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Abstract. Over the past decade, we have seen a dramatic increase in our ability to collect massive
data sets. Concomitantly, our need to process, compress, store, analyize, and summarize these data
sets has grown as well. Scientific, engineering, medical, and industrial applications require that we
carry out these tasks efficiently and reasonably accurately. Data streams are one type or model of
massive data sets. Mathematicians, computer scientists, and statisticians have developed models,
algorithms, and methods for processing data streams. One common core to all of the statistical
recovery algorithms for data streams is group testing. We give an expository discussion of group
testing, models for streaming algorithms, and how group testing arises in these algorithms. We also
give an overview of three streaming algorithms and a discussion of the role of group testing in each
algorithm.

1. Introduction

We are drowning in data. We have seen a dramatic increase in computational power and data-
gathering mechanisms, as well as an ever-increasing demand for finer data analysis in scientific,
engineering, and industrial applications. Each day, literally millions of large data sets are gen-
erated in medical imaging, surveillance, and scientific acquisition. This has led to the creation
of enormously large data sets with great detail. Also, the Internet has become a communication
medium with vast capacity; monitoring such networks generates data that dwarf most databases
that have been considered massive in the past. The usefulness of these data sets rests on our abil-
ity to process them efficiently, whether it be for storage, transmission, visual display, fast on-line
graphical query, correlation, or registration against data from other modalities.

One model of modern massive data sets is the data stream, which consists of data records or items.
Data streams possess three challenging properties. They represent (either explicitly or implicity)
huge amounts of data, they are distributed either spatially or temporally, and we receive or observe
them at enormously high rates. These data items may be transaction records in communication
networks or digital samples from analog waveforms, to name two disparate examples. See [Mut05]
for more examples.

In the past ten years, researchers in computer science, mathematics and statistics have recog-
nized that we must significantly increase our capacity to process (compress, denoise, correlate,
etc.) large data sets while maintaining their inherent statistical properties. As such, they have
developed stream processing computational models and sublinear algorithms to compute statistical
quantities from large data sets efficiently. Mathematicians have developed new theories of infor-
mation extraction to quantify and to bound the resources necessary to process these data sets.
See [FKSV99, AMS96, HRR98, BYKS01, BYJKS02, AGMS99] and the references therein for a
small sample of the works in this area.
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Traditionally, group testing is a design problem. The goal is to construct an optimally efficient
set of tests of items such that the test results contains enough information to determine a small
subset of items of interest. It has its roots in the statistics community and was originally designed
for the Selective Service to find and to remove men with syphilis from the draft. It appears in
many forms, including coin-weighing problems, experimental designs, and public health. We are
interested in both the design of tests and the design of an efficient algorithm that works with the
tests to determine the group of interest. As it happens, some of the same techniques that are useful
for designing tests also help to solve algorithmic problems in analyzing and in recovering statistical
quantities from streaming data. We hope that the interplay of traditional statistical techniques
in conjunction with modern algorithms to solve crucial statistical problems will be of interest to
statisticians generally.

The purpose of this article is twofold: (i) to give an expository description of streaming data and
algorithmic models and to explain some of the algorithms for computing statistics on streaming
data and (ii) to explain the role of group testing in these streaming algorithms. One of the main
mathematical tools in sublinear algorithms is group testing and its role is not frequently highlighted
in these algorithms.

We begin our discussion in Section 2 with a review of combinatorial group testing, including sev-
eral examples and constructions from error correcting codes which are a leitmotif in our exposition.
We base this brief discussion upon several chapters in [DH93, MS77] and encourage interested read-
ers to look there for more information. Next, in Section 3, we discuss several models for streaming
data, including the algorithmic models for processing such data streams. We connect streaming
algorithms and group testing through these algorithmic models. In Section 4, we give an approx-
imate group testing algorithm which is at the core of many streaming algorithms. This algorithm
may be of interest for the sake of group testing alone and it may find uses in the many other
applications which use group testing, so we present it in its own section. We proceed in Section 5
to explain several streaming or sublinear algorithms which use certain types of constrained group
testing designs. Despite (or perhaps because of) these constraints, we obtain extremely efficient and
novel data processing algorithms. Finally, in Section 7, we give novel uses of the results of group
testing—applications that do not simply identify items of interest in a large group but, instead,
allow us to compute statistical quantities of interest. We refer to these problems as statistical signal
recovery as we are interested in recovering statistics about an underlying signal from a stream of
data records.

2. Group Testing Preliminaries

2.1. History of Group Testing. We can trace the origins of group testing to World War II.
Two economists, Robert Dorfman and David Rosenblatt, with the Research Division of the Office
of Price Administration created a efficient method for detecting draftees with syphilis. Dorfman’s
original report [Dor43] in the Annals of Mathematical Statistics describes a method for removing
men from Selective Service with syphilis. They designed the testing procedure for the United States
Public Health Service and the Selective Service System, neither of which wanted men serving in the
military who were ill and who might spread to a civilian population a diseast that was untreatable
(at that time).

The ideas behind the testing method are relatively simple. The Selective Service System was
to draw blood from each draftee. Then they would pool the samples into groups of five. They
would use a single Wassermann test [WNB06] on the pooled samples to test for the presence of
the syphilitic antigen (which indicates a likely syphilis infection). The efficiency in the design came
from two key observations.

(1) If no one in the pool has the antigen, then the pool does not, and the test is negative.
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(2) If one or more people in the pool have the antigen, then the pooled samples have the
antigen. The test is positive and we can then test all five members of the pool individually
to determine who is infected.

If no one in the pool has the antigen, then we save four tests as compared with five tests for testing
all five individuals from the outset. If one or more in the pool have the antigen, then we waste a
single extra test on the entire group.

The group-testing concept languished for several decades after Dorfman’s report. The Selective
Service System did not put group testing for syphilis into practice because the Wassermann tests
were not sensitive enough to detect antigens in a sample diluted by contributions of more than
eight or nine healthy people. The ideas remained an interesting exercise in Feller volume I [Fel50]
until Sterret wrote a Ph.D. thesis On the detection of defective members of large populations [Ste57]
in 1957. Sobel and Groll [SG59] picked up the ideas, again in an industrial epxerimental design
application, in 1959. Since then the ideas and procedures have been rediscovered, used, generalized,
and expanded upon in a diverse collection of areas, including theoretical computer science, coding
theory, graph theory, public health, image coding, statistics, and game theory to name a few.

2.2. Definitions and examples. We define the basic problem in the simplest form. We have a
universe of N items in total. We know that d of them are defective and we call this set D the
defective set. This defective set must be a member or sample of a given family we call the sample
space. The sample space S(d,N) might, for example, be all subsets of N items of size d. The goal
of combinatorial group testing is to construct a collection of tests (called a design) to minimize the
number of tests needed to find the defective set for the worst case input. We call a best algorithm
under this goal a minimax algorithm. At this level, we do not specify the type of tests. They may
be adaptive or non-adaptive and they may be linear or nonlinear. Below we will consider several
ways in which randomness enters a generalized definition.

We begin with a simple but fundamental setting in combinatorial group testing, that of binary
non-adaptive tests. Let M be a t×N , {0, 1}-valued matrix we call the measurement matrix. Let
Ri denote the ith row or ith group of M . We regard columns Cj of the {0, 1}-valued matrix M as
subsets (of the universe of t tests). The entry Mij = 1 if item j is in group i and Mij = 0 if item
j is not in test i. Let s ∈ {0, 1}N be the characteristic vector for our set of items, so s has exactly
d entries that are 1 and (N − d) zeros. We apply M to s and collect measurements, or the results
of our tests, in a vector v,

Ms = v,

where the arithmetic is boolean, that is, multiplication of 0’s and 1’s is the usual multiplication
(which coincides with the logical AND) but addition is replaced by the logical OR. Equivalently,
we peform the multiplication Ms over Z and then replace all non-zero entries in the result by 1.
This corresponds to disjunctive tests (such as for syphilis) where a test on a group i is positive or
negative, and is positive if and only if at least one item in group i would, by itself, lead to a positive
test.

We have the following definitions.

Definition 1. The measurement matrix M is d-separable if the ORs (or Boolean sums) of any d
columns are all distinct.

Definition 2. The measurement matrix M is d-disjunct if the ORs of any d columns do not
contain any other column.

Clearly, the d-disjunct condition is a stronger one than d-separability. If a matrix is d-disjunct,
then it is also d-separable.

The group testing algorithms that accompany these two types of binary matrices are also rela-
tively straightforward. Let S(d,N) consist of all subsets of size d of N items total. Then a set of
d columns chosen from M correspond to a particular sample s in S(d, N) or a particular d-subset.
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The union of these d columns is the set of tests which generate positive outcomes for this d-subset.
For a d-separable matrix, we need only match the set of positive tests to samples in S(d, N) and
we have identified the set of defective items. A straightforward algorithm, however, keeps a look-
up table of size

(
N
d

)
, which may be prohibitive. On the other hand, for a d-disjunct matrix, the

defective items are easily identified in time O(Nt). Let S be the set of columns made up by the
sample and let

P (S) =
⋃
j∈S

Cj

be the set of positive tests. If item j is in some negative test (i.e., item j is in some group Ri

for which the i’th test result is negative), then identify j as a good item; otherwise, identify j as
a defective item. To see that this procedure is correct, note that, if j is a good item, then, by
definition of d-disjunctness, P (S) does not contain Cj , so j is in some negative test. On the other
hand, if j is a defective item, then it clearly is in no negative test, since the tests are disjunctive.

Let us give two examples of d-separable and d-disjunct matrices. Both of these examples recur
in the sections that lie ahead. We start with d-separable matrices. We recall a few basic definitions
of binary error correcting codes as they also recur in the sections ahead. We use a binary code
to transmit a block of k binary message symbols u1, u2, . . . , uk as an encoded binary message
x1, x2, . . . , xN of length N . Each symbol ui and xi are either 0 or 1. The codewords x = x1 · · ·xN

are our binary code. Codes were invented to correct the errors that occur when we transmit
messages on noisy channels. When we transmit a symbol xi = 0 on a noisy channel, we usually
receive it as a 0 but it might be changed to 1 (and, similarly, a 1 may be changed to a 0). To
generate a binary linear code, we employ a generator matrix G.

Definition 3. Given any binary matrix G, a binary linear code C is the span of the rows of G.
That is, codewords w ∈ C are of the form

w = c1g1 + c2g2 + · · ·+ ckgk = cG

where ci ∈ Z2 and G is a k×N matrix with rows g1, . . . , gk. The dimension of the code over Z2 is
k and the length is N .

To clarify, all of the arithmetic for binary codes is carried out over Z2. We frequently design
codes so that part of the codeword consists of the message and the other symbols are check symbols
which we use to detect and to correct errors in the received codeword.

Definition 4. Given a binary linear code C of length N and dimension k over Z2, the parity check
matrix H of C is an N × (N −k) matrix whose rows generate the orthogonal complement of C. An
element w ∈ ZN

2 is in C if and only if
wH = 0.

Equivalently, the rows of H generate the nullspace of the generator matrix G.

A binary d error correcting code of length N is a binary code which can detect and correct up
to d errors. Equivalently,

Lemma 5. Sums, modulo two, of up to d columns of the transpose of the parity check matrix of
the code are distinct.

Proof. See [MS77] for a short proof of the fact that for a d error correcting code, every 2d columns
of the transpose of the parity check matrix are linearly independent. For a binary code, this is
equivalent to the claim. �

We can convert this property into a d-separability property for a binary matrix Htr by replacing,
in each column, various patterns of 0s and 1s with longer binary patterns. For d = 2, for example,
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replace

0 7→ τ(0) =
(

0
1

)
and 1 7→ τ(1) =

(
1
0

)
.

Observe that the modulo-2 addition table is transformed to the Boolean addition table with the

⊕
2 0 1
0 0 1
1 1 0

∨ (
0
1

) (
1
0

)
(

0
1

) (
0
1

) (
1
1

)
(

1
0

) (
1
1

) (
1
0

)
Figure 1. Transformation of mod-2 arithmetic to boolean arithmetic.

replacement of Figure 1. So, if two pairs of columns have different sums modulo two, then they
have different Boolean sums after transformation.

Next, we construct a family of d-separable designs using a particular family of binary error
correcting codes. BCH codes are binary d-error correcting codes and we can transform their parity
check matrices into d-separable matrices. For d = 2, we can use the 2-error correcting BCH code
and the transformation above. For this code of length N = 2m − 1, the parity check matrix is a
2m×2m−1 binary matrix with distinct sums of each pair of columns over Z2. Upon transformation,
we get a 2-separable matrix of size 4m× 2m − 1. Note that only for m ≥ 5 do we have fewer tests
than items.

The simplest example when d = 1 of a d-disjunct matrix (and a d-separable matrix) is the
analogous transformation of the bit test matrix, B1. To form the bit test matrix B1, set the
ith column of B1 equal to the binary representation of i, for i = 0, . . . , log2 N − 1. In this case
t = log2 N and this construction achieves the lower bound for the minimum number of tests to
locate a single item from among N . For N = 8, the bit test matrix B1 has the form

B1 =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


This matrix is 1-separable, since all columns are distinct. It follows that the transformed matrix is
1-disjunct, since, looking at the transform τ , it is clear that if c and c′ are unequal columns, then
neither of τ(c) and τ(c′) contains the other.

We note that there is a simpler and faster algorithm for detecting a single defect, using the
untransformed matrix B1. For example,

B1s =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1





0
0
1
0
0
0
0
0


=

0
1
0

 .

In general, the bit-test matrix times the signal gives location in binary of the defect.
We observe that all of the tests we describe are linear and non-adaptive. The tests consist of

applying a matrix (hence a linear procedure over Z2, C, or under Boolean arithmetic, depending
on the application) to a collection of items represented by a vector of length N . The tests are
nonadaptive in the sense that the membership in each group (row of the matrix) does not depend
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on the outcome of any other test—indeed, there is no natural order in which to perform the tests.
Nonadaptive tests are useful when we prefer to perform all the tests simultaneously or with at
least some overlap in time. This is the case if the tests take a long time and/or N is so large that
we cannot easily store all N items between tests. Both of the situations arise the case in massive
streaming data sets.

2.3. Randomness. Randomness traditionally arises in probabilistic group testing, as opposed to
combinatorial group testing. In this setting, there is a distribution on input signals and a design
must identify the defective set with high probability over the inputs. In streaming algorithms and in
the application of group testing to massive data sets, randomness plays other roles. It is frequently
difficult to obtain an accurate or even an approximate distribution on the input signals—in fact,
that is frequently the problem we seek an efficient algorithm for!

We use randomness to construct a design or measurement matrix M . Rather than specifying a
distribution on the input signals and using randomness to draw an input from that distribution, we
use a randomized construction for M and consider its worst-case performance on all possible inputs.
In constructing M , we ask that it satisfy one of two properties. First, we might ask that, for each
input s (a set of d defective items from a universe of size N), Pr(M fails on s) be low. Alternatively,
we might ask for a stronger condition, namely, that Pr(for some s, design M fails on s) be low. In
some contexts, one can achieve the “for-each” guarantee with fewer tests than the latter “for-all”
guarantee, or achive the “for-each” guarantee when “for-all” is not possible at all.

The two properties highlight two different roles for randomness in group testing and streaming
algorithms. If a “for-each” guarantee holds when a “for-all” guarantee does not, this means an
adversary sees the distribution on designs M but not the outcome M itself, and tries to come
up with a bad sample s. In such situations, it is often easy for an adversary given access to
the outcome M to come up with a bad s. Thus the randomness is used in an essential way to
defeat the adversary. By contrast, in a “for-all” guarantee, the randomness is used to construct
a design efficiently; equivalently, to prove using a form of the probabilistic method that a design
exists. Given enough time, one could exhaustively consider and test each possible design on all
samples and find one that works. Frequently, we cannot carry out the procedure to test designs
in polynomial time—a straightforward procedure would take time exponential in the matrix size—
so a randomized construction is a substantial improvement over the straightforward construction
process.

There are two observations that relate the two roles of randomness in group testing and streaming
algorithms. These observations also hold in more general contexts of randomized algorithms. First,
suppose that we are are looking for a set of d defective items out of N total. Then our sample space
S(d, N) consists of all d subsets and we have

(
N
d

)
possible input signals. If the failure probability in

a “for-each” guarantee is small enough, i.e., less than
(
N
d

)
, then we can take a union bound over all(

N
d

)
samples and get a non-trival “for-all” guarantee. In other words, an exponentially small “for-

each” failure probability is small enough to yield a “for-all” guarantee. The second observation
connects randomized design constructions with the more traditional probabilistic group testing.
Yao’s principle derived from the minimax theorem for two-player games implies that there is a
randomized design of size t with a “for-each” guarantee if and only if for each possible distribution
on inputs there is a fixed design of size t that works.

3. Streaming Algorithms

There are many situations in which data arrive and are processed in a stream. For example,
network service providers collect logs of network usage (telephone calls or IP flows) in great detail
from switches and routers and aggregate them in data processing centers. They use this data
for billing customers, detecting anomalies or fraud, and managing the network. In most cases, we
cannot accumulate and store all of the detailed data. We can archive past data but it is expensive to



STATISTICAL SIGNAL RECOVERY 7

access these data. We would rather have an approximate, but reasonably accurate, representation
of the data stream that can be stored in a small amount of space. It is not realistic to make
several passes over the data in the streaming setting. It is crucial that we compute the summary
representation on the stream directly, in one pass.

3.1. Streaming Data Models. Our input, which we refer to as the stream, arrives sequentially,
item by item, and describes an underlying signal. In the simplest case, the signal A is a one-
dimensional function A : [1 . . . N ] → Z+. We assume that the domain is discrete and ordered
and that the function A maps the domain to non-negative integers. For example, a signal is the
number of employees in different ages (the domain is the set of ages and the range is the number
of employees of particular age), or the number of outgoing call minutes from a telephone number
(domain is the set of all telephone numbers and the range is the total number of outgoing minutes).
For signals over a continuous domain, we assume that the domain is discretized in a sensible fashion.

The stream may describe the underlying signal in one of many ways, but we will focus on one of
the more general models, the cash register model. In the cash register model, the items that arrive
over time are domain values in an arbitrary order, and the function is represented by implicitly
aggregating the number of items with a particular domain value. For example, a stream of telephone
call records could be:

〈8008001111, 10〉, 〈8008002222, 15〉, 〈8008003333, 13〉,
〈8008001111, 23〉, 〈8008001111, 3〉 . . .

where each record contains the phone number and the length of the outgoing telephone call. We
construct the underlying signal, namely A = 〈8008001111, 36〉, 〈8008002222, 15〉, 〈8008003333, 13〉
by aggregating the total number of minutes outgoing from numbers 8008001111, 8008002222,
8008003333, etc. This model is called the cash register model because the flow of sales through a
cash register in a store generates a stream in this model. More generally, we may consider trans-
actions that also “subtract” from the underlying data distribution. This arises, for example, in a
comparison between today’s and yesterday’s network traffic, as well as in other applications where
subtractions naturally occur.

3.2. Stream Processing Model. Next we focus on how to process the input data stream. We
read and process each data item as it arrives. We cannot backtrack on the stream nor can we access
explicitly arbitrary past items. We are allowed a certain amount of auxiliary memory. We may use
this, for example, to store a recent window of items we have read or some arbitrary subset of items
in the past, or other summary information about the past data stream. The size of this auxiliary
memory is crucial as it determines what computations we can perform on the data stream. For most
streaming applications, the auxiliary memory is significantly smaller than the signal domain size.
Hence, the signal can only be partially represented in the auxiliary memory as data items continue
to arrive. We abstract these practical constraints to a streaming data computational model which
we illustrate in Figure 2. Two key performance parameters of streaming algorithms are the time
needed to process each item on the stream and the auxiliary storage used. For most applications,
our goal is to keep both as small as possible.

3.3. Streaming algorithms and group testing. To illustrate the connection between streaming
algorithms and group testing, let us start with an example. Suppose that our stream of phone call
records includes records of the form

〈time.stamp, phone.number, flag〉
where flag = 1 or −1. This type of record indicates the beginning of a phone call (with flag = 1)
from a phone number at a certain time. The record with the same phone number but with flag =
−1 at a later point in time indicates the end of that phone call. Our stream might look like

〈1200, 8008001111, 1〉, 〈1203, 8008002222, 1〉, 〈1204, 8008002222,−1〉,
〈1206, 8008003333, 1〉, 〈1207, 8008001111,−1〉, 〈1208, 8008004444, 1〉, . . .
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What is a sketch?
Data

Auxiliary 

memory
Random

seeds

Sketch Query

Figure 2. Data stream processing computational model.

The underlying signal that we construct from these records is the list of currently active phone
numbers (those phone numbers in the midst of a telephone call). After the sixth record in the
stream, our signal is

A = 〈8008001111, 0〉, 〈8008002222, 0〉, 〈8008003333, 1〉, 〈8008004444, 1〉;

that is, of all the phone numbers seen thus far, two of them are currently making a phone call
(signified with a 1), while the other two are not (signified with a 0). More formally, our signal A
is a one-dimensional function with discrete domain equal to the set of all phone numbers and with
range {0, 1}. Let N be the number of all possible phone numbers. Let us further suppose that at
the time we analyze the stream, there are d active phone calls. Then our signal A has d non-zero
entries out of N total and the problem of identifying which phone numbers are currently active is
equivalent to identifying d defective items out of N total.

Not only is our fundamental problem of identification equivalent to that of group testing, but
the severe resource constraints in place in stream processing necessitate as few tests as possible
to identify those phone numbers. Ideally, we would make O(d log N) such tests. As this design
problem is at the core of combinatorial group testing, it is natural to mine the previous substantial
literature for potential streaming algorithms or subroutines for such algorithms. In fact, these
algorithms go much further than simple applications of existing work.

For streaming algorithms, we are especially interested in linear non-adaptive measurements or
tests that arise in certain combinatorial group testing models. Suppose that we have a measurement
matrix M which we apply to our signal A to obtain a set of measurements v, MA = v (sometimes
referred to as the sketch of the signal A). We use these measurements or sketch v to determine the
identity of the d currently active phone numbers. Now, suppose that we see two additional records,
consisting of a termination record for a currently active phone call and an initiation record for a
new active phone call. The total number of currently active calls remains unchanged at d and we
simply update our implicit signal A as A+∆A to reflect this change. In this case, ∆A decrements
to 0 the counter for the terminated call and increments to 1 the counter for the newly initiated
call. We can still use the same measurement matrix M to identify the new set of d active phone
numbers as the new signal still has only d active phone numbers. What’s more, our measurements
change from M(A) to M(A + ∆A) = M(A) + M(∆A). Upon receiving two new records, we
need only compute M(∆A) and update M(A), our previous measurements, accordingly. The
additional resource constraints in streaming algorithms dictate how quickly we must compute and
update the measurements M(∆A) as well as the efficiency of the identification algorithm. We
leave these algorithmic discussions for the following sections.
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While this example is overly simplistic for the sake of exposition, it does highlight the algorith-
mic challenges we face in the stream processing model. In order to understand the challenge of
maintaining information about currently active phone calls with few resources, let us consider the
following example. A transaction stream consists of one million initiations of phone calls followed
by 999,996 terminations, leaving d = 4 active phone calls. Our goal is to output those four active
phone numbers, using an algorithm that is allowed not much more space than needed to store four
phone numbers. In other words, we must recover the data set exactly (perhaps only with high
probability). A space-efficient algorithm knows very little about a data set of size one million and
it does not know which 999,996 points will be deleted. The algorithm cannot retain the memory
of 4 special values. Nevertheless, algorithms we present below will be able to determine the four
values, and in time polynomial in 4 and log(1, 000, 000). Although this is a contrived example, it
illustrates the difficulty with maintaining signal statistics in the face of deletes which dramatically
change the data distribution.

We note that in our previous discussion our tests were disjunctive, as is common in medical
testing. In that case, we converted tests over Z or Z2 (e.g., traditional binary error correcting codes)
into a matrix under Boolean arithmetic. The simple example above illustrates our need for tests that
are linear over Z (or C, more generally). The first record we see might be 〈8008003333,−1〉 which
terminates an active phone call. We update A implicitly by subtracting 1 from index 8008003333.
We must update our measurements M(A) to reflect this subtraction and we can do so linearly
if our tests are linear over Z; i.e., we carry out our arithmetic over Z rather than using Boolean
arithmetic. For the remainder of our discussion, we use Z- or C-linear measurements.

Let us also observe that we rarely observe signals which are guaranteed to have d nonzero entries,
exactly equal to 1, and N −d zeros. Our streaming algorithms must operate on much more general
signals while the group testing models are more restrictive. We can, in fact, generalize our group
testing models to additive models where the ith defective item xi has defectiveness measure θi. In
this model, the outcome of a test on a group G is the sum

∑
xi∈G θi. Du and Hwang [DH93] observe

that not much is known about these models for d ≥ 3 so our discussion of streaming algorithms may
be of independent interest for group testing algorithms. Let us also note that our signals models
are richer than those in the additive group testing model as the nondefective items may also have
a non-zero measure.

4. Approximate Identificiation

Above, we defined the goal of traditional group testing as identification of a set of d defects
using a minimal number of tests. We want to construct a design that works on all sets (or on
each set) of d defects. There are many situations in which we may be willing to relax our goals.
Rather than identifying all d defects from a single set of measurements or from a single use of those
measurements, we may be able to identify all d defective items in several iterations, using the test
and measurements repeatedly. Alternatively, we may be satisfied with recovering a large fraction of
the defective items. Let us formalize this approximation problem as ε-approximate identification.
That is, for all samples s consisting of d defects, we want our design to output a set of items that
contains at least εd of the defects. Thus we allow at most (1 − ε)d false negatives. (We do not
include the typical bound on the number of allowable false positives as it is usually implied by an
upper bound on the runtime of the algorithm.) This definition is useful because it is often much
easier to construct a design of prescribed size that approximately identifies defects than a design
that (strictly) identifies defects.

Let us construct a random matrix R with t ≈ d log N rows and N columns. We place exactly
one 1 per column, in a row chosen uniformly at random. This random construction corresponds to
assigning each of d defective items at random to one of t groups. The non-defective items are also
assigned to groups, but this is irrelevant. In an alternative and essentially equivalent construction,
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each entry of R is 1 with probability approximately 1/t and 0 otherwise, independently. We will
give a proof for this construction, rather than the first, as it is easier to analyze.

We say that defective item j is isolated in group i (or by measurement i), if item j and no other
defective items are assigned to group i. We say that a matrix R isolates q items if there are q
distinct indices j that are isolated in a group given by a row of R.

Lemma 6. Fix parameters d and N . Let R be a matrix with N columns and t rows, such that
each entry is one with probability 1/d and zero otherwise, independently. For sufficiently large
t ≤ O(d log(N)), except with probability 1

4 , the matrix R isolates at least εd of the defects in any
signal s consisting of δ ones (defective items), for d/2 ≤ δ ≤ d, and N − δ zeros (nondefective
items).

Proof. Fix a sample with δ defects. In each row, the probability of getting exactly one defect is
p = δ(1/d)(1 − 1/d)δ−1, so that p ≥ Ω(1). By the Chernoff bound, for some constant c, at least
ct of the rows get exactly one defect except with probability e−Ω(t) ≤ 1

4

(
N
d

)−1
, for sufficiently large

t ≤ O(d log(N)). By symmetry, the set of isolated defects consists of t independent uniform draws
with replacement from the set of δ defects. The probability that the collection contains fewer than
εd different items is at most ∑

j<εd

(
d

j

)
(j/δ)t ≤ εd

(
d

εd

)
(2ε)t

≤ εd
dεd

(εd)!
(2ε)t

≈ εd
dεd

(εd/e)εd
(2ε)t

= εd
(e

ε

)εd
(2ε)t.

If we make ε = e−1, we get ∑
j<εd

(
d

j

)
(j/d)t ≤ εd

(e

ε

)εd
εt

≤ eln(d)−1+2d/e−t(1−ln(2))

≤ 1
4d

(
N

d

)−1

,

provided t ≤ O
(
log

(
N
d

))
= O(d log N) is sufficiently large. Finally, take a union bound over all

at-most-d
(
N
d

)
possible signals. �

Now we extend to “at most d” defects.

Corollary 7. Fix parameters d and N . For sufficiently large t ≤ O(d log(N)), there is a t-by-N
matrix M that isolates at least εδ of the defects in any sample s having δ ≤ d ones (defects) and
N − δ zeros.

Proof. By Lemma 6, there exists a matrix with O(d log(N)) rows that works for any δ in the range
d/2 ≤ δ ≤ d. Similarly, for any j, there is a matrix Rj with O(2−jd log(N)) rows that works for
any δ in the range 2−(j+1)d ≤ δ ≤ 2−jd. Combine all these matrices. The number of rows is the
sum of a geometric series,

O(d log(N))(1 + 2−1 + 2−2 + · · · ) = O(d log(N)).

�
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Suppose that defective item j is isolated in group i. Then no other defective items are in group
i but this by itself does not identify j. The signal which consists of all those items in group i
does, however, consist of d′ = 1 defective items only and we can apply the bit-testing matrix B1

to those of the N items that end up group i; this will identify j. More precisely, for each row r
in the random design R and each row r′ of B1, take rr′ as a row of our final design, M . Thus
M has approximately d log2(n) rows and we say that M is the row tensor product of B1 and R,
M = B1

⊗
r R. If the random part of M succeeds, i.e., group r has exactly one defect j, then

it is clear that M will identify j. If group r contains more than one item, however, the natural
bit-test algorithm may fail and output an arbitrary position; these are false positives. Some items
will never appear alone in any group; these are false negatives. Thus the number of false positives is
bounded by the number of groups, O(d log(N)). The number of groups is close to the lower bound,
since log

(
N
d

)
≥ Ω(d log(N/d)). We summarize our above discussion in the following theorem.

Theorem 8. Suppose there is a Boolean testing procedure that can be applied to any subset of items.
Then there is a measurement matrix M with O(d log2 N) rows and N columns and non-adaptive
algorithm which identifies a list of O(d log N) items containing at least εd defective items from N
total, i.e., an ε-approximate identification design. The matrix M that is a row tensor product of
the bit-test matrix B1 and a random matrix R of O(d log N) rows, having exactly one non-zero, a
1, in each column is such a matrix, with high probability. Excluding time to make measurements,
the algorithm runs in time poly(d log N).

Furthermore, approximate identification is almost as good as strict identification when the tests
are adaptive or the tests are non-adaptive and linear. In this section we consider only adaptive tests,
but we return to non-adaptive linear tests over the next sections. After tentatively identifying the
defects, we can test each one to confirm, remove them from consideration, and test the remaining
N − εd of the items, of which (1 − ε)d are defective. By the above discussion, there is an ε-
approximate identification design for all relevant values of d and N , so we can repeat the process,
and recover all the items. We give the following corollary for the noiseless case, but the techniques
will actually tolerate considerable noise; i.e., the techniques handle a sample vector s in which
supposed “zeros” are actually small-magnitude non-zero numbers.

Lemma 9. Suppose there is an ε-approximate identification scheme with t ≤ O(d log2 N) tests for
d defects out of N items, for all relevant values of ε, d, and N . Then there is an adaptive design
and algorithm that finds all d defects using O(t/ε) tests and O(log(d)/ε) rounds of adaptivitiy.
Excluding time to make measurements, the algorithm runs in time poly(d log N) times the time
required to call the ε-approximate identification algorithm once.

Proof. Use the hypothesized ε-approximate identification scheme on the original (N, d)-sample, test
the tentatively identified items, then use the hypothesized ε-approximate identification scheme on
the residual (≤ N − εd,≤ (1− ε)d)-sample, etc. Note that the total number of tests is the sum of
a geometric series,

t(1 + (1− ε) + (1− ε)2 + · · · ) ≈ t/ε.

The number of terms in the series, which is the number of rounds of adaptivity, is O(| log(1−ε) d|) ≤
O(log(d)/ε). �

Thus we have, from the above:

Corollary 10. Suppose there is a Boolean testing procedure that can be applied to any subset of
items. Then there is an algorithm that finds all at-most-d defects in a sample of length N using at
most O(d log2 N) tests. The overall algorithm needs O(log(d)) rounds of adaptivity and succeeds for
all samples. Excluding time to make measurements, either algorithm runs in time poly(d log N).
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5. Constrained Tests

In this section, we will consider designs whose groups all must be rows of the Hadamard matrix,
described below. There are two reasons for considering this. First, one can imagine situations in
nature where measurements are naturally constrained to come from a particular set. For example,
in Magnetic Resonance Imaging or Synthetic Aperture RADAR, available measurements are dot
products with rows of the Discrete Fourier Transform matrix. The Hadamard matrix is a relative
of the DFT matrix and many of the techniques we describe for Hadamard extend to DFT, though
a complete treatment of DFT is technical and beyond the scope of this paper. Second, as we will
discuss below, we can dualize the result—instead of making tests that are Hadamard (or Fourier)
rows to identify a set of exactly d defects that are individual items, we can equivalently make tests
to a signal x that measure individual positions in x (i.e., sample x) in order to identify a set of
exactly d Hadamard (or Fourier) rows that have non-zero dot product with x. In this section and
the next, we claim only a “for-each” guarantee of success. Our treatment of this material is an
expository presentation of the work in [GL89, KM91, GGI+02b]. We observe that all of these linear
measurements are appropriate for streaming data so that we may view this special group testing
algorithms as streaming algorithms as well.

The importance of the DFT in modern digital signal processing, computational statistics, and
analysis cannot be overstated. It is at the heard of many computational methods. We given
an overview of several algorithms which identify significant Fourier (or Hadamard) coefficients.
These coefficients capture the major time-invariant or stationary wave-like features of the signal.
The largest few Fourier coefficients are useful in data compression, feature extraction, finding
approximate periods, and data mining.

5.1. Background on the Hadamard Matrix. Fix integer n and let N = 2n. The N × N
Hadamard matrix Hn takes the value (−1)〈i, j〉 at position (i, j), where we regard i, j, and the
inner product over Zn

2 . The Hadamard matrix is a symmetric matrix and, properly normalized, it
is unitary, so that H2

n/N is the identity matrix.
An alternative view of the general Hadamard matrix Hn is the n-fold tensor product of the 2-by-2

matrix H1 with itself. By associativity of tensor products, we can also write Hn = Hj ⊗Hn−j for
any j in the range 0 ≤ j ≤ n.

Below, we will be interested in measuring a sample s with a row Ri of the Hadamard matrix.
As described above, each such measurement consists of +1’s and −1’s. We can equivalently make
measurements of all 0’s and 1’s, as is traditional. If we intend to measure x as 〈Ri, x〉 for some
row Ri of ±1’s, we replace Ri with (Ri + 1)/2, which is a vector of 0’s and 1’s. We also make the
measurement 〈1, x〉, where the constant 1 vector 1 also a {0, 1}-valued measurement. At recovery
time, we can form 〈Ri, x〉 = 2 〈(Ri + 1)/2, x〉 − 〈1, x〉.

5.2. Permute and Assign. We use a special case of the random hashing of Section 4. We view
that section as follows. Instead of assigning the N positions into t groups at random, we equivalently
permute the the N positions at random, then assign to t groups arbitrarily. Further, as we show,
we only need to permute the N positions pairwise independently at random, i.e., given distinct
positions j and j′, a random permutation σ sends the pair (j, j′) to a pair (σ(j), σ(j′)) uniformly
distributed over all N(N − 1) possibilities.

In the remainder of this section, we examine how to accomplish both the permutation and group
assignment tasks in a way that is compatible with making only Hadamard measurements. We also
need to accomplish bit testing using Hadamard, but that task is similar to the group assignment
task.

5.2.1. Permutation. If a measurement is a row Ri of the Hadamard matrix, then 〈Ri, x〉 =∑
j(−1)〈i, j〉xj , where the inner product in the exponent is over Zn

2 . We will permute the j’s
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according to k = σ(j) = Pj + `, where P is an invertible n-by-n matrix and ` is a vector in Zn
2 .

We have:

Lemma 11. Let Ri be a row of the Hadamard matrix and let σ(j) = Pj+` be an affine pemutation
over Zn

2 . For any signal s, the measurement 〈Ri, s〉 can be written as f(i, σ) 〈Ri′ , s〉, i.e., a
measurement of s by a possibly different Hadamard row Ri′ multiplied by a function of i and σ (but
not of s). In fact, 〈Ri, s〉 = (−1)〈iP−1, `〉 〈RiP−1 , s〉.

Proof. Define s′j by s′j = sσ(j) = sPj+`. Then〈
Ri, s′

〉
=

∑
j

(−1)〈i, j〉s′j

=
∑

j

(−1)〈i, j〉sPj+`

=
∑

k

(−1)〈i, P−1(k+`)〉sk

= (−1)〈i, P−1`〉∑
k

(−1)〈i, P−1k〉sk

= (−1)〈iP−1, `〉∑
k

(−1)〈iP−1, k〉sk

= (−1)〈iP−1, `〉 〈RiP−1 , s〉 .
�

Thus we want to permute the indices of s by σ(j) = Pj + ` before measuring with a Hadamard
row, and this can instead be simulated by post-processing after measurement of s by some possibly
different Hadamard row, whose identity does not depend on s.

5.2.2. Group Assignment. Next, we consider the group assignment operation. For fixed integer k,
we want to construct an assignment of the N positions to one of 2k groups. Specifically, we will
aim for the structured matrix

Mk =

1 1 1 1
1 1 1 1

. . .

 ,

where there are 2k rows, N columns, and N/2k 1’s in each row, in positions iN/2k to (i+1)N/2k−1
in row i, for 0 ≤ i < 2k. In our context, we want to write Mk = AR, where R is a (2k)-by-N row
submatrix of the Hadarmard matrix and A is a (2k)-by-(2k) matrix.

We start with an example. If k = 1, we want the 2-by-N matrix M1, which is is

M1 =
(

1 1 1 1
1 1 1 1

)
=

1
2

(
1 1
1 −1

)
·
(

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1

)
.

More generally, if we let Ik denote the (2k)-by-(2k) identity matrix, we have Mk = IkMk =
H2

kMk/2k = Hk(HkMk)/2k, as illustrated above for k = 1. Thus, in Mk = AR, we can take
A = Hk provided we can show that the rows of R = 2−kHkMk are rows of Hn. This follows by
induction from the definition of Hn as Hn = Hk⊗Hn−k and the fact that Mk is of the form Ik⊗1,
where 1 here denotes the 1-by-N/2k matrix of all 1’s and is one of the rows of Hn−k.

Note that the bit-testing matrix B1 is constructed similarly. One way to see this is by noting
that the top row of B1 is equivalent to the row(

+1 +1 +1 +1 −1 −1 −1 −1
)
,
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which is a row of R. Other rows of B1 are gotten by applying certain permutation matrices P to the
indices j, which, as we have seen above, is compatible with Hadamard measurements. The top row
of B1 can be regarded as (−1)msb(j) and, more generally, row i of B1 is (−1)bit i of j . So, if a matrix
P acting on j swaps the most significant bit of j with bit i of j, then (−1)msb(Pj) = (−1)bit i of j ,
as desired.

5.3. Pairwise Independence. Next, if the matrix P is chosen at random from amongst invertible
matrices and the vector ` is chosen at random from Zn

2 , then we claim that the mapping j 7→ Pj +`
is pairwise independent.

Lemma 12. Let σ(j) = Pj + ` be a random permutation where the matrix P is chosen at random
from amongst invertible matrices and the vector ` is chosen at random from Zn

2 . Then, for any
j 6= j′ and any t 6= t′, Pr(σ(j) = t ∧ σ(j′) = t′) = 1

N(N−1) .

Proof. Let j 6= j′ be two distinct indices and let t 6= t′ be two distinct targets. Even conditioned
on the value of P , the distribution on σ(j) = Pj + ` is uniform over Zn

2 , so it suffices to show
that Pr(σ(j′) = t′|σ(j) = t) = 1

N−1 . Conditioned on Pj + ` = t, we have σ(j′) = Pj′ + ` =
Pj + ` + P (j′ + j) = t + P (j′ + j), and it suffices to show that P (j′ + j) takes on any non-zero
value uniformly when j′ + j 6= 0 and P is random. We may assume that j = 0; that is, we need to
show that Pj′ is uniform over non-zero vectors t′ provided j′ 6= 0.

Given any j′, t′ 6= 0 there is an invertible P with Pj′ = t′. Furthermore, as P varies at random,
Pj′ varies uniformly over all non-zero vectors. To see this, fix some non-zero vector k and suppose
P0j

′ = k. The setH of invertible matrices that fix k is a multiplicative subgroup of the multiplicative
group G of all invertible matrices. For each k′ 6= 0 there is, as above, an invertible matrix P with
Pk = k′. The invertible matrices can be partitioned into multiplicative cosets of H in G, where a
matrix P is in a coset QH iff Pk = Qk, i.e., iff PP0j

′ = QP0j
′. Since all cosets have the same size,

each non-zero vector has an equal chance to be the image of j′ under multiplication by a random
invertible matrix. The result follows. �

5.3.1. Using Pairwise Independence. Finally, we show that pairwise independence suffices. Con-
sider a particular defect, at position j. It is assigned to some group, g. Conditioned on that,
each other defect is assigned to g with probability 2−kN−1

N−1 ≤ 2−k by pairwise independence, so
the expected number of other defects assigned to g is (d − 1)2−k, which is less than 1/4 provided
2k > 4d. It follows by the Markov inequality that the number of other defects assigned is less than
1 with probability at least 3/4 and so each defect is isolated in its own group with probability at
least 3/4. Thus the expected number of defects that fail to become isolated is at most d/4; by the
Markov inequality again, the number that fail to be isolated exceeds 3d/4 only with probability at
most 1/3. Thus, with probability at least 2/3, we isolate at least d/4 defects. Note that the number
of groups (and, so, the number of false positives) is O(d), not d log(N). We need another factor
of log(N) in the number of groups in order to take the row tensor product with B1 to perform
identification. Thus we have

Lemma 13. There is a randomized algorithm and ε > 0 that, for each signal s of length N with d
defects, returns a list of at most O(d) items that contains at least εd defects. The algorithm takes
time poly(d log N), excluding the time to make measurements.

5.4. Duality. In the above discussion, there’s a vector s of length N with d defects (non-zeros).
Conceptually, we make t tests of s, where each test includes exactly N/t of the N items and the t
tests partition the N items. We can view the collection of test data as S′Hns, where S′ has exactly
one non-zero per row, a 1. Thus S′ picks a random sample. Above we took the view that S′Hn

is a collection of tests on our d-defect sample, s. Now we take the view that we have a function,
f , given by f = Hns. That is, f consists of the sum of d columns of the Hadamard matrix, or,
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more generally, a linear combination of d columns. The operator S′ samples f in t places and we
have an algorithm that recovers s efficiently from S′Hns = S′f . The vector s can be regarded as a
compressed representation for the vector f = Hns, so that recovering s is equivalent to recovering
f . Thus we have:

Lemma 14. There is a randomized algorithm and ε > 0 that, for each signal s of length N with
d non-zero Hadamard coefficients, returns a list of at most O(d) Hadamard rows that contains at
least εd rows with non-zero dot product to s. The algorithm takes time poly(d log N), including the
time to make the measurements (which are samples to s).

Recall that our goal is to recover all non-zero Hadamard coefficients, analogous to Corollary 10.
Unfortunately, this needs to wait until Section 6.1.

5.5. Fourier. In this section, we consider replacing the Hadamard matrix with the N -by-N Dis-
crete Fourier Transform matrix, FN . In this section, let i denote the square root of −1 and index
tests by k instead of i. The (k, j) entry of FN is given by e2πijk/N/

√
N . Our goal is to construct

a “partition” of ZN into t sets of sizes N/t. The notion of partition here, however, will be relaxed.
Given a strict partition, i.e., a collection {Sk} of subsets of ZN , such that each j ∈ ZN is in exactly
one Sk, we want a set of vectors rk such that:

• If j ∈ Sk, then |rk(j)| ≥ Ω(1). (The vector rj fractionally contains each j ∈ Sj .)
• For each k, we have

∑
j∈Sk

|rk(j)|2 ≤ O(N/t). (The vector rj fractionally contains no more
than (1/t) of all items.)

There are many technical changes to the Hadamard discussion to make all of this go through,
which are beyond the scope of this paper. Here we note only that it is possible, and relies on the
relaxed notion of partition given above. For more details, see [GGI+02b].

6. Using test results in novel ways

In the previous sections, we focused on approximate versions of the group testing problem and on
how to use certain types of tests or designs. In this section, we turn to novel uses of measurements
that are not necessarily of a special type. We use these measurements to obtain information not
just about special entries in our streaming data (e.g., those portions of the implicit signal that
are nonzero) but about other statistical quantities or properties of that signal or distribution. We
begin with point queries on a stream, which are a generalization of the identification problem in
Section 4. We then use our techniques to answer point queries to answer range queries. Finally, we
show how to adapt range queries to extract approximate quantiles for a data set. This exposition
follows the work in several papers, including [AGMS99, GKM+05, GGI+02a, CM03].

6.1. Point Queries. A point query is the simplest type of query for a data set. Given a signal
vector A and a query position i, we want to estimate the value A(i). In the streaming context,
we have a stream of records which implicity define a signal A and at some point in the stream of
records, we want an approximate answer to the value of the signal at a point. This point i is an
arbitrary position and this problem is considerably different from the problem of identifying large
or non-zero entries in the signal A. In the streaming telephone records example in Section 4, we
are asking whether phone number 8008001111 is currently active, rather than for a list of active
phone numbers.

Fast estimates for these types of aggregate queries are useful in database query optimization,
approximate query answering and on-line query processing. Typical database systems use selectivity
estimates to generate fast estimates for query optimization and approximate query answering.
Selectivity estimation stores some summary information about the signal A and then uses that
summary information to provide query estimates. We discuss what type of summary information
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to use for selectivity estimation (especially for point queries) and how to gather it efficiently on
streaming data.

Suppose that we observe a signal A as a stream of records in the cash register model. Assume
that A : [1, N ] → R so that its domain U is of length N . Our goal is to estimate the value of A
at index i. We construct a random vector r of length N which consists of ±1, chosen uniformly at
random. Given vector A, we measure it with r, and obtain a single measurement number, 〈r, A〉.
After collecting this measurement, we use it to estimate the value of A at index i as

X = r(i) 〈r, A〉 .
Let ‖A‖ denote

√∑
i A(i)2.

Lemma 15. With proability at least 3/4, the estimator X satisfies X = A(i)± 2
√∑

j 6=i A(j)2. If

Z is the median of O(log(1/δ)) copies of the mean of O(1/ε2) copies of X, then, with probability
at least 1− δ, the estimator Z satisfies Z = A(i)± ε ‖A‖.

Proof. Sketch. Following [AGMS99], we have

E[X] =
∑

k

E[r(i)A(k)r(k)] = A(i).

Also,

σ2 = var(X) = E
[
r(i)2

( ∑
k 6=i

A(k)r(k)
)2]

=
∑
k 6=i

A(k)2 ≤ ‖A‖2 .

The Chebychev inequality tells us that Pr(|X − E[X]|2 > 4σ2) < 1/4, which gives the first state-
ment. To get the second statement, let Y be the mean of O(1/ε2) copies of X, so E[Y ] = E[X] =
A(i) and we can arrange that E[Y 2] ≤ ε2

8 ‖A‖
2. As above, |Y −A(i)| ≤ ε ‖A‖ except with proba-

bility 1/8. Let Z be the median of O(log(1/δ)) copies of Y . Then |Z −A(i)| > ε ‖A‖ implies that,
for half of the Y ’s, we have |Y −A(i)| > ε ‖A‖. We expect this to happen for just 1/8 of the Y ’s
and, by the Chernoff bound, this happens for half of the Y ’s only with probability exponentially
small in the number O(log(1/δ)) of Y ’s, which we can arrange to be at most δ. �

Observe that because our measurement process is linear, we can maintain an accurate measure-
ment number 〈r, A〉 on a stream of updates to the signal A.

This lemma is formulated in terms of random ±1 vectors. We now give an equivalent formulation
in terms of group testing. Assume that G is a random set of distinct values, each drawn from the
domain with probability 1/2. We encode this set G with a random {0, 1}-valued vector g, as is
traditional in group testing. Let AG denote A projected onto the set G (i.e., form the dot product
〈g, A〉), and let

ΣGA =
∑
j∈G

A(j)

denote the total sum of A over G. Also, ΣA is the total sum over the signal. This procedure is
equivalent to measuring A with a random group testing design. For A(i), consider E

[
ΣGA|i ∈ G

]
.

We can estimate this conditional expectation from our counts ΣGA, where G contains i. In addition,
we can show that this conditional expectation is equal to A(i) + 1

2ΣU\{i}A, since the contribution
of i is always counted but the contribution of each other point is counted only half the time.
Furthermore, we know ΣA, so we can estimate A(i) as

A(i) = 2
(
A(i) +

1
2
ΣU\{i}A

)
− ΣA = 2E

[
ΣGA|i ∈ G

]
− ΣA.

We maintain ΣGA for each of several random sets G. This is equivalent to forming a random group
testing design with several rows. It turns out that this procedure yields an estimate good to within
εΣA additively if we take an average of O(1/ε2) repetitions.
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Finally, we can state the non-adaptive analog to Theorem 10.

Theorem 16. Suppose there is a linear testing procedure that can be applied to any subset of items.
Then there is a randomized algorithm that finds all at-most-d defects in a sample of length N using
at most d polylog(N) tests. The overall algorithm is non-adaptive and succeeds in the sense that
there is a distribution D on measurement matrices M , such that, for each signal s, most M ∼ D
work on s. Excluding time to make measurements, either algorithm runs in time poly(d log N).

sketch. Use an ε-approximate identification scheme to identify εd of the d defects. Use Lemma 15
to test each tenatively identified position j or, more generally, to estimate the coefficient cj . If we
let ej denote the vector that is 1 in position j and 0 elsewhere and let Λ denote the set of identified
positions, form the vector s−

∑
j∈Λ cjej and measure it as

M

s−
∑
j∈Λ

cjej

 = Ms−
∑
j∈Λ

cjMej ,

by subtracting
∑

j∈Λ cjMej from the original measurement Ms, and without adaptively revisiting
the original data. Use independent randomness for the various iterations of the algorithm and lower
the failure probabilities of each step somewhat so that, taking a union bound, the overall failure
probability remains under control. �

6.2. Dyadic Ranges. We can, in a similar fashion, estimate the sum of entries A(j) for all j in
any dyadic interval in U , up to ±εΣA. By writing any interval as a disjoint union of at most log N
dyadic intervals, we can estimate the number of data set items in any interval.

To sketch our data structure for estimating dyadic ranges, we partition the domain U into
dyadic intervals Ij,k where Ij,k is an interval of the form [k2`−j , (k + 1)2`−j − 1] for integers j
and k and ` = log2 N . The parameter j of a dyadic interval is its resolution level from coarse,
I0,0 = U , to fine, I`,k = [k]. For each resolution level j, pick a random subset of the intervals Ij,k,
k = 0, 1, . . . , 2j − 1. We choose each interval with probability 1/2. Let A be the union of these
intervals and let ΣSA be the total of the values in the data set that are projected onto S. Or, more
formally, ΣSA =

∑
i∈S A(i). We repeat this process

num copies = O(ε−2) log(δ−1 log(N) log(ε−2N)

times and generate sets S1, . . . , Snum copies per resolution level. The counts ΣSl
A for all sets that

we have picked comprise our Random Subset Sum (RSS) summary structure. See Figure 3 for an
illustration of the RSS data structure. In addition we store and maintain ΣA exactly.

We maintain these RSSs as we stream over the data as follows. For updates with index i, for each
resolution level j, we quickly locate the single dyadic interval Ij,k into which i falls by examining
the high order bits of i in binary. Then, we quickly determine those sets Sl that contain Ij,k. For
each such set we update ΣASl

appropriately.

6.3. Quantiles. Now we turn attention to quantiles. Quantiles are order statistics for a data
set. The elementary order statistics include the median (the “halfway point”) and the quar-
tiles (the “quarter-way points”). In general, the q-quantiles, for small real-valued q > 0, of an
ordered sequence of ΣA data items are the values of the data set which have rank kqΣA, for
k = 1, 2, . . . , 1/q − 1.

More precisely, there is a universe of item types, which we take to be 1, 2, 3, . . . , N . Each type
i appears in the data set some non-negative1 number A(i) of times. The total number of items
in the data set is ΣA =

∑
i A(i), which may be greater than or less than N . We assume that

the data set is presented to us through a series of updates of the form (i, v(i)), which means “add

1There are additional algorithmic techniques one can use to handle the situation of negative values for A, but
both these techniques and the definition of quantile in this case are beyond the scope of this paper.
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RSS: a more detailed look

• Maintain frequency sums for

random subsets of intervals at

multiple resolutions

– For each level  j

– Pick each dyadic interval

with prob. _ (get a

random subset D of

dyadic intervals)

– Maintain the sum of all

frequencies in D’s

intervals, +1 for insertion,

-1 for deletion

– Repeat as necessary
1 N

Figure 3. At each resolution level j in the dyadic hierarchy, we keep a random
subset of intervals over which we maintain frequency counts.

v(i) to A(i),” where v(i) may be negative provided A(i) remains non-negative. For example, in a
rental car agency, i may be a car model year and A(i) is the number of cars of vintage i on the
road. When a car of vintage i is rented, update (i,+1) tells us to add 1 to A(i); when the car is
returned, (i,−1) tells us to subtract 1 from A(i). The active phone call setup of section 3.3 gives
another example.

Most database management systems (DBMSs) maintain order statistics or quantiles on the con-
tents of their database relations as quantiles find multiple uses in databases and in data mining,
more generally. Simple statistics such as the mean and variance are both insufficiently descriptive
and highly sensitive to data anomalies in real-world data distributions. Quantiles, on the other
hand, can summarize massive database relations more robustly.

Our goal is to estimate q quantiles on demand. Because we will be using a small amount of
computational resources, we will focus on computing ε-approximate q-quantiles rather than on
exact q-quantiles. That is, we define a k’th ε-approximate q-quantile to be any jk such that

∑
i<jk

A(i) ≤ kqΣA ≤ εΣA +
∑
i≤jk

A(i),

for k = 1, . . . , 1/q−1. The set of indices j1, . . . , j1/q−1 will be q-quantiles approximate up to ±εΣA.
Note that if ε = 0, then we seek the exact quantiles.

We will illustrate the algorithm, using the median as an example quantile. As an overview, let
F denote the cumulative function for A, so that Fj =

∑
i<j A(i), and so the median is a point j

with Fj ≤ 1
2ΣA ≤ Fj+1. We will approximate Fj by F̃j , using the techniques of Section 6.2. We

assume that we know ΣA exactly, by keeping a single counter. We then define Ij be an indicator
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as to whether j is apparently too large to be the median, using the approximation F̃ . That is,

Ij =
{

0, F̃j ≤ 1
2ΣA;

1, F̃j > 1
2ΣA.

Although Fj increases with j, the approximation F̃j is not necessarily monotonic and, therefore,
Ij may not be monotonic. Nevertheless, we can assume I0 = 0 and IN = 1 and so there exists
some point j with Ij = 0 and Ij+1 = 1 (for example, the largest j for which Ij = 0 is such a
point). Because F̃j is an approximation to Fj with accuracy guarantees, we can conclude that j is
an approximate median.

We now proceed formally. As in Section 6.2, we measure the signal in such a way that, for any
dyadic range R, we can estimate

∑
i∈R A(i) to within ηΣA, additively, where η will be specified

below. For any j, the range 0 ≤ i < j can be partitioned into O(log(N)) dyadic ranges, so we
can estimate Fj =

∑
0≤i<j A(i) to within O(log(N)ηΣA), by summing the approximations on the

constituent ranges. Let F̃j denote this approximation to Fj , and, by adjusting η and adding the
appropriate multiple of ηΣA, we may assume that Fj ≤ F̃j ≤ Fj + O(log(N)ηΣA). Define Ij from
F̃j , as above.

Next, we use bisection search to find, in the time to do O(log(N)) estimations of F̃ , a position j
such that Ij = 0 and Ij+1 = 1. We start with jlo = 0 and jhi = N , so that Ijlo = 0 and Ijhi

= 1. We
repeatedly let jmid = (jlo + jhi)/2 be the midpoint between jlo and jhi and set jlo or jhi to be jmid,
depending on Ijmid

, maintaining the invariant that Ijlo = 0 and Ijhi
= 1. The algorithm terminates

when jlo + 1 = jhi, and outputs j = jlo as an approximate median.
At this point, we have

Fjlo ≤ F̃jlo ≤
1
2
ΣA < F̃jlo+1 ≤ Fjlo+1 + O(log(N)ηΣA),

as desired, provided the O(log(N)ηΣA) term is at most εΣA.

6.4. Computational cost and the return of coding theory. An important technical detail is
how to store and index various Sl’s, which are random subsets. The straightforward way would be
to store them explicitly, perhaps as a bitmap. This would use space O(N) which we can not afford.
For our algorithm, we instead store certain random seeds of size O(log N) bits and compute a
(pseudorandom) function that explicitly shows whether i ∈ Sl or not. For this, we use the standard
3-wise independent random variable construction shown below, since it works well with our dyadic
construction.

We need a generator G(s, i) = Si that quickly outputs the i’th bit of the set S, given i and a
short seed s. In particular, the generator takes a O(log N)-bit seed and can be used to generate
sets S of size O(N). The generator G is the extended Hamming code, e.g.,

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 ,

which consists of a row of 1’s and then all the columns, in order. So, for each resolution level j,
there’s a G of size (j +1)×2j . Then G(s, i) is the seed s of length j +1 dotted with the i’th column
of G modulo 2, which is efficient to compute—note that the i’th column of G is a 1 followed by the
binary expansion of i.

Thus the algorithms in this section use space, and number of tests, and runtime (excluding the
time to make tests), all at most polynomial in d, log(N), log(ΣA), 1/ε, and log(1/δ).
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Figure 4. Mathematical setting for an optimal recovery problem.

7. Conclusions

There are many extensions and further developments in streaming algorithms than the few we
highlight here. See [Mut05] for a detailed discussion. There are algorithms and software and
hardware systems for a large variety of statistical and combinatorial problems, especially for com-
munication networks. A significant number of these results and implementations require some
aspect of group testing in order to meet stringent computational constraints. The role of group
testing in these algorithms may not be touted but a closer look will reveal its pervasive appearance.

From a mathematical perspective, the streaming algorithms we have discussed are part of a
larger mathematical theory of optimal recovery. The theory of optimal recovery was introduced in
the late 1950s [GW59] and polished to a shine by the mid-1980s [MR77, TW80, Pin86]. We base
our discussion on [CL00].

Let Ω be a model for signals of interest, which belong to some ambient signal space. Suppose that
we are interested in calculating some (possibly nonlinear) statistic Uf of each signal f in Ω. An
essential point is that approximating signal statistics may be far easier than recovering the signal
completely. We do not have access to the signal itself, but we can obtain some information about
the signal via a linear information operator Φ. The goal of the recovery problem is to produce
an algorithm A that estimates the statistic Uf from the information Φf . Figure 4 illustrates this
setting.

If we are concerned primarily with how well the algorithm approximates the statistic per se, we
could define the error as

E(A) = sup
f∈Ω

‖A(Φf)−Uf‖

where ‖ · ‖ is a norm on the statistic space. The intrinsic error in a recovery problem is defined as

E? = inf
A

E(A),

the minimal error attainable by any algorithm, computable or not. The intrinsic error is a funda-
mental mathematical bound on how well an algorithm can perform. An algorithm that attains the
intrinsic error is called optimal. In some cases, it is possible to design the information operator Φ
to minimize the intrinsic error.

We can easily generalize and abstract many of the streaming algorithms succinctly in this frame-
work. The problem domain leads to a signal model Ω and to a relevant set of statistics U . Techno-
logical and economic limits on possible software and hardware (such as sampling devices) constrain
which information operators Φ are practicable, including the type and number of measurements.
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The algorithms A that can be used to approximate the signal statistics are restricted by the com-
putational resources available, such as time and storage. The goal then is to design an information
operator and an algorithm that are technologically feasible and still yield an error as small as
possible.

This framework allows us to consider a much larger and richer set of mathematical and engi-
neering questions than streaming algorithms alone. We have much greater flexibility to adapt our
problem to a particular application. Suppose that our hardware has certain resource constraints
but that we are willing to expend more resources on the recovery algorithm. Or, we may have an
application where our signal space is especially restricted. Mathematically, we can change our focus
from algorithms,per se, to more fundamental resource questions about how many measurements,
of what type, are necessary to compute various types of statistics. What fundamental tradeoffs
are there in using randomized information maps versus deterministic ones, for example. We are
witnessing a flurry of current research activity in this area [VMB02, MV, TG05, CT04b, CT04a,
CDS98, Don04b, Don04a, DT05, HN05, CT05] (to mention just a few) but this rich and interesting
intersection of mathematics, statistics, and computer science has yet to be fully mined.
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