P 12.25ð1� gÞp2=g, the right hand side of (4.37) is 6 1=2, meaning that the signal F j is 98% pure
with probabilityP 1=2. The success probability, i.e., the probability of obtaining at least one F j that is 98%
pure, can be boosted from 1

2
to probability 1� d by repeating Oðlogð1=dÞÞ times, i.e., generating

Oðlogð1=dÞÞ signals. h

The above lemma gives a lower bound for the filter width. Obviously, the larger the width in the
time domain, the higher the probability that the frequency will be successfully isolated. However, a lar-
ger width leads to more evaluations of the function and therefore more time for each isolation step.
One needs to balance carefully between the computational time for each iteration step and the total
number of iterations.
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Based on several numerical experiments, we found that a very narrow filter is preferable and gives good
performance; for instance, the filter with three-tap width, i.e., k ¼ 1 works best for a signal with 2 modes.
For the choice k ¼ 4, the algorithm ends after fewer iterations; however, each iteration takes much more
time. The choice of a 9-tap width filter makes the code four times slower in total.

The filter width is weakly determined by the number of modes in the signal, not by the length of the sig-
nal. Through experimentation, we found that when the number of modes is less than 8, the 3-tap width filter
works very well; as the number of modes increases, larger width filters are better. Numerical experiments
suggests a sublinear relationship between the width of the filter and the number of modes; in our experi-
ments a 5-tap filter still sufficed for B ¼ 64.
3.5. Group testing

After the isolation returns several signals, at least one of which is 98% pure with high probability, group
testing aims at finding the most significant mode for each. We use a procedure called most significant bit
(MSB) to approach the mode recursively.

In each MSB step, we use a Box-car filter Hk to subdivide the whole region into 2k þ 1 subregions. By
estimating the energies and comparing the estimates for all these new signals, we find the one with maxi-
mum energy, and we exclude those that have estimated energies much smaller than this maximum energy.
We then repeat on the remaining region, or more precisely on the region obtained by removing the largest
chain of excluded intervals; we dilate so that this new region fills the whole original interval, and split again.
The successive outputs of the retained region gives an increasingly good approximation to the dominant
frequencies. The following are the group testing procedures:

Algorithm 3.11 (Group testing). Input: signal F, the length N of the signal F.
Initialize: set the signalF to F 0, iterative step i ¼ 0, the lengthNof the signal, the accumulation factor q ¼ 1.

In the ith iteration,
1. If q P N , then return 0.
2. Find the most significant bit v and the number of significant intervals c by the procedure MSB.
3. Modulate the signal F i by

ðvþ0.5ÞN
4ð2kþ1Þ and dilate it by a factor of 4ð2k þ 1Þ=c. Store it in F iþ1.

4. Call the group testing again with the new signal F iþ1, store its result in g.
5. Update the accumulation factor q ¼ q � 4ð2k þ 1Þ=c.
6. If g > N=2, then g ¼ g � N .
7. return modðb cg

4ð2kþ1Þ þ
ðvþ1=2ÞN
4ð2kþ1Þ þ 0.5c;NÞ;

The MSB procedure is as follows.

Algorithm 3.12 (MSB (most significant bit)). Input: signal F with length N, a threshold 0 < g < 1.

1. Get a series of new signals GjðtÞ ¼ F ðtÞHðe2pijt=4ð2kþ1ÞHkÞ, j ¼ 0; . . . ; 8k þ 4. That is, each signal Gj con-

centrates on the pass region ½ðj�1=2ÞN
4ð2kþ1Þ ;

ðjþ1=2ÞN
4ð2kþ1Þ � :¼ passj.

2. Estimate the energies ej of Gj, j ¼ 0; . . . ; 8k þ 4.
3. Let l be the index for the signal with the maximum energy.
4. Compare the energiesof all other signalswith the lth signal. Ifei < gel, label it asan intervalwith small energy.
5. Take the center vs of the longest chain of consecutive small energy intervals, suppose there are cs inter-

vals altogether in this chain.
6. The center of the large energy intervals is v ¼ 4ð2k þ 1Þ � vs, the number of intervals with large energy is

c ¼ 4ð2k þ 1Þ � cs.
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7. If c > 4ð2k þ 1Þ=2, then do the original MSB [3] to get v set c ¼ 2.
8. Output the dilation factor c and the most significant bit v.

Lemma 3.13. Given a signal F with 98% purity, suppose GjðtÞ ¼ F � e2pijt=4ð2kþ1ÞHkðtÞ. If k P 2, then Algo-

rithm 3.11 can find the significant frequency x of the signal F with high probability.

Proof. Suppose the filter width of Hk is 2k þ 1. Observe that, for some j, 0 6 j 6 4ð2k þ 1Þ, x 2 passj.
Without loss of generality, assume j ¼ 0. Now consider the signal G0. Since x 2 pass0, the Fourier coeffi-
cient Ĝ0ðxÞ satisfies
jĜ0ðxÞj2 P
sinðp=8Þ

ð2k þ 1Þ sinðp=8ð2k þ 1ÞÞ

� �2

jF̂ ðxÞj2 P sinðp=8Þ
ð2k þ 1Þ sinðp=8ð2k þ 1ÞÞ

� �2

ð0.98ÞkF k2

P 0.97442 � 0.98kF k2 � 0.93kF k2. ð3:40Þ
for all k > 0. It follows from Lemma 3.7, that the output of Algorithm 3.6, applies to G0, estimate that is at
least
0.3kG0k2 P 0.3jĜ0ðxÞj2 P 0.3� 0.98
sinðp=8Þ

ð2k þ 1Þ sinðp=8ð2k þ 1ÞÞ

� �2

kF k2. ð3:41Þ
On the other hand, now consider G5. Note that
jĜ5ðxÞj ¼ jF̂ ðxÞjjcHk ðxÞj 6
1

ð2k þ 1Þ sinð9p=8ð2k þ 1ÞÞ jF̂ ðxÞj

6
1

ð2k þ 1Þ sinð9p=8ð2k þ 1ÞÞ kF k. ð3:42Þ
Also, kG5k2 � jĜ5ðxÞj2 6 0.02kF k2, because F is 98% pure. Thus
kG5k2 6j Ĝ5ðxÞj2 þ 0.02kF k2 ¼ 1

ð2k þ 1Þ sinð9p=8ð2k þ 1ÞÞ

� �2

þ 0.02

 !
kF k2. ð3:43Þ
By Lemma 3.8, if we use Algorithm 3.6, the estimation result for G5 will be at most 2kG5k2 with high prob-
ability. It is easy to show that the inequality
0.294
sinðp=8Þ

ð2k þ 1Þ sinðp=8ð2k þ 1ÞÞ

� �2

P 2
1

ð2k þ 1Þ sinð9p=8ð2k þ 1ÞÞ

� �2

þ 0.04 ð3:44Þ
holds for all k > 0. The same argument applies to Gj with 5 6 j 6 4ð2k þ 1Þ � 5. It follows that, with high
probability, the result of applying Algorithm 3.6 to G0 will give a result that exceeds the result obtained by
applying Algorithm 3.6 to Gj with 5 6 j 6 4ð2k þ 1Þ � 5.

In general, if the pass region is at some j0, we can compare kGj0k
2with kGjk2for all jj� j0j P 5. If there

is some j0 for which the estimation of kGj0k
2 is apparently larger than kGjk2, then we conclude x 62 passj;

otherwise, possibly x 2 passj. By the above argument, we can eliminate 4ð2k þ 1Þ � 9 consecutive pass
regions out of the 4ð2k þ 1Þ, leaving a cyclic interval of length at most 9N

4ð2kþ1Þ. In order for the residual
region to be smaller or equal to half of the whole region, we need 4ð2k þ 1Þ P 18, which is equivalent to the
condition k P 2.

In the recursive steps, let P denote a cyclic interval with size at most 9N
4ð2kþ1Þ that includes all the

possibilities for x. Let v denote its center. Then generate a new signal F 1ðtÞ ¼ e�2pivt=NF ðtÞ; this is a shift of
the spectrum of F by �v. Thus the frequency x� v is the biggest frequency of F 1ðtÞ., which is in the range of
� 4.5N

4ð2kþ1Þ to þ 4.5N
4ð2kþ1Þ. We will now seek x� v.
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Since we rule out a fraction of ð8k�5ÞN
4ð2kþ1Þ length of the whole region, we may dilate the remainder by

b4ð2k þ 1Þ=9c, which can be accomplished in the time domain by dilating F 1 by
9

4ð2kþ1Þ. Thus the interval of

length just less than 9N
4ð2kþ1Þ known to contain x� v is dilated to the alternate positions in an interval of

length just less than N. We then rule out again 8k�5
4ð2kþ1Þ of this dilated frequency domain, leaving a remainder

of length at most 9
4ð2kþ1Þ length. Then we undo the dilation, getting an interval of length just less than

9N
ð4ð2kþ1ÞÞ, centered at some v2, which is the second most significant bit of x in a number base b4ð2kþ1Þ

9 c. We

would repeat this process to get the other bits of x. By getting a series of v1; . . . ; vblog4ð2kþ1Þ=9Ncþ1, we can
recover the x. h

In fact, a narrower filter with a larger shift width than N
4ð2kþ1Þ works fine and makes the algorithm faster in

practice. Heuristically, we find that the optimal number of taps for small B cases is 3. Suppose the MSB
filter width is 3 and each MSB rules out 2 intervals out of 3, then the total number of recursive group test
is log3N . Then the computational cost is 3 log3N norm estimations and 2 log3N comparisons. Numerical
experiments suggests that k is probably linear in logB. The shift width we use in practice is N

2kþ1
.

We find that the output of group testing in both the original and the present version of RA‘SFA might
differ from the true mode by one place. We suspect that the reason is that all the float operations and the
conversion to integers introduce and accumulate some error into the final frequency. As a solution, the
coefficients of nearby neighbors are also estimated roughly to determine the true significant modes.

3.6. Sample from a transformed signal

A key issue in the implementation consists of obtaining information (by sampling) from a signal after it
has been dilated, modulated, or even convolved. We briefly discuss here how to carry out this sampling in
discrete signals.

First, we consider a dilated and modulated signal, for example, in the isolation procedure which uses

Rh;rSðtÞ ¼ e�2piht=rNSðt=rÞ, which is equivalent to dðRh;rSÞðxÞ ¼ Ŝðrxþ hÞ in the frequency domain. Here
r and h are chosen uniformly and randomly, from 0 to N � 1 for h, and from 1 to N � 1 for r. The
sample Rh;rF ðtÞ, where t 2 f0; 1; . . . ;N � 1g, is then e�2piht=rN ðRh;rÞF ðtÞ ¼ e�2piht=rNF ðr�tÞ, where r� is cho-
sen so that r�r ¼ 1ðmodNÞ. If N is prime, then we can always find (a unique value for) r� for arbitrary
r; if N is not prime, r� may fail to exist for some choices of r. Our program uses the Euclidean algo-
rithm to determine r�; when N is not prime and r and N are not co-prime, the resulting candidates for
r� are not correct and may lead to estimates for the modes that are incorrect; these mistakes are
detected automatically by the algorithm when it estimates the corresponding coefficient and finds it
to be below threshold.

We also need to sample from convolved signals, e.g., S � HkðtÞ. Because Hk has only 2k þ 1 taps, only
2k þ 1 points contribute to the calculation of the convolution. Since S � HkðtÞ ¼

Pk
i¼�kHkðiÞSðt � iÞ, we

need only the values Sðt � iÞ; i ¼ �k; . . . ; k, all of which we sample.

3.7. Extension to a higher dimensional signal

The original RA‘SFA discusses only the one dimensional case. As explained earlier, it is of particular
interest to extend RA‘SFA to higher dimensional cases because there its advantage over the FFT is more
pronounced.

In d dimensions, the Fourier basis function is
/~xð~xÞ ¼ /x1;...;xd
ðx1; . . . ; xdÞ ¼ N�d

2ei2px1x1=Nþ...þi2pxd xd=N ¼ N�d
2ei2p~xi~xi=N ; ð3:45Þ
the representation of a signal is
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nearby
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Sðx1; . . . ; xdÞ ¼
XN
i¼1

ci/xi;1;...;xi;d
. ð3:46Þ
Suppose the dimension of the signal is d, denote~x ¼ ðx1; x2; . . . ; xdÞ, ~x ¼ ðx1; . . . ;xdÞ.
The total scheme remains much the same as in one dimension:

Algorithm 3.14 (Total scheme in d dimensions). Input: signal S, the number of nonzero modes B or its
upper bound, accuracy factor �, success probability 1� d, an upper bound of the signal energy M, the
standard deviation of the white Gaussian noise r.

1. Initialize the representation signal R to 0, set the maximum number of iterations T ¼ B logðNÞ logðdÞ=�2.
2. Test whether kS � Rk2 6 ikRk2. If yes, return the representation signal R and the whole algorithm ends;

else go to step 3.
3. Locate Fourier Modes ~x for the signal S � R by the new isolation and group test procedures.
4. Estimate Fourier Coefficients at ~x : dðS� RÞð~xÞ.
5. If the total number of iterations is less than T, go to 2; else return the representation R.

The most important modification with respect to the one dimensional case lies in the procedure to carry
out step 3 of Algorithm 3.14. We adapt the technique for frequency identification to fit the high dimensional
case; it is given by the following procedure.

Algorithm 3.15 (Locate the Fourier mode in d dimensions). Input: signal S, accuracy factor �, success
probability 1� d, an upper bound of the signal energy M.

1. Random permutations in d dimension.
2. Isolate in one (arbitrarily picked) dimension i to get a new signal F ðtÞ ¼ S � HkðtÞ.
3. For each dimension i0, find the i0th component ~x�

i0 of the significant frequency by group testing for the
signal F in the i0th dimension.

4. Finally, estimate the Fourier coefficients in the frequency ~x ¼ ðx�
0; . . . ;x

�
d�1Þ. Keep the frequency

d-tuple if its Fourier coefficient is large.

Note that the computational cost of the above algorithm is quadratic in the number of dimensions. The
permutation involves a d � d matrix1 The group test procedure in each dimension processes the same iso-
lation signal. If a filter with B taps is used for the isolation, then it captures at least one significant frequency
in the pass region with probability 1=B. The basic idea behind this procedure is that, because of the sparse-
ness of the Fourier representation, cutting the frequency domain into slices of width 1=B in 1 dimension,
leaving the other dimensions untouched, leads to, with positive probability, a separation of the important
modes into different slices. After this essentially one-dimensional isolation, we only need to identify the
coordinates of the isolated frequency mode. After isolation, we assume F ð~xÞ ¼ Ae2pi~x�~x=N , where A and
~x are unknown. To find xj0 , we sample in the j0th coordinate only, keeping x1; . . . ; xj0�1; xj0þ1; . . . ; xd fixed,
so that (for this step) F ð~xÞ can be viewed as Ae2pi~x�~x=N ¼ ~Ae2pixj0 xj0 =N , where ~A ¼
Ae2piðx1x1þ...þxj0�1xj

0�1þxj0þ1xj
0þ1þ...þxdxd Þ, remains the same for different xj0 and has the same absolute value as

A, which we can do in each dimension separately.
te that generalizing to d dimensions our one-dimensional practice of checking not only the central frequency found, but also
neighbors, would make this algorithm exponential in d, which is acceptable for small d. For large d, we expect it would suffice to
a fixed number of randomly picked nearby neighbors, removing the exponential nature of this technical feature.
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If we just repeated the one-dimensional technique in each dimension, that is, carried out isolation in each
of the d dimensions sequentially, the time cost would be exponential in the dimension d. We discuss now in
some detail the steps 1, 2, 3 of Algorithm 3.15.
3.7.1. Random permutations
In one dimensional RA‘SFA, the isolation part includes random permutations and the construction of

signals with one dominant frequency. However, the situation is more complicated in higher dimensions,
which is why we separated out the permutation step in the algorithm.

Recall that in one dimension, the signal is dilated and modulated randomly in order to separate possibly
neighboring frequencies. In higher dimensions, different modes can have identical coordinates in some of
the dimensions; they would continue to coincide in these dimensions if we just applied ‘‘diagonal’’ dilation,
i.e., if we carried out dilation and modulation sequentially in the different dimensions. To separate such
modes, we need to use random matrices. We transform any point ðx1; x2; . . . ; xdÞ into ðy1; . . . ; ydÞ given by
y1

..

.

yd

0BB@
1CCA ¼

a11 a12 . . . a1d

..

. ..
. ..

. ..
.

ad1 ad2 . . . add

0BB@
1CCA

x1

..

.

xd

0BB@
1CCAþ

b1

..

.

bd

0BB@
1CCA ð3:47Þ
where A ¼ ðaijÞ is a random and invertible matrix, the aij and the bi are chosen randomly, uniformly and
independently, and the arithmetic is modulo N. For example, if d ¼ 2;N ¼ 7; a11 ¼ 1; a12 ¼ 3; a21 ¼ 5;
a22 ¼ 2; b1 ¼ 0; b2 ¼ 5, that is,
y1
y2

� �
¼

1 3

5 2

� �
x1
x2

� �
þ

0

5

� �
ð3:48Þ
the point (1,2) gets mapped to (0,0), (1,3) to (3,2), and (0,3) to (2,4): even though points (1,2) and (1,3)
have the same first coordinate, their images don�t share a coordinate; the same happens with points (1,3)
and (0,3). For each dimension i0, the i0th components of frequencies are mapped by pairwise independent
permutations. Even adjacent points that differ in only one coordinate are destined to be separate with high
probability after these random permutations.

3.7.2. Isolation

After the random permutations, the high dimensional version of isolation can construct a sequence
F 0; F 1; . . . of signals, such that , for some j, jF̂ jðx0Þj2 P 0.98kF k2.

Algorithm 3.16 (High dimensional isolation). Choose an arbitrary dimension i.

1. Filter on the dimension i and leave all other dimensions alone, get the signal
F ¼ SHHk; ð3:49Þ

where Hk ¼

ffiffiffi
N

p

2kþ1
v½�k;k� filters on the dimension i; the other dimensions are not affected.

2. Output new signals F to be used in the group testing.
3.7.3. Group testing for each dimension

After the random permutation and isolation, we expect a d-dimensional signal with most of its energy
concentrated on one mode. The isolation step effectively separates the d-dimensional frequency domain
in a number of d-dimensional slices. Group testing has to subdivide these slices.

One naive method is to apply d dimensional filters in group testing, concentrating on d-dimensional
cubic subregions in group testing that cover the whole area. However, this leads to more cost. If the
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number of taps of this filter in one dimension is 2k þ 1, we obtain ð2k þ 1Þd subregions. Estimating the
energies of all subregions slows down the total running time. Consequently, we instead locate each com-
ponent of the significant frequency label separately. That is, we only use a filter to focus on one dimen-
sion and leave other dimensions alone. The energies of 2k þ 1 regions are computed in every dimension.
Hence, we need to estimate the norm of dð2k þ 1Þ intervals in total. This makes group testing linear in
the number of dimensions, instead of exponential as in the naive method.

Here is the procedure in group test:

Algorithm 3.17 (High dimensional group test). For i0 ¼ 1; . . . ; d

1. Construct signals ~G
ði0Þ
j ¼ F ðtÞ � ðe2pijti0 =ð2lþ1ÞHlÞ, j ¼ 1; . . . ; 2lþ 1, where Hl filters on i0th dimension and

leave all other dimensions alone;
2. Estimate and compare the energy of each ~G

ði0Þ
j , j ¼ 1; . . . ; 2lþ 1, use the similar procedure in one dimen-

sional group testing procedure. Find the candidates x�
i0 .

The reader may wonder how sampling works out for this d-dimensional algorithm. In Algorithm 3.17,

we will need to sample ~G
ði0Þ
j (which is the convolution of the (permuted version of) signal S with 2 filters) to

estimate its energy; because filtering is done only in the i0th dimension, we shall sample
~G
ði0Þ
j ðx1; . . . ; xi0�1; xi0 ; xi0þ1; . . . ; xdÞ for different xi0 , but keeping the other xj fixed, where j 6¼ i0. The signal F

itself comes from the Isolation step, in which we filter in direction i, for which S needs to be sampled, in
this dimension only. Together, for each choices i0 in Algorithms 3.16 and 3.17, this implies we have
ð2k þ 1Þ � ð2lþ 1Þ different samples of (the permuted version of) S, in which all but the ith coordinates
of the samples~x are identical.
4. Conclusion

We provide both theoretical and experimental evidence to support the advantage of the implementation
of RA‘SFA proposed here over the original one sketched in [3]. Moreover, we extend RA‘SFA to high
dimensional cases. For functions with few, dominant Fourier modes, RA‘SFA outperforms the FFT as
N increases. We expect that RA‘SFA will be useful as a substitute for the FFT in potential applications
that require processing such sparse signals or computing B-term approximations. This paper is just the
beginning of a series of our papers and researches, many of which are in preparation. For example, the
strong dependence of running time on the number of modes B will be further lessened, and thus the algo-
rithm would work for more interesting signals [4]. Also, the application of RA‘SFA in multiscale problems
will be discussed in [12,13].
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