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ABSTRACT

We study the problem of finding a Fourier representationR of m terms for a given discrete signalA of lengthN . The
Fast Fourier Transform (FFT) can find the optimalN -term representation in timeO(N logN) time, but our goal is to get
sublineartime algorithms whenm� N .

Suppose‖A‖2 ≤M ‖A−Ropt‖2, whereRopt is the optimal output. The previously best known algorithms outputR
such that‖A−R‖2

2 ≤ (1 + ε)‖A−Ropt‖2
2 with probability at least1− δ in time∗ poly(m, log(1/δ), logN, logM, 1/ε).

Although this is sublinear in the input size, the dominating expression is the polynomial factor inm which, for published
algorithms, is greater than or equal to the bottleneck atm2 that we identify below. Our experience with these algorithms
shows that this is serious limitation in theory and in practice. Our algorithm beats thism2 bottleneck.

Our main result is a significantly improved algorithm for this problem and thed-dimensional analog. Our algorithm
outputs anR with the same approximation guarantees but it runs in time

m · poly(log(1/δ), logN, logM, 1/ε).

A version of the algorithm holds for allN , though the details differ slightly according to the factorization ofN . For the
d-dimensional problem of sizeN1×N2×· · ·×Nd, the linear-in-m algorithm extends efficiently to higher dimensions for
certain factorizations of theNi’s; we give a quadratic-in-m algorithm that works for any values ofNi’s.

This article replaces several earlier, unpublished drafts.
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1. INTRODUCTION

In many computational applications of Fourier analysis, we are interested only in a small numberm of the coefficients.
The large coefficients capture the major time-invariant wave-like features of the signal, while the smaller ones contribute
little information about the signal. The largest few Fourier coefficients are useful in data compression, feature extraction,
finding approximate periods, and data mining. The problem of finding them largest Fourier coefficients of a signal is a
fundamental task in computational Fourier analysis. We address the problem of how to find and estimate these coefficients
quickly and accurately.

Let us denote the optimalm-term Fourier representation of a signalA of lengthN by Ropt and assume that, for
someM , we have(1/M) ≤ ‖A−Ropt‖2 ≤ ‖A‖2 ≤ M . Our main result in this paper is an algorithm that uses
at mostm · (log(1/δ), logN, logM, 1/ε)O(1) space and time and outputs a representationR such that‖A − R‖2

2 ≤
(1 + ε)‖A−Ropt‖2

2, with probability at least1− δ. We now give some remarks.

Here, the probability is over random choices made by the algorithm, not over the signal,A. That is, we present a coin-
flipping algorithm. Knowing the algorithm but not coin-flip outcomes, an adversary chooses the worst possibleA. Then
coins are flipped and the algorithm proceeds deterministically from the coin flips and the given signal. For each signal, with

∗The expressionpoly() denotes a polynomial function of the input.



high probability, the algorithm succeeds. It isnot true that, with high probability, the algorithm succeeds simultaneously
on all signals.

Note that the promised time is much less thanN . So our algorithm does not read all the input; we assume that our
algorithm can readA[t] for a t of its choice in constant time. It turns out that thet’s where the algorithm looks at the signal
are chosen randomly (from a non-uniform distribution) but do not adapt to the signal,A.

Since timem is needed just to output the coefficients, our cost is optimal in the parameterm. We also give extensions to
some multidimensional cases, paying a factordO(1) for ad-dimensional problem. Previously known results1–3 give similar
bounds except for the dependence onm, which is linear in our algorithm, and at least quadratic in the other algorithms.
This represents a much-needed, significant improvement. Other work4 bounds the number of samples somewhat better
than ours, but that algorithm4 is at least linear inN .

There are three previously published papers on this problem; unfortunately, there are some missing links in citations.
In the first, breakthrough result,1 the author studies a variation of our problem and presents an algorithm to which one can
immediately reduce our problem for the caseN a power of 2 (but not for otherN ). Later,2 the authors, unaware of the
previous result,1 give an algorithm for anyN , power-of-2 or not, with cost polynomial in(m log(N)). Recently, indepen-
dently of that,,2 another work presents3 an algorithm with cost polynomial in(m log(N)) for values ofN beyond just the
power of 2 previously considered.1 The motivating applications in these three papers were quite different: learning,1 DFT
approximation,2 and list decoding for producing hard-core predicates in cryptography.3 Unfortunately, the dependence on
m in all of these papers is quite high. In some of these results,1, 2 the cost is “polynomial inm”; a close look at the cost†

reveals it to be at leastm≥2. Later,3 the cost is at leastm≥5.5 (the heart of the procedure is in Section 7.2.4 where this
complexity emerges). The polynomial in other factors is reasonable.

Previous papers1–3 focused on learning, complexity theory and sampling complexity respectively. In contrast, our
focus is on practical applications of Fourier methods. There are a number of applications, e.g., pseudospectral methods
for differential equations,5 finding approximate correlation of signals,6 and deconvolving blurred signals,7 where the best
m Fourier coefficients suffice and currently, the full DFT is used instead. The full DFT, however, is a computational
bottleneck in these applications. This motivated us to consider sampling algorithms for estimating them best Fourier
terms more efficiently. We consider three algorithms: FFTW8—a popular, optimized FFT package, our near-linear-in-m
algorithm, and a simplified quadratic-in-m algorithm that, due to its relative simplicity and low overhead, is faster, for
smallm, than the near-linear-in-m algorithm. We find in practice that, ifm ≈ 30 andN ≈ 4 million, all three algorithms
take about the same amount of time.9 This shows that asymptotic performance is reached for reasonable values ofm and
N . We expect comparable performance for certain instances of the multidimensional algorithm. Experimental analysis of
an earlier algorithm can also be found.10

Our algorithm, at a high level, proceeds in a greedy fashion. Given a signalA, we set the representationR to zero and
consider the residualA−R. We make progress on lowering‖A−R‖ by repeatedly

• SAMPLING from A−R in approximatelym correlated random positions.

• IDENTIFYING a set of “significant” frequencies in the spectrum ofA−R and

• ESTIMATING the Fourier coefficients of these “significant” frequencies.

Once we have estimated the significant coefficients, we add their contribution to the representationR and iteratively analyze
the residual signalA−R. This framework is similar to previous work1–3 although the specific steps differ substantively,
and are the achievements of this paper.

From a technical view, there are severalΩ(m2) bottlenecks in the overall framework. Anm-term superpositionA −
R may have onlyN/m points with non-zero value, in unknown time positions. It follows that one needs to sample
approximatelym positions and do workΩ(m) in order to learn anything. It is then critical that thisΩ(m) work not
be repeated to learn information about each of theΩ(m) frequencies inA or eachΩ(m) frequencies in an intermediate
representationR. We break thisΩ(m2) bottleneck by showing:

†While the analyses of the algorithms1, 2 are not tight inm, one could tighten their analyses and show that the algorithms do, in fact,
take timeΩ(m2).



• how to obtainΩ(m) samples fromA andR in mpolylog(N) = m logO(1)(N) work (despite the fact thatR may
contain, say,m/2 frequencies),

• how to identify all (at mostO(m)) significant frequencies inA−R in total workmpolylog(N), and

• how to estimate up toO(m) Fourier coefficients inA at once fromm samples with workmpolylog(N).

Note that it takes work approximatelym to obtain asinglesample from a(m/2)-term intermediate representation, to iden-
tify a singlesignificant frequency, or to estimate asinglecoefficient to sufficent accuracy. It follows that a straightforward
algorithm for any of these threem-fold steps would costΩ(m2).

The task of samplingm times from an intermediatem-term representation and the task of computing the natural
estimates form Fourier coefficients fromm random samples are both forms of theunequally spaced discrete Fourier
transformproblem; i.e.; multiplying somek × k submatrix of theN × N Fourier matrix by a length-k vector, where
k ≈ m. Many time-(kpolylog(N)) algorithms are known11 for this. As for identification, previous work has shown how
to identify one significantω out ofm with probability at least1/m by using anm-tap random filter with bandwidthN/m;
m repetitions of independently chosenm-tap filters will succeed with reasonable probability but with workm2. Instead,
we use a random filterbank ofm filters that share a collection ofm taps. Computing them outputs of the filterbank fromm
inputs turns out to require just an ordinary DFT, which can be done with workm log(m). Them outputs of the filterbank
replacem independent instantiations of a single random filter.

The three tasks above are iterated as we find more and more frequencies and get better and better approximations to the
coefficients for frequencies we have already found. Note that each iteration may find just a single significant frequency; a
naive overall upper bound would then bem iterations of workO(m) each, for a total ofO(m2) work. Without substantially
modifying the algorithm, we give a new bound of approximatelylog(MN/ε) iterations. Our new bound analyzes the
decrease in‖A−R‖ rather than the increase in the number of recovered terms.

1.1. Linear versus Quadratic Algorithms

Certainly a near-linear algorithm is quantitatively better than a quadratic algorithm. In this section, we briefly argue that a
near-linear-in-m algorithm isstructurallybetter than a quadratic-in-m algorithm. We consider the many DFT applications
in which time linear inN is needed,e.g., for data acquisition. Then the (N log(N))-time FFT algorithm becomes a
bottleneck, at least in theory, and we want to consider an approximate algorithm that takes at most timeN . Thus, for a
near-linear-in-m algorithm, we can makem as large asN/polylog(N); for a quadratic-in-m algorithm, we can only make
m as large as

√
N/polylog(N). We now consider the structural effects in three applications: convolutions, coding rate,

and denoising.

To compute the convolution of two vectorsx andy, we need to multiply their spectra. In the worst case, the non-zeros
in x̂ correspond to (approximate) zeros inŷ and vice versa, in which case our approximate algorithms give no useful
results. If the spectra are random, however, then we might hope to get non-zeros inx̂ to correspond with non-zeros in̂y
with high probability. Ifm =

√
N/polylog(N), then we are unlikely to find any collisions, and we get no information

about the convolution. On the other hand, ifm = N/polylog(N), then we expect to getN/polylog(N) collisions, which,
depending on the context, might result in a useful approximation to the convolution.

Next, consider coding by choosing Fourier basis functions to have non-zero coefficients, where we require a decoding
algorithm that runs in time linear inN . A near-linear-in-m algorithm lets us codelog

(
N
m

)
≈ N/polylog(N) bits; a

quadratic-in-m algorithm only lets us codelog
(
N
m

)
≈
√
N/polylog(N) bits—quadratically worse, as expected. But, in

coding applications, it is more natural to measure therate of the code—the number of coded bits divided by the length of
the codeword,N—and constant rate is often desired. Thus, by improving a quadratic-in-m algorithm to a linear one, the
acheivable rate improves from around1/

√
N to 1/polylog(N), an exponential improvement.

Finally, consider the followingdenoisingproblem. There is a true signal consisting of a single Fourier mode,ψω. We
observe the signal corrupted by additive Gaussian white noise with expected magnitudeσ. What is the threshold forσ
below which we can determineω reliably? With high probability, the largest Fourier coefficient of the noise has square
magnitude aroundlog(N)σ2, so, even if we had unlimited time, we can recoverω iff 1 ≥ log(N)σ2, or σ2 ≤ 1/ log(N).
A dual formulation of our sampling algorithms can recover coefficients with approximately1/m of the total energy (i.e.,
square ofL2 norm), and the total energy is dominated by the noise energy,σ2N . Thus we need1 ≥ (1/m)σ2N in order



to find a coefficient with energy 1 from a signal plus noise with energyσ2N ; this meansσ2 ≤ m/N . In a quadratic-in-m
algorithm,m ≈

√
N , so we can only tolerateσ2 ≈ 1/

√
N . In a near-linear-in-m algorithm,m ≈ N/polylog(N), so we

can tolerateσ2 ≈ 1/polylog(N), exponentially better, and much closer to the information-theoretic limit of1/ log(N).

1.2. Organization

In Section 2, we provide preliminaries on the Fourier transform. In Section 3, we give some technical lemmas. In Section 4,
we present our algorithm. In Section 5, we give higher-dimensional variations. In Section 6 we conclude.

2. PRELIMINARIES

Notation. Let A = (A(0), . . . ,A(N − 1)) be a signal indexed byt, regarded as an integer modN . The complex
conjugate of a numberx is denoted byx and the dot product〈A,B〉 of vectorsA andB is

∑
t A(t)B(t). The functions

ψω(t) = 1√
N
e2πiωt/N , ω ∈ ZN , form an orthonormal basis forZ/N . We can representA as a linear combination of basis

functions

A(t) =
1√
N

N−1∑
ω=0

Â(ω)e2πiωt/N

where

Â(ω) = 〈A, ψω〉 =
1√
N

∑
t

A(t)e−2πiωt/N

is theωth Fourier coefficient ofA. The vectorÂ is thespectrumof A. Theenergyof A is ‖A‖2
2, defined by‖A‖2

2 =∑
t |A(t)|2. Parseval’s equality says that

∑
t |F(t)|2 =

∑
ω |F̂(ω)|2. We refer to|Â(ω)|2 as the energy of the Fourier

coefficientÂ(ω) (or the energy ofω) and, similarly, the energy of a set of Fourier coefficients is the sum of the squares
of their magnitudes. We writeF ? G to denote the convolution,(F ? G)(t) =

∑
s F(s)G(t − s). It follows that

F̂ ?G =
√
N F̂Ĝ. We denote byχS the signal that equals1 on a setS and zero elsewhere. The index toχS may be time

or frequency; this is made clear from context. Thesupportsupp(F) of a vectorF is the set oft for whichF(t) 6= 0. For a
sparse representationR, We will also writeŝupp(R) to be the set ofω for whichR̂(ω) 6= 0. More background on Fourier
analysis is available in the literature.12

A formal termis a pair of frequency and coefficient, but will sometimes be written ascψω instead of(c, ω). Similarly,
a formal representation is a set of formal terms, but will sometimes be written

∑
ω∈Λ cωψω instead of{(cω, ω) : ω ∈ Λ}.

We say that a formal termcψω is bigger than another termc′φω′ if |c| > |c′|. A frequencyω is η-significant inA, for
η > 0, if |Â(ω)|2 ≥ η‖A‖2.

DefineHK,N by HK,N (t) =
√

N
K χ[0,K). ThenĤK,N (ω) = sin(Kπω/N)

K sin(πω/N) , for ω 6= 0 andĤK,N (0) = 1. If K ≤ N ,

this is called the “Dirichlet kernel” or “Boxcar Filter” and its energy‖HK,N‖2 isN/K. We will sometimes writeHK or
H if N or bothK andN are clear from context.

Permutation of Spectra.We define a transformationPθ,σ as follows. For a given signalA and numberσ that is invertible
modN with inverse equal toσ∗, define(Pθ,σA)(t) by (Pθ,σA)(t) = e−2πiθσ∗t/NA(tσ∗). First note that one can sample
from Pθ,σA with approximately the same cost as sampling fromA. Next, by elementary facts from Fourier analysis, we

haveP̂θ,σA(ω) = Â(θ + σt). Since the mapt 7→ θ + σt modN is invertible iff σ is,Pθ,σ is a spectral permutation. (A
number is invertible modN if and only if it is relatively prime toN .)

Precision. We assume that all signal entries are bounded by some number,M . Similarly, our output will be accurate only
to ±1/M , additively. Thus we need2 log(M) bits to process inputs and outputs, and our algorithm will be allowed time
polylogarithmic inM in the bit model. For the sake of clarity, we omit a thorough discussion of precision; we merely point
out potential pitfalls. Certain precision issues are actually critical. For example, a classical algorithm13 to multiply an
m-by-m Vandermonde matrix by a vector of lengthm (a generalization of the unequally-spaced discrete Fourier transform
problem) requires justO(m log2(m)) multiplications, but arithmetic needs to be carried out toO(m) bits, giving only a
quadratic bound in the total work in bits.



Asymptotic Notation. We useO(f) to denote the set of functions that grow at most as fast asf andΩ(f) to denote the
set of functions that grow at least as fast asf . We writeΘ(f) = O(f)∩Ω(f). We also writeO(f), etc., for an anonymous
function in the setO(f).

Randomization. Our algorithms are randomized. That is, for each inputA and3/4 of the random choices of our
algorithm, the algorithm succeeds. The success probability1/4 (“significant”) or 3/4 (“high”) can be boosted to as close
to 1 as desired (“overwhelming”) using standard inexpensive techniques. We sometimes omit details.

Non-adaptivity. We have the following non-adaptive access toA. We toss coins, then, based on the coins, compute a
sequenceT ⊆ [0, N) of indices, learnA(T ) = {(t,A(t)) : t ∈ T} and run a deterministic algorithm onT , A(T ), and the
coin flip outcomes without further access toA. Thus we say that the sampling isnon-adaptive. For convenience, however,
we will present the algorithm in an adaptive way. More specifically, we will present an algorithm that flips coins as it needs
them, and such that the algorithm’s actions (but not sample locations) depends on previously-computed values, including
coin flips and sample values. Our goal is to bound the time used by the algorithm, which implies a bound on the number
of samples made. In practice, one can save factors oflog(N) in time by sampling adaptively or by adaptively deciding to
make fewer samples, but this is not the focus of this paper.

3. TECHNICAL LEMMAS

3.1. More on the Dirichlet Kernel

In this section we give a useful technical property of the Dirichlet kernel. The lemma says that if we sample|Ĥk(ω)|2
from ω uniformly picked from a certain type of easily-constructible set we get not much more than the value,1/K, that
we would get if we sampledω uniformly from allZN . This will be motivated below, where it is used.

LEMMA 3.1. LetN be any number and fixK ≤ N . For some constantc, let p0 be any number with|p0| ≤ cN/K and fix
p 6= p0 moduloN . Letb be a random invertible number modN . Then

Eb

[
|ĤK(b(p− p0) + p0)|2

∣∣∣ gcd(b,N) = 1
]
≤ O

(
log(N)
K

)
.

Proof. Let φ(N) be the Euler totient function ofN—the number of positive integers less thanN that are relatively
prime toN . Thenφ(N) ≥ Ω(N/ log(N)). (Stronger statements hold, especially ifN is prime or a power of 2. We omit
the proof.)

By symmetry ofĤK , we may assumep0 ≥ 0. Letg = gcd(p−p0, N); it follows that the distribution onb(p−p0)+p0

is the same as the distribution onbg + p0, whereb is a random invertible element. It is easy to see that|ĤK(ω)| ≤ h(ω),
where the envelopeh : ZN → R is

h(ω) =
{

1, |ω| < N
2K

4N
K|ω| ,

N
2K ≤ |ω| ≤ N/2.

Thus it suffices to show that

Eb

[
|h(b(p− p0) + p0)|2

∣∣∣ gcd(b,N) = 1
]
≤ O

(
N

φ(N)K

)
.

Note thatEb[|h(b)|2] ≤ O(1/K).

We now show thath(bg)2 ≤ O(h(bg + p0)2) for invertible b, so that we may assumep0 = 0. We may assume that
0 ≤ bg ≤ bg+p0 < N/2+N/K, since, otherwise, by the unimodularity ofh, it is easy to see thath(bg) ≤ h(bg+p0). We
consider two cases. First supposebg < N/K. Thenbg+p0 ≤ O(N/K), so, from the definition ofh(), h(bg+p0)2 ≥ Ω(1).
Sinceh() is always at most 1, it follows thath(bg) ≤ 1 ≤ O(h(bg+p0)). Now supposebg ≥ N/K. Thenbg+p0 ≤ O(bg).
Again, it follows from the definition ofh() thath(bg) ≤ O(h(bg + p0)).



To boundE
[
h(bg)2

∣∣∣ gcd(b,N) = 1
]
, proceed as follows. We have

E
[
h(bg)2

∣∣∣ gcd(b,N) = 1
]

=
1

φ(N)

∑
b∈Z∗

N

h(bg)2

≤ 1
φ(N)

∑
b∈ZN\(N/g)ZN

h(bg)2

=
g

φ(N)

∑
0<b<N/g

h(bg)2

=
g

φ(N)

∑
−N/(2g)≤b<N/(2g),b 6=0

h(bg)2,

since, by periodicity,h((b + jN/g)g) = h(bg), for integersj. Sinceh(x)2 decreases as|x| increases, we haveh(bg)2 ≤
1
g

∑
0≤x<g h(bg−x)2, if 0 < bg ≤ N/2. Thus we have, using symmetry ofh and double countingh(N/2) when 2 divides

N/g,

E
[
h(bg)2

∣∣∣ gcd(b,N) = 1
]

≤ g

φ(N)

∑
−N/(2g)≤b<N/(2g),b 6=0

h(bg)2

≤ 2g
φ(N)

 ∑
0<b≤N/(2g)

h(bg)2


≤ 2g

φ(N)

 ∑
0<b≤N/(2g)

1
g

∑
0≤x<g

h(bg − x)2


≤ 1

φ(N)

 ∑
0≤b<N

h(b)2

− h(0)2 + h(bN/2c)2
 ,

where the last term,h (bN/2c)2, is only needed if 2 dividesN/g. By definition ofh, we haveh(0)2 ≥ h (bN/2c)2, so that

E
[
h(bg)2

∣∣∣ gcd(b,N) = 1
]

≤ 1
φ(N)

 ∑
0≤b<N

h(b)2

− h(0)2 + h(bN/2c)2


≤ 1
φ(N)

∑
0≤b<N

h(b)2

≤ O

(
N

φ(N)
· 1
K

)
.

3.2. AP-Independence

To estimate the expectationE[Y ] of a random variableY , we can form a collection{Xk} of independent and identically-
distributed copies ofY . We can then defineX = 1

K

∑K
k=1Xk. ThenE[X] = E[Y ] andvar(X) = 1

K var(Y ); the reduced
variance will allow us to estimateE[X] from a sample ofX. It is known that theXk ’s need only be pairwise independent
for this variance argument to work. We will now claim that the argument holds for a particular construction ofXk ’s with
somewhat less than pairwise independence.

DEFINITION 3.2. Fix N and letφ be a complex-valued function onZN . FixK ≤ N . Then a sequence(Xk : 0 ≤ k < K)
of random variables is calledN -arithmetic-progression-independent(briefly,ap-independent) φ−1-distributed, if the joint
distribution on the sequence can be obtained by writingXk = φ(tk), wherea is a random integer modN , b is a random
invertible integer modN , andtk = a+ bk.



Note that, ifN is a prime, then the family{a+ bk : 0 ≤ k < K} for randoma and randomb, is pairwise independent,
so the familyXk = φ(a + bk) of random variables is pairwise independent, as usual. Our construction differs in some
important respects. For example,b is restricted to be invertible modN , so the valuesa + bk anda + bk′ are guaranteed
to be different fork 6= k′. It follows thata + bk anda + bk′ are guaranteed to bedependent, and soXk andXk′ are
dependent, except for trivialφ. Nevertheless, we show that ap-independent random variables are sufficiently independent
for the desired variance reduction.

LEMMA 3.3. Fix K andN with K ≤ N . Let φ be a complex-valued function ofZN and let (Xk) be a sequence of
K ap-independentφ−1-distributed random variables. LetX = 1

K

∑
k Xk and letY be distributed independently and

identical to theXk ’s. ThenE[X] = E[Y ], andvar(X) ≤ O
(

log(N)
K

)
var(Y ).

Proof. Note that eachtk is uniformly distributed, so the statement about expectation follows from the linearity of
expectation. Note thatE[Y ] = 1√

N
φ̂(0). From the definition of variance and Parseval’s equality,

var(Y ) =
1
N

(∑
t

|φ(t)|2 − |φ̂(0)|2
)

=
1
N

∑
ω 6=0

|φ̂(ω)|2.

Suppose(Xk) is defined on the arithmetic progressiona + bk, so thatXk = φ(a + bk). Then supp(HK) =
{0, 1, 2 . . . ,K − 1}, sosupp(P0,−1/bHK) = {0,−b,−2b, . . . ,−(K − 1)b}, and so

(φ ? P0,−1/bHK)(a) =
∑

r+s=a

φ(r)
(
P0,−1/bHK

)
(s)

= φ(a)HK(0) + φ(a+ b)HK(−b) + φ(a+ 2b)HK(−2b) + · · ·
+φ(a+ (K − 1)b)HK(−(K − 1)b)

=
√
N

K

∑
0≤k<K

Xk,

sinceHK is equal to
√

N
K on its support. ThusX = (φ ? P0,−1/bHK)(a)/

√
N . So, conditioned onb and taking variance

in a,

vara(X|b) =
1
N2

∑
ω 6=0

∣∣∣(φ ? P0,−1/bHK)b(ω)
∣∣∣2 =

1
N

∑
ω 6=0

∣∣∣φ̂(ω)ĤK(bω)
∣∣∣2 .

We now take expectation ofvara(X|b) with respect tob. Using Lemma 3.1 withp = ω andp0 = 0, we have as desired:

var(X) ≤ 1
N

∑
ω 6=0

∣∣∣φ̂(ω)
∣∣∣2 max

ω 6=0
Eb

[∣∣∣ĤK(bω)
∣∣∣2] ≤ O

(
log(N)
KN

)∑
ω 6=0

∣∣∣φ̂(ω)
∣∣∣2 .

In the sequel, we will substitute AP-independent random variables for pairwise independent random variables. When
we do, Lemma 3.1, even for the special case ofp0 = 0, suffices to insure that the variance reduction succeeds. The more
general Lemma 3.1 forp0 6= 0 will be used in a different context.

4. ALGORITHM

4.1. Overview

In a bit more detail than above, each iteration of our algorithm proceeds as follows:

• SAMPLE fromA−R inK ≈ m correlated random positions, whereR hasL terms, in total time(K+L) logO(1)(N).
(The locations of the samples are defined by the following operations.)

– Sample from the given signalA in timeO(1) per sample, as hypothesized.



– Sample fromR by performing an unequally-spaced fast Fourier transform.

• IDENTIFY a set of “significant” frequencies in the spectrum ofA−R.

– ISOLATE one or more modes ofA −R. Generate a set{Fk : k < K} of K new signals fromA −R where
K ≤ O(1/η) is sufficiently large, so that eachω that isη-significant inA−R is likely to be(1−γ)-significant
in someFk for some small constantγ.

∗ PERMUTE the spectrum ofA−R by a random dilationσ, gettingPσ,0(A−R)
∗ FILTER Pσ,0(A −R) by a filterbank of approximatelym equally-spaced frequency-domain translations

of the Boxcar Filter with bandwidth approximatelyN/m and approximatelym common taps. Getm new
signals, some of which have a single overwhelming Fourier mode,σω, corresponding to significant mode
ω in A−R.

∗ Undo the above permutation, thereby makingω overwhelming instead ofσω.

– GROUP-TESTeach new signal to locate the one overwhelming mode,ω. Learn the bits ofω one at a time, least
to most significant.E.g., for the least significant bit:

∗ PROJECTION. Project eachFk onto the space of even frequencies and the space of odd frequencies.
∗ NORM ESTIMATION . Estimate the norm of each projection, thereby learning the least significant bit ofω.

• ESTIMATE the Fourier coefficients of these “significant” frequencies by computing the Fourier coefficients of the
sampled residual using an unequally-spaced fast Fourier transform algorithm and normalizing appropriately.

• ITERATE in a greedy pursult.

We now consider the pieces, one at a time.

4.2. Sampling from a Representation

Given a formal representationR =
∑

ω∈Λ cωψω and a setT of times, we want{R(t) : t ∈ T}. Then our problem is a
form of unequally-spaced discrete Fourier transform; that is, multiply the Fourier submatrixFΛ,T by the vectorcΛ:

ϕt1ω1 ϕt1ω2 · · · ϕt1ω|Λ|

ϕt2ω1 ϕt2ω2 · · · ϕt2ω|Λ|

...
...

ϕt|T |ω1 ϕt|T |ω2 · · · ϕt|T |ω|Λ|

 ·


cω1

cω2

...
cω|Λ|

 ,

whereϕ = 1√
N
e2πi/N . For simplicity, letK = |Λ| + |T |. There are algorithms11, 14 to compute this matrix vector

multiplication in timeKpolylog(K), with onlyO(log(K)) overhead in the number of bits of precision. This problem is
similar to a problem below involving estimating coefficients, where the matrix is transposed. For completeness, we sketch
an algorithm for that problem; a similar algorithm works for this problem.

4.3. IDENTIFICATION of Significant Modes

Recall that the IDENTIFICATION step consists ofISOLATION andGROUP TESTING. We address isolation first.

4.3.1.ISOLATION

We use the Dirichlet kernelHK , for appropriateK, to isolate frequencies. More precisely, we will use a filterbank ofK
modulations of the Dirichlet kernel (i.e., K translations in the frequency domain). We will first permute the spectrum of a
given signal by a random dilation, then filter withHK , and then undo the dilation. Equivalently (and more conveniently),
we will apply a random dilation to the filters in the filterbank, as follows:

DEFINITION 4.1. Given signalA of lengthN , and given parameterK a power of 2, aK-shattering ofA is a collection{
1√
N

(PkN/K,σHK) ?A
}

k
, whereσ is a random number invertible modN .

The next lemma guarantees that aK-shattering isolates significant frequencies. That is, each desired frequency is
isolated in some element of the shattering with probability close to 1.



LEMMA 4.2. Let γ be any positive constant. Letω0 be anη-significant frequency inA, so that|Â(ω0)|2 ≥ η ‖A‖2.
Then, for someK ≤ O(log(N)/(γη)), in aK-shattering{Fk}k of A, with probabilityΩ(1), there existsk ≤ K such that
|F̂k(ω0)|2 ≥ (1− γ) ‖Fk‖2.

Proof. Note that there is somek such that

|σω0 + kN/K| ≤ N/(2K). (1)

Then, by the properties of the Dirichlet kernel,|( ̂PkN/K,σHK)(ω0)| = |ĤK(σω0 + kN/K)| ≥ 2/π, whence, for some

constantc, |F̂k(ω0)|2 = |ĤK(σω0 + kN/K)|2|Â(ω0)|2 ≥ cη ‖A‖2. Next, for eachk,

‖Fk‖2 − |F̂k(ω0)|2 =
∑

ω 6=ω0

|F̂k(ω)|2 =
∑

ω 6=ω0

|Â(ω)|2|ĤK(σω + kN/K)|2.

Lemma 3.1 implies thatEσ

[
|ĤK(σω + kN/K)|2

∣∣∣ (1) holds
]
≤ 1

4cγη, so that

E
[
‖Fk‖2 − |F̂k(ω0)|2

∣∣∣ (1) holds
]
≤ 1

4
cγη ‖A‖2

.

By Markov, it follows that, for eachk, with probability at least3/4, if (1) holds, then‖Fk‖2 − |F̂k(ω0)|2 ≤ cγη ‖A‖2. In
that case,|F̂k(ω0)|2 ≥ (1− γ) ‖Fk‖2, as desired.

LEMMA 4.3. Given sampling access to a signalA, and a dilationσ, one can compute theK-shattering{
1√
N

(PkN/K,σHK) ?A
}

k

in timeO(K log(K)).

Proof. We assumeσ = 1; the general case is similar. From the definitions,
{
(PkN/K,1HK) ?A

}
k

is the DFT of the
sequenceA[0],A[1], . . . ,A[K − 1], which can be computed efficiently by the FFT algorithm.

4.3.2.GROUPTESTING

Now we show how to project the signal approximately onto the space of even and odd frequencies. We also generalize this
to other pairs of subspaces that we will need. Note that we donotassume thatN is even.

DEFINITION 4.4. Define the filterbank pairG±
n byG±

n =
(√

N
2

)(
δ0 ± δbN/2n+1c

)
.

The next Lemma shows how these filters can be used to find the(n + 1)’s least significant bit ofω, provided we
know then least significant bits (by induction) and a few of the most significant bits, which we can assume by trying all
possibilities exhaustively. If we know the values of any bit positions in an otherwise unknownω0, we can modulate the
relevant signal (i.e., translate the spectrum), so that all of the known bit positions become zeros, which we assume below.
This does not change any of the unknown bit positions. Below, we can assume that0 ≤ ω0 < Nγ/π by exhaustively
trying all π/γ possibilities for the most significantlog(π/γ) ≤ O(1) bits ofω0.

LEMMA 4.5 (PROJECTION). For all γ > 0 and alln, if 0 ≤ ω0 < Nγ/π andω0 = 0 mod 2n, then{
1− γ ≤ |Ĝ+

n (ω0)|2 ≤ 1 and |Ĝ−
n (ω0)| ≤ γ, if ω0 = 0 mod 2n+1

1− γ ≤ |Ĝ−
n (ω0)|2 ≤ 1 and |Ĝ+

n (ω0)| ≤ γ, if ω0 = 2n mod 2n+1.

Proof. ForN a power of 2, the result is known from earlier.1 We sketch that algorithm as an ideal case. We then
generalize the result to otherN .

So assumeN is a power of 2. DefineF±
0 = (

√
N/2)(δ0 ± δN/2). It’s easy to see that

F̂+
0 (ω) =

{
1, ω even
0, ω odd,



and, similarly,F̂−
0 (ω) is 0 or 1, respectively, depending on whetherω is even or odd. More generally, defineF±

n =

(
√
N/2)(δ0 ± δN/2n+1). It’s easy to see that̂F+

n (ω) = 1 if ω = 0 mod 2n+1 andF̂+
n (ω) = 0 if ω = 2n mod 2n+1;

F̂−
n (ω) = 1− F̂+

n (ω) if ω = 0 mod 2n+1.

Now consider generalN . We cannot use the ideal filters(
√
N/2)(δ0 ± δN/2), becauseN/2 is not necessarily an

integer. Instead, we will defineG±
0 = (

√
N/2)(δ0 ± δbN/2c). Then

Ĝ+
0 (ω) =

1 + e2πiωbN/2c/N

2
.

Put∆ = N/2− bN/2c, so∆ = 0 or ∆ = 1/2. Thus

Ĝ+
0 (ω) =

1 + e−2πiω∆/N (−1)ω

2
.

Now, suppose0 ≤ ω0 < Nγ/π. Thenπω0∆/N ≤ γ/2. Thus, if ω0 is even,Ĝ+
0 (ω0) = (1 + e−2πiω0∆/N )/2 ≈

1+πiω0∆/N so that|Ĝ+
0 (ω0)− 1| ≤ γ and, similarly,|Ĝ−

0 (ω0)| ≤ γ, providedγ is small enough to forceπω/N ≤ γ to

be small enough that|1− e−2πiω0∆/N | ≤ 4πω0∆/N . Similarly, if ω0 is odd, then|Ĝ+
0 (ω0)| ≤ γ and|Ĝ−

0 (ω0)− 1| ≤ γ.
It follows that, for sufficiently smallγ ≥ Ω(1), the filtersG±

0 behave similarly toF±
0 , provided0 ≤ ω0 < Nγ/π; i.e.,

provided the most significantlog(π/γ) bits ofω0 are zero. Similar considerations hold forG±
k , k > 0. In general, we will

perturbt ≈ N/2n by ∆ ≤ 1/2 to get an integerbN/2nc or dN/2ne; we then need|ω| ≤ Nγ/π so that the perturbation

2πiω∆/N is at mostγ, so that(e2πi∆t/N − 1)/2 ≈ γ/2 ≤ γ. Finally, |Ĝ±
n (ω)|2 ≤ 1 for all ω by the triangle inequality.

4.4. Norm Estimation

Next, we show how to estimate norms (equivalently, energies), by sampling. We cannot estimate norms reliably (for
example, if the signal consists of a single spike, our sampling algorithm cannot find the spike to learn its height). But we
can get a certain one-sided estimate that suffices for us. Similar lemmas appeared earlier.1, 2, 10 Below, we sketch a proof.

DEFINITION 4.6. For integerJ and signalA, define the estimator‖A‖2
∼J (or ‖A‖2

∼, if J is understood) as follows.
ChooseJ pointst at random. Take the median ofN

8 |A(t)|2 over the pointst.

LEMMA 4.7 (NORM ESTIMATION). There exists constantsα > 0 and β > 0, and, for all δ > 0, there exists
J ≤ O(log(1/δ)) such that the following hold with probability at least1− δ:

• ‖A‖2
∼J ≤ ‖A‖2 (for anyA);

• if |Â(ω)|2 ≥ (1− α) ‖A‖2 for someω, then‖A‖∼
2
J ≥ β ‖A‖2.

Proof. LetX = N |A(t)|2 for randomt ThenE[X] = ‖A‖2. First consider the upper bound. SinceX ≥ 0, by the
Markov inequality, it follows thatPr(X > 8E[X]) ≤ 1/8.

Now consider the lower bound. Writeψ = Â(ω)ψω andν = A − ψ, where〈ψ, ν〉 = 0. Let T = {t : 1
8N |A(t)|2 <

β ‖A‖2} for some constantβ to be determined;i.e., T is the set of positionst that would cause18X(t) to be a severe

underestimate of the energy. Fort ∈ T , we have|ν(t)|2 ≥ (|ψ(t)| − |A(t)|)2 ≥ (
√

1−α−
√

8β)2

N ‖A‖2 = γ
N ‖A‖2. Thus

α ‖A‖2 ≥ ‖ν‖2 ≥ |T | · γ
N ‖A‖2, so|T |/N < 1/8 for appropriateα, β, andγ. That is,Pr

(
1
8X < β ‖A‖2

)
= |T |/N <

1/8. Thus, with probability at least 3/4, we haveβ ‖A‖2 ≤ 1
8X ≤ ‖A‖2 (“success”). If the median ofJ repetitions fails

then at leastJ/2 of the repetitions fail, which has probability at moste−Ω(J) = δ by the Chernoff equality.



4.5. ESTIMATION of Coefficients for Significant Frequencies

In the previous step we generate a set ofL significant frequencies. In the ESTIMATION step, we estimate the contribution
each significant frequency makes to the signal;i.e., we estimate its Fourier coefficient. Our technique allows us to estimate
several coefficients (not just one) with bulk sampling. In what follows, we define an estimator, show that the estimator
approximates Fourier coefficients, then show how to compute the estimator efficiently in bulk.

DEFINITION 4.8. Given frequencyω and parametersJ andK, define the random variablễAJ,K(ω) as:

˜̂AJ,K(ω) = medianj≤Jmeank≤K

√
NA(tj,k)e−2πiωtj,k/N ,

where, independently for eachj and eachk, we pick a randomtj,k. The median of the set of complex numbers is performed
by taking medians separately in the real and imaginary directions.

LEMMA 4.9. For any signalA, any frequencyω, and any parametersη > 0 andδ > 0, there are aJ ≤ O(log(1/δ)) and

aK ≤ O(1/η), such that

∥∥∥∥ ˜̂AJ,K(ω)− Â(ω)
∥∥∥∥2

≤ η ‖A‖2 with probability at least1− δ.

Proof. (Sketch.) LetX = NA(t)ψω(t). ThenE[X] = Â(ω) andvar(X) ≤ ‖A‖2. Then the mean ofK copies has
variance at mostO(η ‖A‖2). Then take a median ofJ ≤ O(log 1/δ) trials of this random variable. The standard Chernoff
inequality guarantees our result.

Henceforth, assumeJ = 1. At this point, we have not discussed the computation of˜̂AJ,K(ω), though it is straightfor-

ward to compute each̃̂AJ,K(ω) in time JK = Θ(J/η). One can see from the definitions, however, that computation of
all K estimates (where, wlog,J = 1), is an unequally-spaced discrete Fourier transform problem. Thus we have

LEMMA 4.10 (BULK ESTIMATION). There exists a sampling algorithm that takes oracleA and takes inputsK, L,
M ,N andL frequenciesωl, such that the algorithm has time cost(L+K) logO(1)(N) log(M), and the algorithm outputs

a sample from the distribution on the vector

( ˜̂A1,K(ω`)
)

`

of specified Fourier coefficient estimates to within precision

± 1
M ‖A‖, additively.

In fact, only pairwise independent set oft’s will suffice for the variance reduction above. Furthermore, by Lemma 3.3,
we can take thetk ’s to be points on a random arithmetica + bk progression withk invertible, which results in a pairwise
independent family ifN is prime, but generally not otherwise. If thetk ’s are on a random arithmetic progression, then the
computation can become simpler, in theory and practice. For completeness, we sketch a simple algorithm, a variation of
which appeared earlier.15 A similar algorithm works for bulk sampling, Section 4.2, above.

Our goal is to compute
∑

k A(tk)e−2πiωtk/N =
∑

k A(a+ bk)e−2πiω(a+bk)/N for eachω in some setΛ. We assume
a = 0 andb = 1; the general case is similar. Then

∑
k A(k)(e−2πiω/N )k is the evaluation of a degree-K polynomial

p on each ofL = |Λ| complex points of unit norm. Note that ifΛ is a subset of the setΛ∗ of equally-spaced (“cyclo-
tomic”) points around the unit circle, then we would be asking for the (ordinary) discrete Fourier transform of the sequence
A(0), . . . ,A(K − 1), for which there are efficient algorithms. Instead, computep, p′, p′′, . . . on Λ∗, wherep′, p′′, etc.,
are the first few derivatives ofp, computed termwise. Then approximatep(ω) for eachω ∈ Λ by expandingp in a Taylor
polynomial at a cyclotomic point nearω. One can verify that the convergence of the Taylor series is exponential, so just a

small number of terms are needed. We can call this lemmaJ times and take a median to compute˜̂AJ,K(ωk) for J > 1.

Although Lemma 4.10 suffices in theory, a better estimator will be useful both for our analysis and in practice. We
want to bound the coefficient error in terms of the possibly much smaller quantity‖A−R∗‖2 ≤ ‖A‖2, whereR∗ is the
representation overΛ with optimal coefficients. This is done iteratively. A proof of the following appeared earlier.10

LEMMA 4.11 (ITERATIVE BULK ESTIMATION). There exists a sampling algorithm that takes oracleA and takes
inputs (δ, ε, L,M,N) and L frequenciesωl, such that, with probability at least1 − δ, the algorithm outputs anL-

term representationR such that, for each̀ < L, |Â−R(ω`)|2 ≤ (ε/L) ‖A−R∗‖2, whereR∗ is the optimalL-
term representation, the algorithm has time cost bounded byL log(1/δ) logO(1)(N) log(M)/ε, and where we assume
‖A−R∗‖2 ≥ 1

M ‖A‖2.



4.6. ITERATION upon IDENTIFICATION and ESTIMATION

Above we showed, for anyη andL, given a signalA as oracle, and a representationR of at mostL terms we can, in time
(L/ε+1/η)(log(N)+log(1/η))O(1) log(1/δ), find a listΛ containing all frequenciesω with |Â−R(ω)|2 ≥ η ‖A−R‖2

and, for eachω ∈ Λ, estimateÂ−R(ω) as
˜̂A−R(ω) with∣∣∣∣ ˜̂A−R(ω)− Â−R(ω)

∣∣∣∣2 ≤ (ε/L) ‖A−R∗‖2
,

whereR∗ is the projection ofA onto the frequencies inΛ. We now show how to use this repeatedly to recover an
approximate representation for the signal.

In the sequel,L and1/η can be as large asm, so a single round of identification and estimation may already take
time linear inm. On the other hand, it is possible that, for some intermediate representationR with ‖A−R‖2 �
‖A−Ropt‖2, a single iteration of greedy pursuit only produces a single new frequency. So a straightforward bound on
the number of iterations would bem, giving a runtime bound ofm2. Instead, we will bound the number of interations
independently ofm (ignoring log factors), by considering the decrease in‖A−R‖2 rather than counting the number of
new frequencies.

Our goal will be a representationR such that‖A−R‖2 is bounded by either(1 + ε) ‖A−Ropt‖2 or 1/M2. Intu-
itively, the bound of(1 + ε) ‖A−Ropt‖2 holds in the noisy case and1/M2 holds whenA is an exact superposition. In
the latter case, note that the coefficients inRopt may be irrational even if the input values inA are integers, so a scheme
that outputs an answer correct to±1/M , i.e., log(M) bits, in timelogO(1)(MN) is considered “exact output.”

Next we give our algorithm. The algorithm will use positive constantsc0, c1, c2 and our analysis will use additional
positive constantsc3, etc., described below.

ALGORITHM 4.12. Input:M,N, ε,m, δ
Oracle:A, representing a signal of lengthN
Output:m-term representation,R, such that, with probability at least1− δ, we have‖A−R‖2 ≤ (1 + ε) ‖A−Ropt‖2

or ‖A−R‖2 ≤ 1/M2.

R0 = 0, formally, andΛ0 = ∅
T = c0 log(M/ε)/ε2

for(t = 0; t ≤ T ; t++){

Find a listL of ω with
∣∣∣Â−Rt(ω)

∣∣∣2 ≥ c1
ε2

m ‖A−Rt‖2.

PutΛt+1 = L ∪ Λt.

Estimate coefficients forω ∈ Λt+1 so that| ˜̂A−Rt+1(ω)|2 ≤ c2ε2

|Λt+1|+m

∥∥A−AΛt+1

∥∥2

}
OutputRm

T , the topm terms inRT .

We now proceed with analysis. First we show that we can assume the signal is noisy. Starting with a signal,A,
add a spike (i.e., noise),ν, with ‖ν‖ = ε

36M , in a random location, and with sign chosen so that, for any(N/4)-term
representationR, ‖A + ν −R‖ ≥ ε

144M . Then find a(1 + ε)-factor approximationR to A + ν and return it as an

representation forA. It is straightforward to check that‖A−R‖2 is bounded by either(1 + ε) ‖A−Ropt‖2 or 1/M2,
as desired. Since our sampling algorithm seesν only with small probability, our algorithm won’t change as a result
of addingν; this is a fiction for analysis only. So, henceforth, we assume that, for any(N/4)-term representationR,
‖A−R‖ ≥ ε

144M ; we show how to get a relative-error approximation toA.



We now give an informal discussion of correctness. Similar proofs have appeared,1–3 but some care is needed to
keep the overall time cost approximately linear inm rather than quadratic inm, by showing that the number of rounds is
roughly independent ofm and that the previous lemmata for finding frequencies and estimating coefficients can be used
with parameters leading to time linear inm.

Fix an optimal representation,Ropt =
∑

ω∈Λopt
cωψω. Consider the relative improvement‖A−Rt+1‖

‖A−Rt‖ . For appropriate

constantc3, this ratio cannot be less than(1 − c3ε
2) for all t, since, otherwise,‖A−RT ‖ ≤ (1 − c3ε

2)T ‖A−R0‖ ≤
ε/(144M), a contradiction, ifT ≤ O(log(M/ε)/ε2) is sufficiently large. (Note that, crucially,T is independent ofm.) So
suppose, for somej and appropriatec3, that‖A−Rj+1‖ > (1− c3ε

2) ‖A−Rj‖.

Define Λopt′ = {ω ∈ Λopt : |cω|2 ≥ (c4ε/m) ‖A−Ropt‖2}, for some constantc4. Note that, ifRopt′ =∑
ω∈Λopt′

cωψω, then‖A−Ropt′‖2 ≤ (1+c4ε) ‖A−Ropt‖2. Thus we can bound‖A−R‖2 in terms of‖A−Ropt′‖2

instead of‖A−Ropt‖2.

We next claim thatΛopt′ ⊆ Λj+1 ⊆ ΛT . First, toward a contradiction, suppose‖A−Rj‖2
> 2 ‖A−Ropt′‖2. Then,

ignoring the coefficient approximation error inRj (by Lemma 4.11, the total square error is much less than‖A−Rj‖2),
we conclude thatΛopt′ \Λj has energy at least‖A−Rj‖2 −‖A−Ropt′‖2 ≥ (1/2) ‖A−Rj‖2. An iteration of greedy
pursuit finds frequenciesω and good approximations to coefficientscω provided that|cω|2 ≥ (c1ε2/m) ‖A−Rj‖2; it
follows that most of the energy inΛopt′ \ Λj is found—all butc1ε2 ‖A−Rj‖2 is found—so that‖A−Rj+1‖2 ≤
(3/4) ‖A−Rj‖2, contradicting the definitions ofj andc3. So suppose‖A−Rj‖2 ≤ 2 ‖A−Ropt′‖2. Thenω ∈ Λopt′

satisfies|cω|2 ≥ (c4ε/m) ‖A−Ropt‖2 ≥ (1 + c4ε)−1(c4ε/m) ‖A−Ropt′‖2 ≥ (c4ε/(2m)) ‖A−Rj‖2, so we recover
suchω on the next iteration of greedy pursuit.

Since the coefficient estimation error is small enough, it follows thatRj+1 is a representation with sufficiently small
error that is “constructed” sufficiently quickly. Several problems remain. First, we don’t know whatj is, in general, so
we would have to useRT . Second, we are required to return just anm-term representation whereasRT may have, say,
m log(N) terms. (In some applications, of course, the number of terms is not critical, only the goodness of approximation
and construction time. In that case,RT is an acceptable output.) Although our estimates of coefficients are good enough
to be ignored from the perspective of overall error, tiny errors in coefficient estimation may cause us to choose the wrong
set of frequencies as the topm terms inRT . We now show that, while this can happen, the resulting error is acceptable.

Supposeω ∈ Λopt′ with ideal coefficientcω is displaced byω∗ ∈ Λm
T , and supposẽcω∗ is the coefficient ofω∗ in our

output. Then the error attributed to this exchange isEx = |c̃ω∗ − cω∗ |2 + |cω|2 − |cω∗ |2. By goodness of approximation,
|c̃ω∗ − cω∗ |2 ≤ (c2ε2/m) ‖A−Ropt‖2. Next, becauseω ∈ Λopt′ , it follows that |c̃ω∗ − cω∗ |2 ≤ (c2ε/c4)|cω|2. Thus it
follows, if constants are chosen properly, thatEx ≤ (1 + ε)|cω|2 − |cω∗ |2, and we need to show thatEx is small compared
with the unavoidable error,|cω∗ |2. Because we choseω∗ overω, we have|c̃ω∗ |2 ≥ |c̃ω|2, which is at least(|cω|−|cω−c̃ω|)2
by the triangle inequality. By goodness of approximation and becauseω ∈ Λopt′ , this is at least(|cω| −

√
c2ε/c4|cω|)2 =

(1 − c5
√
ε)|cω|2. It follows thatEx ≤ c6

√
ε|cω∗ |2. By replacingε by ε2/c26, we conclude that each displacement of

an optimal frequency by a suboptimal one increases its contribution to the error by the factor(1 + ε), so the combined
contributions blow up the error by at most the same factor. We conclude that‖A−Rm

T ‖
2 ≤ (1+ε) ‖A−Ropt‖2; i.e., the

algorithm is correct. We claim without proof that the constantsc0, c1, . . . can be set consistently. The main result follows.

5. HIGHER DIMENSIONAL VERSIONS

In this section, we sketch how to generalize our algorithm to more than one dimension. Suppose that the time and frequency
domain isN1×N2×· · ·×Nd, whereN =

∏
j Nj . In higher dimensions, the basis functions are of the formψω1,ω2,...,ωd

,
defined by

ψω1,ω2,...,ωd
(t1, t2, . . . , td) = ψω1(t1)ψω2(t2) · · ·ψωd

(td) =
1√
N
e2πi(ω1t1+ω2t2+···+ωdtd)/N1 .

Observe that if the originalN1, N2, . . . are relatively prime, then theN1 ×N2 × · · · ×Nd problem ind dimensions is
equivalent to the one-dimensional problem of sizeN1 ·N2 · · ·Nd. The equivalence is efficient to realize, using the Chinese
remainder theorem. More generally, by the fundamental theorem of finitely-generated abelian groups, we may assume that



N1

∣∣N2

∣∣ · · · ∣∣Nd′ , whered′ ≤ d, and where eachNi is greater than 1. By extending the data periodically, we may assume
that all theNi’s are equal, since this “only” blows up the size of each dimension by the factorNd′ ≤ N , for a factor of
Nd overall, andpoly(d, log(Nd)) is comparable topoly(d, log(N)). Henceforth, we’ll assume that the problem shape is

d︷ ︸︸ ︷
N1 ×N1 × · · · ×N1.

There are two main approaches, depending on whether we useHK1/d ⊗ · · · ⊗HK1/d or HK ⊗H1 ⊗H1 ⊗ · · · ⊗H1

as thed-dimensional analog of the Dirichlet kernelHK in one dimension. Both have issues.

If we useHK1/d ⊗ · · · ⊗ HK1/d , then the algorithm above for one-dimensional signals can be generalized to higher
dimensions in a straightforward way, but it will not be efficient. First, we pay a factorO(1) in one dimension because the
“pass” region|ω| ≤ N

2K of Hk actually attenuates energy by as much as(2/π)2. In higher dimensions, theO(1)-factor
penalty becomes2O(d) (i.e., something like(π/2)2d), depending on engineering choices. This may be acceptable ford ≤ 3.
Other computational bottlenecks, however, are much worse than2O(d). For example, a straightforward generalization of
an unequally-spaced fast Fourier transform algorithm tod dimensions may cost(log(M) log(N))d, which is typicallynot
acceptable.

Instead, if we useHK ⊗ H1 ⊗ H1 ⊗ · · · ⊗ H1, then it is necessary to permute the spectrum pairwise randomly (or
“close” to that, in some sense), and the straightforward techniques fail. For anyN1, we can map eachonespectral position
uniformly. But supposeN1 is a power of 2 andd = 2, and(ω1, ω2) and (θ1, θ2) are two freqencies with difference
(ω1 − θ1, ω2 − θ2) = (0, N/2). Consider a mapping of the form

P :
(
θ1
θ2

)
7→
(
a b
c d

)(
θ1
θ2

)
+
(
e
f

)
(2)

where the matrix is invertible; this is a spectral permutation. Any such mapping will map(θ1, θ2) to (ω1, ω2) + (g, h),
where(g, h) is in the set{(0, N1/2), (N1/2, 0), (N1/2, N1/2)}. That is, conditioned onP(ω1, ω2), there is just a small
orbit of three possibilities forP(θ1, θ2). The kernelHK ⊗ H1 ⊗ H1 ⊗ · · · ⊗ H1 will pass at least one of these. So,
conditioned onHK ⊗ H1 ⊗ H1 ⊗ · · · ⊗ H1 passingP(ω1, ω2), there is a1/3 chance thatP(θ1, θ2) will also pass.
Recall that, unfortunately, we wanted just a1/m chance (approximately), so the expected contribution of(θ1, θ2) would
be attenuated by the factorm.

We now discuss partial results.

General Result in Low Dimensions. Note that an algorithm with time cost polynomial ind, m, log(1/δ), log(N),
logM , and1/ε—polynomial inm instead of linear inm—was presented1 for the case ofN1 equal to a power of 2. That
algorithm can be modified in a straightforward way using tools of this paper to handle allN1’s and to have dependence
just quadratic onm, using an ordinary matrix-vector multiplication algorithm instead of an unequally-spaced fast Fourier
transform.

Large Square-Free Divisor. For any(ω1, ω2) and(θ1, θ2) subject to the map (2), conditioned on the kernelHK1/d ⊗
· · · ⊗ HK1/d passingP(ω1, ω2), that kernel will attenuate the energy ofP(θ1, θ2) by approximately the factor1/a or
smaller, wherea is the largest square-free divisor ofN1—that is,a is the product of all primes dividingN1. If a is at least
m, then this will suffice for our purposes. More generally, ifa < m, we can get the algorithm to work at additional cost
factorm/a. As a concrete example, ifN1 is itself a prime at leastm or so, then this algorithm will work.

Power of 2. It remains open to provide an algorithm with costmpoly(d) in d dimensions ifN1 is a power of 2.

6. CONCLUSION

We provided a sampling algorithm that yields, with high probability, am-term Fourier representationR for any input
signalA of lengthN , with the guarantee that‖A − R‖2

2 is within a factor(1 + ε) of the best possiblem-term Fourier
representation. The algorithm samples

m · poly(logN, log ‖A‖, 1/ε)



positions non-adaptively and spends time and space linear in this quantity. Preliminary implementations of our algorithm
indicate that, for exactm-term superpositions for smallm, our algorithm is more efficient than an optimized, publicly-
available FFT package forN approximately 1 million.

The overall structure of this algorithm follows previous work,1–3 but we have to apply two key ideas: bulk estimation
of multipoint polynomial evaluation using an unequally-spaced Fourier tranform, and use of arithmetic-progression inde-
pendent random variables to enable the iterative algorithm. As a result we improve them≥4 factor in previous results to
being linear inm.
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