Improved Time Bounds for Near-Optimal Sparse Fourier
Representations

A. C. Gilber®, S. Muthukrishnafy and M. Strauss

aDept. of Mathematics, Univ. of Michigan. Supported in part by NSF DMS 0354600.
annacg@umich.edu ;
bRutgers Univ. supported in part by NSF DMS 0354600 and NSF ITR 0220280.
muthu@cs.rutgers.edu )
®Depts. of Math and EECS, Univ. of Michigan. Supported in part by NSF DMS 0354600.
martinjs@umich.edu

ABSTRACT

We study the problem of finding a Fourier representalonf m terms for a given discrete signal of length N. The
Fast Fourier Transform (FFT) can find the optim&lterm representation in tim@ (N log N) time, but our goal is to get
sublineartime algorithms whem <« N.

Supposé|A|l, < M [|A — Rep|,, WwhereR,,, is the optimal output. The previously best known algorithms ouput
such thaf| A — R||3 < (1+¢€)||A — Ropt||3 With probability at least — & in time* poly(m, log(1/6),log N,log M, 1/e).
Although this is sublinear in the input size, the dominating expression is the polynomial faetowhich, for published
algorithms, is greater than or equal to the bottleneckathat we identify below. Our experience with these algorithms
shows that this is serious limitation in theory and in practice. Our algorithm beatstHi®ttleneck.

Our main result is a significantly improved algorithm for this problem anditdémensional analog. Our algorithm
outputs arR with the same approximation guarantees but it runs in time

m - poly(log(1/0),log N,log M,1/¢).

A version of the algorithm holds for alV, though the details differ slightly according to the factorization\of For the
d-dimensional problem of siz&; x Ns x - - - x Ny, the linear-inm algorithm extends efficiently to higher dimensions for
certain factorizations of th&;'s; we give a quadratic-imn algorithm that works for any values o¥;’s.

This article replaces several earlier, unpublished drafts.
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1. INTRODUCTION

In many computational applications of Fourier analysis, we are interested only in a small nundf¢he coefficients.

The large coefficients capture the major time-invariant wave-like features of the signal, while the smaller ones contribute
little information about the signal. The largest few Fourier coefficients are useful in data compression, feature extraction,
finding approximate periods, and data mining. The problem of findingrthargest Fourier coefficients of a signal is a
fundamental task in computational Fourier analysis. We address the problem of how to find and estimate these coefficients
quickly and accurately.

Let us denote the optimah-term Fourier representation of a sign&lof length N by R, and assume that, for
someM, we have(1/M) < ||A —Rqpill, < [|[All, < M. Our main result in this paper is an algorithm that uses
at mostm - (log(1/6),log N,log M,1/¢)°(Y) space and time and outputs a representaRosuch that|A — R||3 <
(1+¢€)||A — Ropt||3, with probability at least — 6. We now give some remarks.

Here, the probability is over random choices made by the algorithm, not over the #grihat is, we present a coin-
flipping algorithm. Knowing the algorithm but not coin-flip outcomes, an adversary chooses the worst pAssitiien
coins are flipped and the algorithm proceeds deterministically from the coin flips and the given signal. For each signal, with

*The expressiopoly() denotes a polynomial function of the input.



high probability, the algorithm succeeds. Insttrue that, with high probability, the algorithm succeeds simultaneously
on all signals.

Note that the promised time is much less thgén So our algorithm does not read all the input; we assume that our
algorithm can read\ [¢] for at¢ of its choice in constant time. It turns out that treewhere the algorithm looks at the signal
are chosen randomly (from a non-uniform distribution) but do not adapt to the signal,

Since timem is needed just to output the coefficients, our cost is optimal in the parame&f®e also give extensions to
some multidimensional cases, paying a fadfo) for ad-dimensional problem. Previously known restiltsgive similar
bounds except for the dependencerenwhich is linear in our algorithm, and at least quadratic in the other algorithms.
This represents a much-needed, significant improvement. Other* wotknds the number of samples somewhat better
than ours, but that algorithins at least linear inV.

There are three previously published papers on this problem; unfortunately, there are some missing links in citations.
In the first, breakthrough resultthe author studies a variation of our problem and presents an algorithm to which one can
immediately reduce our problem for the ca¥ea power of 2 (but not for othel). Later? the authors, unaware of the
previous result, give an algorithm for anyv, power-of-2 or not, with cost polynomial ifim log(N)). Recently, indepen-
dently of that,? another work presentsn algorithm with cost polynomial itm log(N)) for values of N beyond just the
power of 2 previously considerddThe motivating applications in these three papers were quite different: ledrBiRd;,
approximatior? and list decoding for producing hard-core predicates in cryptograpmfortunately, the dependence on
m in all of these papers is quite high. In some of these restitthe cost is “polynomial inn”; a close look at the cobt
reveals it to be at leash22. Later? the cost is at leas=> (the heart of the procedure is in Section 7.2.4 where this
complexity emerges). The polynomial in other factors is reasonable.

Previous papets® focused on learning, complexity theory and sampling complexity respectively. In contrast, our
focus is on practical applications of Fourier methods. There are a number of applications, e.g., pseudospectral methods
for differential equations,finding approximate correlation of sign&lsnd deconvolving blurred signalsyhere the best
m Fourier coefficients suffice and currently, the full DFT is used instead. The full DFT, however, is a computational
bottleneck in these applications. This motivated us to consider sampling algorithms for estimatingotst Fourier
terms more efficiently. We consider three algorithms: FEFF popular, optimized FFT package, our near-lineatin-
algorithm, and a simplified quadratic-in-algorithm that, due to its relative simplicity and low overhead, is faster, for
smallm, than the near-linear-in: algorithm. We find in practice that, ifi ~ 30 and N ~ 4 million, all three algorithms
take about the same amount of tith&his shows that asymptotic performance is reached for reasonable vatuearaf
N. We expect comparable performance for certain instances of the multidimensional algorithm. Experimental analysis of
an earlier algorithm can also be foutt.

Our algorithm, at a high level, proceeds in a greedy fashion. Given a signaé set the representati@to zero and
consider the residugl — R. We make progress on lowerifidh — R|| by repeatedly

e SAMPLING from A — R in approximatelymn correlated random positions.
e |DENTIFYING a set of “significant” frequencies in the spectrumfdf- R and

e ESTIMATING the Fourier coefficients of these “significant” frequencies.

Once we have estimated the significant coefficients, we add their contribution to the repres&tatibiteratively analyze
the residual signaA — R.. This framework is similar to previous work although the specific steps differ substantively,
and are the achievements of this paper.

From a technical view, there are sevefdin?) bottlenecks in the overall framework. An-term superpositiod\ —
R may have onlyN/m points with non-zero value, in unknown time positions. It follows that one needs to sample
approximatelym positions and do worl2(m) in order to learn anything. It is then critical that thi§m) work not
be repeated to learn information about each of(¥e:) frequencies inA or eachQ(m) frequencies in an intermediate
representatiolR. We break thig2(m?) bottleneck by showing:

fWhile the analyses of the algorithin3 are not tight inm, one could tighten their analyses and show that the algorithms do, in fact,
take timeQ(m?).



¢ how to obtainQ(m) samples fromA andR. in mpolylog(N) = mlogo(l)(N) work (despite the fact th& may
contain, saym/2 frequencies),

e how to identify all (at mosO(m)) significant frequencies il — R in total workmpolylog(N), and

e how to estimate up t®(m) Fourier coefficients imA at once fromm samples with worknpolylog(N).

Note that it takes work approximately to obtain asinglesample from dm/2)-term intermediate representation, to iden-
tify a singlesignificant frequency, or to estimatesimglecoefficient to sufficent accuracy. It follows that a straightforward
algorithm for any of these three-fold steps would cos2(m?).

The task of samplingn times from an intermediate.-term representation and the task of computing the natural
estimates forn Fourier coefficients fromn random samples are both forms of theequally spaced discrete Fourier
transformproblem;i.e,; multiplying somek x k submatrix of theN x N Fourier matrix by a length- vector, where
k ~ m. Many time-gpolylog(NN)) algorithms are knowt for this. As for identification, previous work has shown how
to identify one significant out of m with probability at least /m by using ann-tap random filter with bandwidtiv/m;

m repetitions of independently chosentap filters will succeed with reasonable probability but with werk. Instead,
we use a random filterbank of filters that share a collection af taps. Computing the: outputs of the filterbank from
inputs turns out to require just an ordinary DFT, which can be done with wdrdg(m). Them outputs of the filterbank
replacem independent instantiations of a single random filter.

The three tasks above are iterated as we find more and more frequencies and get better and better approximations to the
coefficients for frequencies we have already found. Note that each iteration may find just a single significant frequency; a
naive overall upper bound would then#heiterations of workO(m) each, for a total o® (m?) work. Without substantially
modifying the algorithm, we give a new bound of approximafiely(A/ N/¢) iterations. Our new bound analyzes the
decrease ifi A — R|| rather than the increase in the number of recovered terms.

1.1. Linear versus Quadratic Algorithms

Certainly a near-linear algorithm is quantitatively better than a quadratic algorithm. In this section, we briefly argue that a
near-linear-inm algorithm isstructurally better than a quadratic-im- algorithm. We consider the many DFT applications

in which time linear inN is neededg.g., for data acquisition. Then theV(log(N))-time FFT algorithm becomes a
bottleneck, at least in theory, and we want to consider an approximate algorithm that takes at moét fitmes, for a
near-linear-inm algorithm, we can make: as large asV/polylog(V); for a quadratic-ins algorithm, we can only make

m as large as/N /polylog(N). We now consider the structural effects in three applications: convolutions, coding rate,
and denoising.

To compute the convolution of two vectarsandy, we need to multiply their spectra. In the worst case, the non-zeros
in Z correspond to (approximate) zerosgrand vice versa, in which case our approximate algorithms give no useful
results. If the spectra are random, however, then we might hope to get non-zerts éorrespond with non-zeros in
with high probability. If/m = /N /polylog(N), then we are unlikely to find any collisions, and we get no information
about the convolution. On the other handyif= N/polylog(V), then we expect to gé¥/polylog(N) collisions, which,
depending on the context, might result in a useful approximation to the convolution.

Next, consider coding by choosing Fourier basis functions to have non-zero coefficients, where we require a decoding
algorithm that runs in time linear it&v. A near-linear-inm algorithm lets us codég (Z) ~ N/polylog(N) bits; a
quadratic-inm algorithm only lets us codbg (7Nn) ~ /N /polylog(N) bits—quadratically worse, as expected. But, in
coding applications, it is more natural to measurerttte of the code—the number of coded bits divided by the length of
the codeword)N—and constant rate is often desired. Thus, by improving a quadraticailgorithm to a linear one, the
acheivable rate improves from arouhgy/N to 1/polylog(N), an exponential improvement.

Finally, consider the followinglenoisingproblem. There is a true signal consisting of a single Fourier mode\We
observe the signal corrupted by additive Gaussian white noise with expected magnitWdeat is the threshold for
below which we can determine reliably? With high probability, the largest Fourier coefficient of the noise has square
magnitude arountbg(N)o?, so, even if we had unlimited time, we can recoweff 1 > log(N)o?, oro? < 1/log(N).

A dual formulation of our sampling algorithms can recover coefficients with approximbtelyof the total energyife.,
square ofZ.2 norm), and the total energy is dominated by the noise enefgy, Thus we need > (1/m)o2N in order



to find a coefficient with energy 1 from a signal plus noise with energy; this means? < m/N. In a quadratic-inn
algorithm,m ~ /N, so we can only toleraie* ~ 1/v/N. In a near-linear-inn algorithm,m ~ N/polylog(N), so we
can tolerater? ~ 1/polylog(V), exponentially better, and much closer to the information-theoretic limiy dfg( V).

1.2. Organization

In Section 2, we provide preliminaries on the Fourier transform. In Section 3, we give some technical lemmas. In Section 4,
we present our algorithm. In Section 5, we give higher-dimensional variations. In Section 6 we conclude.

2. PRELIMINARIES
Notation. Let A = (A(0),...,A(N — 1)) be a signal indexed by, regarded as an integer médd. The complex

conjugate of a number is denoted byr and the dot productA, B) of vectorsA andB is ), A(¢)B(t). The functions

Yo(t) = ﬁe%mm, w € Zy, form an orthonormal basis f@&/N. We can represent as a linear combination of basis

functions

[

N—
A(t) = 1 K 2miwt /N
(0= 7= 3 A
w=0

where

Rw) = (A) = —= 3 Ay

is thewth Fourier coefficient ofA. The vectorA is thespectrumof A. Theenergyof A is |A||3, defined by||A||Z =
>, |A(t)]2. Parseval's equality says that, |[F(¢)|> = > |F(w)[>. We refer to|]A(w)|? as the energy of the Fourier

coefficientA (w) (or the energy ofv) and, similarly, the energy of a set of Fourier coefficients is the sum of the squares
of their magnitudes. We writ& +« G to denote the convolution(F « G)(t) = > F(s)G(t — s). It follows that

FxG = VNFG. We denote by s the signal that equalson a setS and zero elsewhere. The indexytg may be time
or frequency; this is made clear from context. Bupportsupp(F') of a vectorF is the set of for whichF(¢) # 0. For a
sparse representati@, We will also writesupp(R.) to be the set of for which ﬁ(w) # 0. More background on Fourier
analysis is available in the literatuté.

A formal termis a pair of frequency and coefficient, but will sometimes be writtea/gsinstead of(c, w). Similarly,
a formal representation is a set of formal terms, but will sometimes be whtten, c,v,, instead of{(c,,,w) : w € A}.
We say that a formal terrm),, is biggerthan another term’ ¢, if |c| > |¢/|. A frequencyw is n-significant inA, for
n>0,if |A(w)? > nl|A|2.

DefineHy y by H = YN H = Sin(Knw/N) H = <

K,N DY K,N(t) K X[0,K)- ThenHKN(w) Ksin(rw/N)’ for w 7é 0 andHKN(O) 1. If K <N,

this is called the “Dirichlet kernel” or “Boxcar Filter” and its ener@jj;IKNH2 is N/K. We will sometimes writéH 5 or
H if N or bothK andN are clear from context.

Permutation of Spectra. We define a transformatiofy , as follows. For a given signal and numbegr that is invertible
mod N with inverse equal to*, define(Py , A)(t) by (Pg., A)(t) = e =270 t/N A(to*). First note that one can sample
from Py » A with approximately the same cost as sampling frAmNext, by elementary facts from Fourier analysis, we

~

havem(w) = A(8 + ot). Since the map — 6 + ot mod N is invertible iff o is, Py ,, is a spectral permutation. (A
number is invertible modv if and only if it is relatively prime taV.)

Precision. We assume that all signal entries are bounded by some nuibeimilarly, our output will be accurate only

to +£1/M, additively. Thus we neefllog(M) bits to process inputs and outputs, and our algorithm will be allowed time
polylogarithmic inM in the bit model. For the sake of clarity, we omit a thorough discussion of precision; we merely point
out potential pitfalls. Certain precision issues are actually critical. For example, a classical algotibhmultiply an
m-by-m Vandermonde matrix by a vector of length(a generalization of the unequally-spaced discrete Fourier transform
problem) requires jusD (m log®(m)) multiplications, but arithmetic needs to be carried oubton) bits, giving only a
quadratic bound in the total work in bits.



Asymptotic Notation. We useO( f) to denote the set of functions that grow at most as fagtasd)(f) to denote the
set of functions that grow at least as fastfa®e write®(f) = O(f) NQ(f). We also writeO( f), etc., for an anonymous
function in the seO(f).

Randomization. Our algorithms are randomized. That is, for each inAuaind3/4 of the random choices of our
algorithm, the algorithm succeeds. The success probabjity(“significant”) or 3/4 (“high”) can be boosted to as close
to 1 as desired (“overwhelming”) using standard inexpensive techniques. We sometimes omit details.

Non-adaptivity. We have the following non-adaptive accessAto We toss coins, then, based on the coins, compute a
sequencd C [0, N) of indices, learrA (T) = {(¢, A(t)) : t € T} and run a deterministic algorithm @n A(T), and the

coin flip outcomes without further accessAo Thus we say that the samplingrien-adaptive For convenience, however,

we will present the algorithm in an adaptive way. More specifically, we will present an algorithm that flips coins as it needs
them, and such that the algorithm’s actions (but not sample locations) depends on previously-computed values, including
coin flips and sample values. Our goal is to bound the time used by the algorithm, which implies a bound on the number
of samples made. In practice, one can save factoksgdfV) in time by sampling adaptively or by adaptively deciding to

make fewer samples, but this is not the focus of this paper.

3. TECHNICAL LEMMAS
3.1. More on the Dirichlet Kernel

In this section we give a useful technical property of the Dirichlet kernel. The lemma says that if we $§mme)|2
from w uniformly picked from a certain type of easily-constructible set we get not much more than thelvaiieghat
we would get if we sampled uniformly from all Z . This will be motivated below, where it is used.

LEmMMA 3.1.Let N be any number and fik < N. For some constant, letp, be any number witkpy| < ¢N/K and fix
p # po moduloN. Letd be a random invertible number ma@d. Then

B B 00— ) + 02| e, ) = 1] < 0 (25 )

Proof. Let ¢(N) be the Euler totient function aV—the number of positive integers less th&nthat are relatively
prime toN. Theng(N) > Q(N/log(N)). (Stronger statements hold, especiallpifis prime or a power of 2. We omit
the proof.)

By symmetry off -, we may assumg, > 0. Letg = ged(p—po, N); it follows that the distribution ob(p—po) + po
is the same as the distribution 6g+ py, whereb is a random invertible element. It is easy to see {hht (w)| < h(w),
where the envelopk : Zy — Ris

1 lw| < &
hw) = f 2K
@) {KN N <lwl < N/2.

Thus it suffices to show that

By [0~ ) + 50 0. 3) 1] < 0 (535 ).

Note thatF,[|2(b)|*] < O(1/K).

We now show that(bg)? < O(h(bg + po)?) for invertible b, so that we may assumg = 0. We may assume that
0 <bg <bg+py < N/2+ N/K, since, otherwise, by the unimodularity/afit is easy to see that(bg) < h(bg+po). We
consider two cases. First suppdge< N/K. Thenbg+p, < O(N/K), so, from the definition ok(), h(bg+po)* > Q(1).
Sinceh() is always at most 1, it follows th#t(bg) < 1 < O(h(bg+po)). Now supposég > N/K. Thenbg+py < O(bg).
Again, it follows from the definition of.() thath(bg) < O(h(bg + po))-



To boundE [h(bg)z’ ged(b,N) = 1}, proceed as follows. We have

E [h(bg)Q‘ ged(b, N) = 1} - Z h(bg)?

beZ

—_

< ﬁ Z h(b9)2

beZN\(N/g)Zn

= ﬁ 3 hlbg)?

0<b<N/g

= % > h(bg)?,

—N/(29)<b<N/(29),b#0

-

©

since, by periodicityh((b + jN/g)g) = h(bg), for integersj. Sinceh(z)? decreases gds| increases, we have(bg)? <
% 2 0<a<g M(bg —)2,if 0 < bg < N/2. Thus we have, using symmetry/ofind double counting(N/2) when 2 divides
N/g,

B [h(og)| gedb, M) =1] = S5 > h(bg)?
—N/(29)<b<N/(29g),b#0

2g 2

< = h(bg)
o(N) 0<bSZN/(2!J) ! )
2g 1

< — - (bg — x
¢(N) 0<b§ZN/(2_q)gO<$2;g ! )

< —— [ 3 n®? ] -n32+n(n/2)? |
gb( ) 0<b< N

where the last ternh, (| N/2])?, is only needed if 2 divided//¢. By definition ofh, we haveh(0)2 > h (| N/2])?, so that

> h(b)2) h(0)% 4 h(|N/2]) )

E [h(bg)2’ ged(b, N) = 1}
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3.2. AP-Independence

To estimate the expectatidiiY] of a random variabl&”, we can form a collectio§ X} of independent and identically-
distributed copies of". We can then defin& = Zszl Xj. ThenE[X] = E[Y] andvar(X) = 4var(Y); the reduced
variance will allow us to estimat®[X] from a sample ofX. It is known that theX},'s need only be pairwise independent
for this variance argument to work. We will now claim that the argument holds for a particular construcfigrsafith
somewhat less than pairwise independence.

DEFINITION 3.2. Fix N and let¢ be a complex-valued function @y. Fix K < N. Then a sequendeX, : 0 < k < K)
of random variables is called/-arithmetic-progression-independéhtiefly, ap-independet ! -distributed, if the joint
distribution on the sequence can be obtained by writlig= ¢(¢x), wherea is a random integer modV, b is a random
invertible integer modV, andt; = a + bk.



Note that, if V is a prime, then the familya + bk : 0 < k < K} for randoma and randond, is pairwise independent,
so the family X, = ¢(a + bk) of random variables is pairwise independent, as usual. Our construction differs in some
important respects. For exampleis restricted to be invertible mol, so the values + bk anda + bk’ are guaranteed
to be different fork # k’. It follows thata + bk anda + bk’ are guaranteed to tdependentand soX; and X are
dependent, except for trivial. Nevertheless, we show that ap-independent random variables are sufficiently independent
for the desired variance reduction.

LEMMA 3.3. Fix K and N with K < N. Let¢ be a complex-valued function @fy and let(X}) be a sequence of
K ap-independenp~!-distributed random variables. Let = X }", X and letY be distributed independently and

identical to theX;,’s. ThenE[X] = E[Y], andvar(X) < O (%) var(Y).

Proof. Note that eacht;, is uniformly distributed, so the statement about expectation follows from the linearity of

expectation. Note that[Y] = TlﬁqS(O). From the definition of variance and Parseval's equality,
1 ~ 1 ~
var(y) = (Z o) ~ ¢<0)|2> =¥ 2 o)’
t w#0

Suppose(Xy) is defined on the arithmetic progressiont- bk, so thatX, = ¢(a + bk). Thensupp(Hg) =
{0,1,2..., K — 1}, sosupp(Py,—1sHk) = {0, —b, —2b,..., —(K — 1)b}, and so

(¢*Po,—1pHK)(a@) = Z o(r) (Po,—1sHK) ()

r+s=a

= $(a)Hg(0) + ¢(a + b)Hp (—b) + ¢(a + 2b)Hy (—2b) +
+o(a+ (K — 1)b)Hg (—(K —1)b)

sinceH g is equal to‘/g on its support. Thux = (gb*PO,_l/bHK)(a)/\/ﬁ. So, conditioned ok and taking variance
ina,

vara(X[b) = — Z’ 6% Po_1Hi) (w ) Z‘qﬁ VH ¢ (bw ‘ .
w#0 w;ﬁO

We now take expectation ehr, (X |b) with respect td. Using Lemma 3.1 witlp = w andp, = 0, we have as desired:

Z!¢ ) mae [ B[] < 0 (P2 )z1¢ |-

In the sequel, we will substitute AP-independent random variables for pairwise independent random variables. When
we do, Lemma 3.1, even for the special casppf= 0, suffices to insure that the variance reduction succeeds. The more
general Lemma 3.1 fagry, # 0 will be used in a different context.

4. ALGORITHM
4.1. Overview
In a bit more detail than above, each iteration of our algorithm proceeds as follows:

e SampLE from A—R.in K ~ m correlated random positions, whéRehasL terms, in total time K + L) log® ™" ().
(The locations of the samples are defined by the following operations.)

— Sample from the given signdl in time O(1) per sample, as hypothesized.



— Sample fromR by performing an unequally-spaced fast Fourier transform.
e |DENTIFY a set of “significant” frequencies in the spectrumfdf- R.

— IsoLATE one or more modes A& — R. Generate a s€fF';, : £ < K} of K new signals fromA — R where
K < O(1/n) is sufficiently large, so that eachthat isn-significant inA — R is likely to be(1 —)-significant
in someF,;, for some small constant

* PERMUTE the spectrum oA — R by a random dilatiow, gettingP, o(A — R)

* FILTER P, (A — R) by a filterbank of approximately: equally-spaced frequency-domain translations
of the Boxcar Filter with bandwidth approximately/m and approximatelyn common taps. Get new
signals, some of which have a single overwhelming Fourier madecorresponding to significant mode
win A —R.

x Undo the above permutation, thereby makingverwhelming instead afw.

— GROUP-TESTeach new signal to locate the one overwhelming madéearn the bits ofv one at a time, least
to most significantE.g, for the least significant bit:

x PROJECTION Project eaclF;, onto the space of even frequencies and the space of odd frequencies.
x NORM ESTIMATION. Estimate the norm of each projection, thereby learning the least significantbit of

e ESTIMATE the Fourier coefficients of these “significant” frequencies by computing the Fourier coefficients of the
sampled residual using an unequally-spaced fast Fourier transform algorithm and normalizing appropriately.

e |TERATE N a greedy pursult.
We now consider the pieces, one at a time.

4.2. Sampling from a Representation

Given a formal representatidR = > _, c.%. and a sefl’ of times, we wanf{R(t) : t € T'}. Then our problem is a
form of unequally-spaced discrete Fourier transform; that is, multiply the Fourier submiatfiby the vector, :

tiwy tiwa ... tiwia
® pr¥IAl Cun
(,OtZwl g0t2w2 - @tQUJ‘A‘ sz
)
t t < t
%) |T| W1 %) |T| W2 e %) [T %A C“’\A\

wherep = ﬁemﬂ\’. For simplicity, let K = |A| + |T'|. There are algorithms$ 14 to compute this matrix vector

multiplication in time K'polylog(K), with only O(log(K')) overhead in the number of bits of precision. This problem is
similar to a problem below involving estimating coefficients, where the matrix is transposed. For completeness, we sketch
an algorithm for that problem; a similar algorithm works for this problem.

4.3.IDENTIFICATION of Significant Modes
Recall that the DENTIFICATION step consists aSOLATION andGROUP TESTING We address isolation first.

4.3.1.ISOLATION

We use the Dirichlet kernd i, for appropriatef(, to isolate frequencies. More precisely, we will use a filterbank’of
modulations of the Dirichlet kernel.€., K translations in the frequency domain). We will first permute the spectrum of a
given signal by a random dilation, then filter wiltlx, and then undo the dilation. Equivalently (and more conveniently),
we will apply a random dilation to the filters in the filterbank, as follows:

DEFINITION 4.1. Given signalA of length N, and given parameteK a power of 2, ai'-shattering ofA is a collection
{ﬁ(PkN/KJHK) * A}k, whereo is a random number invertible ma¥.

The next lemma guarantees thafashattering isolates significant frequencies. That is, each desired frequency is
isolated in some element of the shattering with probability close to 1.



LEMMA 4.2. Let~ be any positive constant. Let, be any-significant frequency im\, so that|A (wo)|> > 7| A|>.
Then, for somé& < O(log(N)/(vn)), in a K-shattering{F, }. of A, with probability$2(1), there exist& < K such that

Fr(wo)? > (1= 7) [Fe]®.
Proof. Note that there is somiesuch that
|owo + kN/K| < N/(2K). (1)

Then, by the properties of the Dirichlet kernk{IPkAﬁ;HK)(woﬂ = \ﬁK(awo + kN/K)| > 2/m, whence, for some
constant;, |Fy,(wo)|? = [Hg (owo + kN/K)|2|A(w0)\2 > cn||A|*. Next, for eachk,

B — Frwo)? = Y [Fe@)P = > |AW)PHk (0w + kN/K)P.

w#wo wH#wo

Lemma 3.1 implies thak, [\HK(M +EN/K)| ](1) hold% < Leyn, so that

~ 1
B [[F4]]* — [Fi(w0)?| (2) holdg < Sy [[A.

By Markov, it follows that, for eactt, with probability at leass /4, if (1) holds, then|F||* — [Fx(wo)|? < cyn ||A[1%. In
that case|F,(wo)|2 > (1 — ) ||Fx||*, as desired

LEMMA 4.3. Given sampling access to a sign| and a dilationo, one can compute thE-shattering

{ % (Penyr,oHic) * A}

k
intime O (K log(K)).

Proof. We assume = 1; the general case is similar. From the deﬂmﬂoﬁsDkN/K 1Hg) * A} is the DFT of the
sequence [0], A[1],..., A[K — 1], which can be computed efficiently by the FFT algorithih.
4.3.2.GROUPTESTING

Now we show how to project the signal approximately onto the space of even and odd frequencies. We also generalize this
to other pairs of subspaces that we will need. Note that weotlassume thad is even.

DEFINITION 4.4. Define the filterbank paiG by G = (@) <50 + 5Wzn+1j).

The next Lemma shows how these filters can be used to findrthie 1)’s least significant bit ofv, provided we
know then least significant bits (by induction) and a few of the most significant bits, which we can assume by trying all
possibilities exhaustively. If we know the values of any bit positions in an otherwise unkongwme can modulate the
relevant signali(e., translate the spectrum), so that all of the known bit positions become zeros, which we assume below.
This does not change any of the unknown bit positions. Below, we can assunte<hat, < N~/x by exhaustively
trying all v/~ possibilities for the most significaiig(7/v) < O(1) bits ofwy.

LEMMA 4.5 (RROJECTION. Forall v > 0 and alln, if 0 < wy < Nv/m andwy = 0 mod 2", then

-y <|GH(wo)?<1 and |Gy (wo)| <7, ifwy=0mod2"*!
1 -7 <|Gn(wo))?<1 and |Gf(wo) <7, ifwy=2" mod2"*!.

Proof. For N a power of 2, the result is known from earlieiVe sketch that algorithm as an ideal case. We then
generalize the result to othay.

So assuméV is a power of 2. Defin®g = (v/N/2)(dp + dn/2). It's easy to see that

" 1, weven
Fg(‘*’):{ 0, wodd,



—

and, similarly,Fy (w) is 0 or 1, respectlvely depending on whethefs even or odd More generally, defils" =
(VN /2)(80 £ S jan+1). It's easy to see thd‘*( ) = 1if w = 0 mod 2"+! andF*( ) = 0if w = 2" mod 2"+,
Fi(w) =1 Fi () if w = 0 mod 27+1,

Now consider generaN. We cannot use the ideal filte(s/N /2)(5y + dn/2), becauseV/2 is not necessarily an
integer. Instead, we will defin@Z = (v/N/2)(d, + d|ny2)). Then

14+ e2miw |N/2]/N

G (w) = ——

PutA = N/2 — | N/2|,s0A =0orA =1/2. Thus

1+ e—QTriUJA/N(_l)w
2

Gi (w) =

Now, supposé) < wy < Nv/m. ThenmwoA/N < /2. Thus, ifwp is even,G¢ (wg) = (1 + e 2mwod/NY /9 ~
1+ miwgA/N sothatiG (wo) — 1| < v and, similarly,|G (wo)| < =, providedy is small enough to forcew/N < + to

be small enough that — e =270 A/N| < 41wy A/N. Similarly, if wy is odd, then G (wo)| < v and|Gy (wo) — 1] < 7.
It follows that, for sufficiently smally > Q(1), the filtersGOi behave similarly thSE, provided0 < wy < Nv/m; i.e,
provided the most significaég (7 /v) bits ofw, are zero. Similar considerations hold ﬁr;‘f, k > 0. In general, we will
perturbt =~ N/2" by A < 1/2 to get an integefN/2" | or [N/2"]; we then needw| < N+~/= so that the perturbation

omiwA/N is at mosty, so that(e2™At/N _ 1) /2 a~ /2 < ~. Finally, |G (w)|? < 1 for all w by the triangle inequality.
0
4.4. Norm Estimation

Next, we show how to estimate norms (equivalently, energies), by sampling. We cannot estimate norms reliably (for
example, if the signal consists of a single spike, our sampling algorithm cannot find the spike to learn its height). But we
can get a certain one-sided estimate that suffices for us. Similar lemmas appeareét &afliBelow, we sketch a proof.

DEFINITION 4.6. For integer J and signalA, define the estimatdfA ||, ; (or |A|?, if J is understood) as follows.
Choose/ pointst at random. Take the median &f| A (t)|? over the points.

LEMMA 4.7 (NORM ESTIMATION). There exists constants > 0 and 5 > 0, and, for all§ > 0, there exists
J < O(log(1/4)) such that the following hold with probability at leakt- ¢:

o [A|Z, < |A|* (forany A);

o if [A(W)[>> (1 —a)||A|? for somew, then||A]|> > G |A|.

Proof. Let X = N|A(t)|? for randomt Then E[X] = ||A||®. First consider the upper bound. Sinke> 0, by the
Markov inequality, it follows thaPr(X > 8E[X]) < 1/8.

Now consider the lower bound. Write = A (w)y,, andv = A — v, where(,v) = 0. LetT = {t : LN|A®)|? <
3|/ A||*} for some constang to be determinedi.e., 7" is the set of positions that would caus%X ) to be a severe
underestimate of the energy. Roe T', we havelv(t)? > (| ()] — |[A(¢)])? > (\/ﬁ VBB)” A = > |A|%. Thus
al|A|? > |[v|? > |T|- % ||A|% so|T|/N < 1/8 for appropriatey, 3, andy. That is,Pr (gx <B HA||2) — |T|/N <
1/8. Thus, with probability at least 3/4, we hagg|A ||> < 1 X < ||A||* (“success”). If the median of repetitions fails
then at least//2 of the repetitions fail, which has probability at mest*(”) = § by the Chernoff equalityl]



4.5. ESTIMATION of Coefficients for Significant Frequencies

In the previous step we generate a seLdfignificant frequencies. In thesEIMATION step, we estimate the contribution

each significant frequency makes to the sighal, we estimate its Fourier coefficient. Our technique allows us to estimate
several coefficients (not just one) with bulk sampling. In what follows, we define an estimator, show that the estimator
approximates Fourier coefficients, then show how to compute the estimator efficiently in bulk.

DEFINITION 4.8. Given frequency and parameterg and K, define the random variablﬁJ,K(w) as:

.K.J’K(w) = medianjgjmeankSK\/NA(tj’k)e_hWt“/N7
where, independently for eagland eacht, we pick a randons; ;.. The median of the set of complex numbers is performed
by taking medians separately in the real and imaginary directions.
LEMMA 4.9.For any signalA, any frequencw, and any parametersg > 0 andd > 0, there are aJ < O(log(1/6)) and

~ 2
aK <0O(1/n), such tha4 KJ,K(w) — A(w)|| <nllA|? with probability at leastl — 5.

Proof. (Sketch.) LetX = NA(t)i,(¢). ThenE[X] = A(w) andvar(X) < ||A||>. Then the mean ok copies has
variance at mos(7 | A||*). Then take a median of < O(log 1/4) trials of this random variable. The standard Chernoff
inequality guarantees our resuli.

Henceforth, assumé = 1. At this point, we have not discussed the computatioﬁgﬁ( (w), though it is straightfor-

ward to compute eacKJ,K(w) in time JK = ©(J/n). One can see from the definitions, however, that computation of
all K estimates (where, wlog, = 1), is an unequally-spaced discrete Fourier transform problem. Thus we have

LEMMA 4.10 (BuLk ESTIMATION). There exists a sampling algorithm that takes oraslend takes inputd(, L,
M, N and L frequencies;, such that the algorithm has time cdgt+ K ) log® ) (N) log(M), and the algorithm outputs

a sample from the distribution on the vectéﬁw(w@)) of specified Fourier coefficient estimates to within precision
¢
+47 || Al], additively.

In fact, only pairwise independent set will suffice for the variance reduction above. Furthermore, by Lemma 3.3,
we can take they's to be points on a random arithmetict bk progression withk invertible, which results in a pairwise
independent family ifV is prime, but generally not otherwise. If thgs are on a random arithmetic progression, then the
computation can become simpler, in theory and practice. For completeness, we sketch a simple algorithm, a variation of
which appeared earliér. A similar algorithm works for bulk sampling, Section 4.2, above.

Our goal is to comput®™, A (tg)e 2™wt/N = S~ A(a + bk)e~ 27w (@+bk)/N for eachw in some sef\. We assume
a = 0 andb = 1; the general case is similar. Th@n, A (k)(e~>"“/N)* js the evaluation of a degrefé-polynomial
p on each ofL = |A| complex points of unit norm. Note that if is a subset of the set* of equally-spaced (“cyclo-
tomic”) points around the unit circle, then we would be asking for the (ordinary) discrete Fourier transform of the sequence
A(0),...,A(K — 1), for which there are efficient algorithms. Instead, compute, p”, ... on A*, wherep’, p”, etc.,
are the first few derivatives ¢f, computed termwise. Then approximate ) for eachw € A by expanding in a Taylor
polynomial at a cyclotomic point near. One can verify that the convergence of the Taylor series is exponential, so just a

small number of terms are needed. We can call this lenirtiames and take a median to complﬁqK(wk) for J > 1.

Although Lemma 4.10 suffices in theory, a better estimator will be useful both for our analysis and in practice. We
want to bound the coefficient error in terms of the possibly much smaller qugeity R*||*> < ||A||*, whereR* is the
representation ovex with optimal coefficients. This is done iteratively. A proof of the following appeared eaflier.

LEMMA 4.11 (ITERATIVE BULK ESTIMATION). There exists a sampling algorithm that takes oraAleand takes
inputs (d,¢, L, M, N) and L frequenciesy;, such that, with probability at least — J, the algorithm outputs arl-
term representatiorR such that, for eaclt < L, \A/—\R(W)F < (¢/L)||A — R*||>, whereR* is the optimalL-
term representation, the algorithm has time cost bounded. hys(1/8) log® ™ (V) log(M) /e, and where we assume
1A —R*|> > L || A%



4.6. I TERATION upon IDENTIFICATION and ESTIMATION

Above we showed, for any and L, given a signalA as oracle, and a representati@rof at mostL terms we can, in time
(L/e+1/n)(log(N)+log(1/n))°M log(1/6), find a listA containing all frequencies with |[A — R(w)|2 > || A — R|®

—_—~

and, for each € A, estimateA — R(w) asA — R(w) with

2
A-R(w)-A-R(w)| <(¢/L)|A-R"|?,

whereR* is the projection ofA onto the frequencies ih. We now show how to use this repeatedly to recover an
approximate representation for the signal.

In the sequelL and1/n can be as large a®, so a single round of identification and estimation may already take
time linear inm. On the other hand, it is possible that, for some intermediate represenRatigith ||A — R|> >
IlA — Ropt||2, a single iteration of greedy pursuit only produces a single new frequency. So a straightforward bound on
the number of iterations would be, giving a runtime bound ofn?. Instead, we will bound the number of interations
independently ofn (ignoring log factors), by considering the decreas¢ An— RJ|” rather than counting the number of
new frequencies.

Our goal will be a representatidR such that] A — R|* is bounded by eithefl + ¢) | A — Roy||* or 1/M2. Intu-
itively, the bound of(1 + €) | A — R.p||* holds in the noisy case arigA/2 holds whenA is an exact superposition. In
the latter case, note that the coefficient®Rig,. may be irrational even if the input values A are integers, so a scheme
that outputs an answer correcttd /M, i.e., log(M) bits, in timelogo(l)(MN) is considered “exact output.”

Next we give our algorithm. The algorithm will use positive constagpts,, co and our analysis will use additional
positive constantss, etc., described below.

ALGORITHM 4.12. Input:M, N, e, m,d

Oracle: A, representing a signal of lengtti

Output: m-term representatior}, such that, with probability at least— &, we havel| A — R||> < (1 +¢) ||A — Ropt\\z
or||A —R|* < 1/M2.

Ry = 0, formally, andAg = 0
T = colog(M/e)/e?
for(t = 0;t < T;tT){

P 2
Find a listZ of w with ’A - Rt(w)‘ > eS| A - Ry
PUtAt+1 = LUAt

—_~—

2

Estimate coefficients fav € A, so thatl A — Ry ()2 < 25— [|A — Ay,

2
S \At+1\+m ||

}
OutputR’?, the topm terms inR .

|

We now proceed with analysis. First we show that we can assume the signal is noisy. Starting with aAsignal,
add a spikei(e., noise),v, with [|v|| = 55, in a random location, and with sign chosen so that, for @y4)-term
representatioR, ||A +v —R|| > z77- Then find a(1 + ¢)-factor approximatiorR to A + v and return it as an
representation foA.. It is straightforward to check th4tA — R||® is bounded by eithefl + ¢) | A — Ropt||2 or1/M?,
as desired. Since our sampling algorithm seesnly with small probability, our algorithm won't change as a result
of addingv; this is a fiction for analysis only. So, henceforth, we assume that, for &ifyt)-term representatioR,

|A — R| > 15537 we show how to get a relative-error approximatiornAto



We now give an informal discussion of correctness. Similar proofs have appeéredt some care is needed to
keep the overall time cost approximately lineaminrather than quadratic im, by showing that the number of rounds is
roughly independent af: and that the previous lemmata for finding frequencies and estimating coefficients can be used
with parameters leading to time linearsin

Fix an optimal representatioR.op; = >, ¢ Aope cu,,- Consider the relative improvemeﬁ%ﬁﬁ”. For appropriate
constants, this ratio cannot be less thdi — cze?) for all ¢, since, otherwise|A — Rz|| < (1 — c32)T [|[A — Rg|| <
€/(144M), a contradiction, ifl’ < O(log(M /¢)/€?) is sufficiently large. (Note that, cruciall§; is independent of.) So
suppose, for somgand appropriates, that||A — R;j.1|| > (1 — cz€?) |A — R;|.

Define Aoprr = {w € Aopt : |cu|? > (cae/m)||A — Ropt||2}, for some constants. Note that, ifRopy =
Yen,,, Gt then|A — Ropy 12 < (14c4€) ||A — Rope||*. Thus we can bounid — RJ|® in terms of| A — Repy |

instead of| A — Rop|”.

We next claim that\,,;v € A1 C Ap. First, toward a contradiction, suppos& — R;||> > 2 ||A — R[> Then,
ignoring the coefficient approximation errorRy; (by Lemma 4.11, the total square error is much less fhanr- R ||2),
we conclude thad, \ A; has energy at lea$iA — R[> — ||A — Rope||> > (1/2) ||A — R,||*. An iteration of greedy
pursuit finds frequencies and good approximations to coefficients provided thatic,|> > (cie2/m) ||A — R;||%; it
follows that most of the energy i, \ A; is found—all bute,e? |A — R,|* is found—so thaf|A — R; .|| <
(3/4) | A — R;||?, contradicting the definitions gfandcs. So supposéA — R;||> < 2||A — Repe/||°. Thenw € Aqpe
satisfiesc,|? > (cae/m) |A = Ropel|> > (1 + ca€) ' (cae/m) |A — Rop||* > (cae/(2m)) |A — R;]|%, S0 we recover
suchw on the next iteration of greedy pursuit.

Since the coefficient estimation error is small enough, it follows Buat; is a representation with sufficiently small
error that is “constructed” sufficiently quickly. Several problems remain. First, we don’'t know jaikain general, so
we would have to us®. Second, we are required to return justrarterm representation whereRsr may have, say,
mlog(N) terms. (In some applications, of course, the number of terms is not critical, only the goodness of approximation
and construction time. In that cadg! is an acceptable output.) Although our estimates of coefficients are good enough
to be ignored from the perspective of overall error, tiny errors in coefficient estimation may cause us to choose the wrong
set of frequencies as the tapterms inR”'. We now show that, while this can happen, the resulting error is acceptable.

Supposev € Ay, With ideal coefficient,, is displaced by, € A7, and supposg,,, is the coefficient ofv, in our
output. Then the error attributed to this exchanggis= |c.,, — cw, |? + |cu|? — |cw, |2 By goodness of approximation,
G0, — co. > < (c262/m) ||A — Rope||®. Next, because € Aopy, it follows that|c,, — c..|? < (cae/ca)|cu|?. Thus it
follows, if constants are chosen properly, that < (1 + €)|c,|? — |c., |*, and we need to show that, is small compared
with the unavoidable errofs,,, |?. Because we chose. overw, we havee,,, |> > |¢, |2, whichis at least|c,,| —|c., —¢.|)?
by the triangle inequality. By goodness of approximation and becausé ¢/, this is at least|c,,| — v/c2€/calcw])? =
(1 — c5/€)|cu|?. It follows that E, < cgv/€|cw, |?. By replacinge by €2/c2, we conclude that each displacement of
an optimal frequency by a suboptimal one increases its contribution to the error by the(1agte), so the combined
contributions blow up the error by at most the same factor. We concludgAhatR7! || < (1+¢) ||A — Rope||*; i€, the
algorithm is correct. We claim without proof that the constagtg;, . .. can be set consistently. The main result follows.

5. HIGHER DIMENSIONAL VERSIONS

In this section, we sketch how to generalize our algorithm to more than one dimension. Suppose that the time and frequency
domain isN; x Ny x --- x N4, whereN = H]. N;. In higher dimensions, the basis functions are of the form., ... w..
defined by

1 ; tw
wwhwz ..... wq (tlv t27 e 7td) = d}wl (t1)¢w2 (t2) e wwd (td) - ﬁe2ﬂ-l(wltl+w2tz+ + dtd)/Nl .

Observe that if the originaV,, N», ... are relatively prime, then th&; x Ny x --- x Ny problem ind dimensions is
equivalent to the one-dimensional problem of Si¢e Ns - - - N;. The equivalence is efficient to realize, using the Chinese
remainder theorem. More generally, by the fundamental theorem of finitely-generated abelian groups, we may assume that



Ny \Ng\ e \Nd,, whered’ < d, and where each; is greater than 1. By extending the data periodically, we may assume

that all theV,’s are equal, since this “only” blows up the size of each dimension by the fa¢toxK N, for a factor of

N4 overall, andpoly(d,log(N?)) is comparable t@oly(d,log(N)). Henceforth, we’ll assume that the problem shape is
d

Ny x N1 X --- X Nj.

There are two main approaches, depending on whetherwHpse ® - - @ Hp1a Or Hy @ Hi @ Hy @ - - - @ Hy
as thed-dimensional analog of the Dirichlet kerrlx in one dimension. Both have issues.

If we useH 1,4 ® -+ ® H1/4, then the algorithm above for one-dimensional signals can be generalized to higher
dimensions in a straightforward way, but it will not be efficient. First, we pay a fagtay in one dimension because the
“pass” region|w| < % of Hy, actually attenuates energy by as much35r)?. In higher dimensions, th€(1)-factor
penalty becomez® (@) (i.e., something likgr/2)?%), depending on engineering choices. This may be acceptablefds.

Other computational bottlenecks, however, are much worse2R&h. For example, a straightforward generalization of
an unequally-spaced fast Fourier transform algorithe dimensions may costog(M ) log(N))?, which is typicallynot
acceptable.

Instead, if we usdH  ® H; ® H; ® --- ® Hy, then it is necessary to permute the spectrum pairwise randomly (or
“close” to that, in some sense), and the straightforward techniques fail. Fé@¥amnye can map eaobnespectral position
uniformly. But supposeV; is a power of 2 andl = 2, and (w1,w>) and (61, 6,) are two fregencies with difference
(w1 — 01, ws — 03) = (0, N/2). Consider a mapping of the form

. (91 a b 91 e
P(a) = (0 0)(5)+(5) @
where the matrix is invertible; this is a spectral permutation. Any such mapping will(fhaps) to (w1, w2) + (g, h),
where(g, h) is in the set{(0, N1/2), (N1/2,0), (N1/2, N1/2)}. That is, conditioned ofP(w1,ws), there is just a small
orbit of three possibilities foP (61, 63). The kernelHx ® H; ® H; ® --- ® H; will pass at least one of these. So,
conditioned onHyx @ H; ® Hy ® --- ® H; passingP(w1,ws), there is al/3 chance thatP(6,,6) will also pass.

Recall that, unfortunately, we wanted just An chance (approximately), so the expected contributiof@ofé-) would
be attenuated by the factor.

We now discuss partial results.

General Result in Low Dimensions. Note that an algorithm with time cost polynomial dh m, log(1/6), log(N),

log M, and1/e—polynomial inm instead of linear inn—was presentédfor the case ofV; equal to a power of 2. That
algorithm can be modified in a straightforward way using tools of this paper to hand\g'aland to have dependence
just quadratic onn, using an ordinary matrix-vector multiplication algorithm instead of an unequally-spaced fast Fourier
transform.

Large Square-Free Divisor. For any(w;,ws) and(6;,62) subject to the map (2), conditioned on the kerHg}1,« ®

-+ ® Hg1/a passingP(wy,ws), that kernel will attenuate the energy Bf6,,62) by approximately the factor/a or
smaller, where: is the largest square-free divisor 8f—that is,a is the product of all primes dividing/; . If a is at least
m, then this will suffice for our purposes. More generally; ik m, we can get the algorithm to work at additional cost
factorm/a. As a concrete example, N is itself a prime at least: or so, then this algorithm will work.

Power of 2. It remains open to provide an algorithm with caspoly(d) in d dimensions ifN; is a power of 2.

6. CONCLUSION

We provided a sampling algorithm that yields, with high probabilitypgerm Fourier representatidR for any input
signal A of length IV, with the guarantee th3tA — R/||3 is within a factor(1 + ¢) of the best possible:-term Fourier
representation. The algorithm samples

m - poly(log N, log ||A||, 1/€)



positions non-adaptively and spends time and space linear in this quantity. Preliminary implementations of our algorithm

indi

cate that, for exact-term superpositions for smath, our algorithm is more efficient than an optimized, publicly-

available FFT package fav approximately 1 million.

The overall structure of this algorithm follows previous wdrk,but we have to apply two key ideas: bulk estimation

of multipoint polynomial evaluation using an unequally-spaced Fourier tranform, and use of arithmetic-progression inde-
pendent random variables to enable the iterative algorithm. As a result we improvezthiactor in previous results to
being linear inm.
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