Solutions to Math 416 Homework due October 1, Chapter 4

October 4, 2004

1 4.2-3

level	problem size	number of nodes	cost/node	total cost
0	n	1	$c n$	$c n$
1	$n / 2$	4	$c(n / 2)$	$4(c n / 2)=2 c n$
2	$n / 4$	16	$c(n / 4)$	$16(c n / 4)=4 c n$
\vdots				
j	$n / 2^{j}$	4^{j}	$c n / 2^{j}$	$c n 2^{j}$
\vdots				
$h=\lg (n)$	1	$4^{h}=n^{2}$	c	$c 4^{h}=c n^{2}$

The tree has fanout 4, as indicated in the "number of nodes" column.
The total cost is $c n\left(1+2+4+\cdots+2^{j}+\cdots+2^{h}\right)=2^{h+1} c n$. This is $\Theta\left(n^{2}\right)$. We now prove it by the substitution method. We will show $O\left(n^{2}\right)$ and $\Omega\left(n^{2}\right)$ separately, and introduce a linear and constant term to make the induction go through.

Suppose, for all $n \geq n_{0}$, we have $T(n) \leq a_{2} n^{2}+a_{1} n+a_{0}$, where a_{2}, a_{1}, a_{0}, and n_{0} will be specified later, with $a_{2}>0$ and $a_{1} \leq 0$. (At this point, it's a guess that $a_{1} \leq 0$, but there are only two possibilities. This is "strengthening the inductive hypothesis," as discussed in the text. The constant a_{0} is unnecessary, but can't hurt.) First we show the inductive step. We have

$$
\begin{aligned}
T(n) & =4 T(\lfloor n / 2\rfloor)+c n \\
& =4\left[a_{2}(\lfloor n / 2\rfloor)^{2}+a_{1}(\lfloor n / 2\rfloor)+a_{0}\right]+c n \\
& \leq 4\left[a_{2}(n / 2)^{2}+a_{1}(n / 2+1)+a_{0}\right]+c n \\
& =a_{2} n^{2}+2 a_{1} n+4 a_{1}+4 a_{0}+c n \\
& \leq a_{2} n^{2}+a_{1} n+a_{0},
\end{aligned}
$$

provided $2 a_{1} n+4 a_{1}+4 a_{0}+c n \leq a_{1} n+a_{0}$, which is true provided $\left(a_{1}+c\right) n+3 a_{1}+3 a_{0} \leq 0$. Asymptotically, we need $a_{1}<-c$. Put $a_{1}=-2 c$, getting $-c n+3 a_{0}-6 c \leq 0$, or $c n \geq 3 a_{0}-6 c$. If $n \geq 1=n_{0}$, then we need $7 c \geq 3 a_{0}$, or $c \geq(3 / 7) a_{0}$. Put $a_{0}=c$.

Now we show the base case. We are given that $T(1) \leq c$. This is less than $a_{2} \cdot 1^{2}+a_{1} \cdot 1+a_{0}=a_{2}+a_{1}+a_{0}$ provided $c \leq a_{2}+a_{1}+a_{0}=a_{2}-2 c+c$; i.e., provided $a_{2} \geq 2 c$. Put $a_{2}=2 c$. We can now confirm: $T(1)=c \leq(2 c) \cdot 1^{2}-2 c \cdot 1+c$ and

$$
\begin{aligned}
T(n) & =4 T(\lfloor n / 2\rfloor)+c n \\
& =4\left[2 c(\lfloor n / 2\rfloor)^{2}-2 c(\lfloor n / 2\rfloor)+c\right]+c n \\
& \leq 4\left[2 c(n / 2)^{2}-2 c(n / 2+1)+c\right]+c n \\
& =2 c n^{2}-4 c n-8 c+4 c+c n \\
& =2 c n^{2}-3 c n-4 c \\
& \leq 2 c n^{2}-2 c n+c,
\end{aligned}
$$

provided $-3 c n-4 c \leq-2 c n+c$, or $c n \geq-3 c$, or $n \geq-3$, which is always true.
Similarly, we need to show that, for $n \geq n_{1}$, we have $T(n) \geq b_{2} n^{2}+b_{1} n+b_{0}$, for b_{2}, b_{1}, b_{0}, and n_{1} to be determined later, with $b_{2}>0$ and $b_{1} \leq 0$. We have

$$
\begin{aligned}
T(n) & =4 T(\lfloor n / 2\rfloor)+c n \\
& =4\left[b_{2}(\lfloor n / 2\rfloor)^{2}+b_{1}(\lfloor n / 2\rfloor)+b_{0}\right]+c n \\
& \geq 4\left[b_{2}(n / 2-1)^{2}+b_{1}(n / 2)+b_{0}\right]+c n \\
& =4\left[b_{2}(n / 2)^{2}-b_{2} n+b_{2}+b_{1}(n / 2)+b_{0}\right]+c n \\
& =b_{2} n^{2}+\left(2 b_{1}-4 b_{2}+c\right) n+4\left(b_{2}+b_{0}\right) \\
& \geq b_{2} n^{2}+b_{1} n+b_{0},
\end{aligned}
$$

provided $\left(2 b_{1}-4 b_{2}+c\right) n+4\left(b_{2}+b_{0}\right) \geq b_{1} n+b_{0}$, or $\left(b_{1}-4 b_{2}+c\right) n+4 b_{2}+3 b_{0} \geq 0$. Put $b_{2}=1$; we need $\left(b_{1}-4+c\right) n+4+3 b_{0} \geq 0$. Asymptotically, we need $b_{1}>4-c$; put $b_{1}=5-c$, which will give what we need for large enough n. Next, consider the base case. We have $T(1)=c$ which is at least $b_{2} \cdot 1^{2}+b_{1} \cdot 1+b_{0}=1+(5-c)+b_{0}$ provided $c \geq 6-c+b_{0}$, or $b_{0} \leq 2 c-6$. Put $b_{0}=2 c-6$.

We now verify that $T(n) \geq n^{2}+(5-c) n+2 c-6: T(1)=c \geq 1 \cdot 1^{2}+(5-c) \cdot 1+(2 c-6)$. Also, assuming $c \geq 5$, we get

$$
\begin{aligned}
T(n) & =4 T(\lfloor n / 2\rfloor)+c n \\
& =4\left[(\lfloor n / 2\rfloor)^{2}(5-c)(\lfloor n / 2\rfloor)+(2 c-6)\right]+c n \\
& \left.\geq 4(n / 2-1)^{2}+(5-c)(n / 2)+(2 c-6)\right]+c n \\
& =4\left[(n / 2)^{2}-n+1+(5-c)(n / 2)+(2 c-6)\right]+c n \\
& =n^{2}+(2(5-c)-4+c) n+4(1+(2 c-6)) \\
& =n^{2}+(6-c) n-20+12 c \\
& \geq n^{2}+(5-c) n+(2 c-6)
\end{aligned}
$$

provided $n-20+12 c \geq 2 c-6$, or $n \geq-10 c+14 \geq-36$, since $c \geq 5$. This is always true.
For this problem, it would be ok to show the result only for n a power of 2. (Formally, one can tell from the form of the recurrence that $T(n)$ is increasing and that the solution is some polynomial in n, say of degree d. It follows that we can round n up or down to some m a power of 2 and affect the solution by at most the factor 2^{d}.) Often the algorithmics is easier than the calculus: often, at top level, we can reduce our problem of size n to the problem of size m with no additional overhead.

2 Problem 4-1

Note: In some cases, we can get an exact solution in terms of $T(1)$. Here we often settle for constant-factor Θ notation, which is worth full points.
a. $T(n)=2 T(n / 2)+n^{3}$: By master method, $T(n)=\Theta\left(n^{3}\right)$.

To get an exact solution, put $T(n)=a_{3} n^{3}+a_{2} n^{2}+a_{1} n+a_{0}$, prove that this holds by induction for all n at least some n_{0}, and see what values of $a_{3}, a_{2}, a_{1}, a_{0}$, and n_{0} fall out, as above. Or, $T(n)=$ $2 T(n / 2)+n^{3}=2\left(2 T(n / 4)+(n / 2)^{3}\right)+n^{3}=\cdots$. This is $n^{3}\left(1+1 / 4+(1 / 4)^{2}+\ldots\right)$, which is close to $(4 / 3) n^{3}$. There is also a contribution of c for each of n leaves, totaling $c n$, which is not dominant, provided n is large enough, compared with c.
b. $T(n)=T(9 n / 10)+n$: By master method, $T(n)=\Theta(n)$. Note: here we need to take the convention that this means $T(n)=T(\lfloor 9 n / 10\rfloor)+n$ or $T(n)=T(\lceil 9 n / 10\rceil)+n$. To get intuition, try a few values: $T(n)=T(9 n / 10)+n=(T(81 n / 100)+9 n / 10)+n=\left(\left(T\left((9 / 10)^{3} n\right)+(9 / 10)^{2} n\right)+9 n / 10\right)+n \ldots$. Ultimately, $T(n)=T(1)+n\left(1+(9 / 10)+(9 / 10)^{2}+\cdots+(9 / 10)^{\log _{10 / 9}(n)}\right)$. The finite series is close to the infinite series, $T(n)=T(1)+10 n$.
c. $T(n)=16 T(n / 4)+n^{2}$: By the master method, $T(n)=\Theta\left(n^{2} \lg (n)\right)$.
d. $T(n)=7 T(n / 3)+n^{2}$: By the master method, $T(n)=\Theta\left(n^{2}\right)$, since $\log _{3}(7)<\log _{3}(9)=2$. Note: strict inequality, so, for some $\epsilon>0$ independent of n, we have $\log _{3}(7)<2-\epsilon$.
e. $T(n)=7 T(n / 2)+n^{2}$: By the master method, $T(n)=n^{\log _{2}(7)}$, since $\log _{2}(7)>\log _{2}(4)=2$.
f. $T(n)=2 T(n / 4)+\sqrt{n}$: By the master method, $T(n)=\Theta(\sqrt{n} \log (n))$.
g. $T(n)=T(n-1)+n$: This is $\Delta T(n)=n+1$. Note that $\sum_{0<k<n} \Delta T(k)=T(n)-T(0)$ by telescoping: $(T(k)-T(k-1))+(T(k-1)-T(k-2))+\cdots+(T(1)-\bar{T}(0))$. Thus

$$
\begin{aligned}
T(n)-T(0) & =\sum_{0 \leq k<n}(k+1) \\
& =\binom{k}{2}+\left.\binom{k}{1}\right|_{0} ^{n} \\
& =\frac{n(n-1)}{2}+n=\frac{n(n+1)}{2}
\end{aligned}
$$

Alternatively, get intuition by starting at $0: T(1)=T(0)+1, T(2)=T(1)+2=T(0)+1+2$, $T(3)=T(2)+3=T(0)+1+2+3$, etc.
h. $T(n)=T(\sqrt{m})+1$: Here we'll assume n is of the form $2^{2^{m}}$. We get $T\left(2^{2^{m}}\right)=T\left(2^{2^{m-1}}\right)+1=$ $T\left(2^{2^{m-2}}\right)+2=\cdots$. The height of the recursion tree is $m=\lg \lg (n)$, so we get $T(n)=\lg \lg (n)+T(0)$. Note: if n is not of this form, if $T(n)$ describes a runtime, and if, in the application, we can reduce our problem to a larger problem, we can round n up to $2^{2^{\lceil\lg \lg (n)\rceil 7}} \leq 2^{2^{\lg \lg (n)+1}}=2^{2 \cdot 2^{\lg \lg (n)}}=\left(2^{2^{\lg \lg (n)}}\right)^{2}=$ n^{2}. Then $\lg \lg \left(n^{2}\right) \leq \lg (\lg (n)+1)=\lg \lg (n)(1+o(1))$. Thus the asymptotics are the same for all n.
Alternatively, put $n=2^{m}$ and $S(m)=T\left(2^{m}\right)$. Then $S(m)=T(n)=T(\sqrt{n})+1=S(m / 2)+1$. By the master method, $S(m)=\Theta(\lg (m))$. Thus $T(n)=S(m)=\Theta(\lg \lg (n))$.

