
Solutions to Math 416 Homework due October 1, Chapter 4

October 4, 2004

1 4.2-3

level problem size number of nodes cost/node total cost
0 n 1 cn cn
1 n/2 4 c(n/2) 4(cn/2) = 2cn
2 n/4 16 c(n/4) 16(cn/4) = 4cn
...
j n/2j 4j cn/2j cn2j

...
h = lg(n) 1 4h = n2 c c4h = cn2

The tree has fanout 4, as indicated in the “number of nodes” column.
The total cost is cn(1 + 2 + 4 + · · · + 2j + · · · + 2h) = 2h+1cn. This is Θ(n2). We now prove it by the

substitution method. We will show O(n2) and Ω(n2) separately, and introduce a linear and constant term
to make the induction go through.

Suppose, for all n ≥ n0, we have T (n) ≤ a2n
2 + a1n + a0, where a2, a1, a0, and n0 will be specified later,

with a2 > 0 and a1 ≤ 0. (At this point, it’s a guess that a1 ≤ 0, but there are only two possibilities. This
is “strengthening the inductive hypothesis,” as discussed in the text. The constant a0 is unnecessary, but
can’t hurt.) First we show the inductive step. We have

T (n) = 4T (bn/2c) + cn

= 4[a2(bn/2c)2 + a1(bn/2c) + a0] + cn

≤ 4[a2(n/2)2 + a1(n/2 + 1) + a0] + cn

= a2n
2 + 2a1n + 4a1 + 4a0 + cn

≤ a2n
2 + a1n + a0,

provided 2a1n+4a1 +4a0 + cn ≤ a1n+a0, which is true provided (a1 + c)n+3a1 +3a0 ≤ 0. Asymptotically,
we need a1 < −c. Put a1 = −2c, getting −cn + 3a0 − 6c ≤ 0, or cn ≥ 3a0 − 6c. If n ≥ 1 = n0, then we need
7c ≥ 3a0, or c ≥ (3/7)a0. Put a0 = c.

Now we show the base case. We are given that T (1) ≤ c. This is less than a2 ·12+a1 ·1+a0 = a2+a1+a0

provided c ≤ a2 + a1 + a0 = a2 − 2c + c; i.e., provided a2 ≥ 2c. Put a2 = 2c. We can now confirm:
T (1) = c ≤ (2c) · 12 − 2c · 1 + c and

T (n) = 4T (bn/2c) + cn

= 4[2c(bn/2c)2 − 2c(bn/2c) + c] + cn

≤ 4[2c(n/2)2 − 2c(n/2 + 1) + c] + cn

= 2cn2 − 4cn− 8c + 4c + cn

= 2cn2 − 3cn− 4c

≤ 2cn2 − 2cn + c,
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provided −3cn− 4c ≤ −2cn + c, or cn ≥ −3c, or n ≥ −3, which is always true.
Similarly, we need to show that, for n ≥ n1, we have T (n) ≥ b2n

2 + b1n + b0, for b2, b1, b0, and n1 to be
determined later, with b2 > 0 and b1 ≤ 0. We have

T (n) = 4T (bn/2c) + cn

= 4[b2(bn/2c)2 + b1(bn/2c) + b0] + cn

≥ 4[b2(n/2− 1)2 + b1(n/2) + b0] + cn

= 4[b2(n/2)2 − b2n + b2 + b1(n/2) + b0] + cn

= b2n
2 + (2b1 − 4b2 + c)n + 4(b2 + b0)

≥ b2n
2 + b1n + b0,

provided (2b1 − 4b2 + c)n + 4(b2 + b0) ≥ b1n + b0, or (b1 − 4b2 + c)n + 4b2 + 3b0 ≥ 0. Put b2 = 1; we
need (b1 − 4 + c)n + 4 + 3b0 ≥ 0. Asymptotically, we need b1 > 4 − c; put b1 = 5 − c, which will give
what we need for large enough n. Next, consider the base case. We have T (1) = c which is at least
b2 · 12 + b1 · 1 + b0 = 1 + (5− c) + b0 provided c ≥ 6− c + b0, or b0 ≤ 2c− 6. Put b0 = 2c− 6.

We now verify that T (n) ≥ n2 +(5− c)n+2c−6: T (1) = c ≥ 1 ·12 +(5− c) ·1+(2c−6). Also, assuming
c ≥ 5, we get

T (n) = 4T (bn/2c) + cn

= 4[(bn/2c)2(5− c)(bn/2c) + (2c− 6)] + cn

≥ 4(n/2− 1)2 + (5− c)(n/2) + (2c− 6)] + cn

= 4[(n/2)2 − n + 1 + (5− c)(n/2) + (2c− 6)] + cn

= n2 + (2(5− c)− 4 + c)n + 4(1 + (2c− 6))
= n2 + (6− c)n− 20 + 12c

≥ n2 + (5− c)n + (2c− 6),

provided n− 20 + 12c ≥ 2c− 6, or n ≥ −10c + 14 ≥ −36, since c ≥ 5. This is always true.
For this problem, it would be ok to show the result only for n a power of 2. (Formally, one can tell

from the form of the recurrence that T (n) is increasing and that the solution is some polynomial in n, say
of degree d. It follows that we can round n up or down to some m a power of 2 and affect the solution by
at most the factor 2d.) Often the algorithmics is easier than the calculus: often, at top level, we can reduce
our problem of size n to the problem of size m with no additional overhead.

2 Problem 4-1

Note: In some cases, we can get an exact solution in terms of T (1). Here we often settle for constant-factor
Θ notation, which is worth full points.

a. T (n) = 2T (n/2) + n3: By master method, T (n) = Θ(n3).

To get an exact solution, put T (n) = a3n
3 + a2n

2 + a1n + a0, prove that this holds by induction for
all n at least some n0, and see what values of a3, a2, a1, a0, and n0 fall out, as above. Or, T (n) =
2T (n/2) + n3 = 2(2T (n/4) + (n/2)3) + n3 = · · · . This is n3(1 + 1/4 + (1/4)2 + ...), which is close
to (4/3)n3. There is also a contribution of c for each of n leaves, totaling cn, which is not dominant,
provided n is large enough, compared with c.

b. T (n) = T (9n/10) + n: By master method, T (n) = Θ(n). Note: here we need to take the convention
that this means T (n) = T (b9n/10c) + n or T (n) = T (d9n/10e) + n. To get intuition, try a few values:
T (n) = T (9n/10) + n = (T (81n/100) + 9n/10) + n = ((T ((9/10)3n) + (9/10)2n) + 9n/10) + n....
Ultimately, T (n) = T (1) + n(1 + (9/10) + (9/10)2 + · · ·+ (9/10)log10/9(n)). The finite series is close to
the infinite series, T (n) = T (1) + 10n.
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c. T (n) = 16T (n/4) + n2: By the master method, T (n) = Θ(n2 lg(n)).

d. T (n) = 7T (n/3) + n2: By the master method, T (n) = Θ(n2), since log3(7) < log3(9) = 2. Note: strict
inequality, so, for some ε > 0 independent of n, we have log3(7) < 2− ε.

e. T (n) = 7T (n/2) + n2: By the master method, T (n) = nlog2(7), since log2(7) > log2(4) = 2.

f. T (n) = 2T (n/4) +
√

n: By the master method, T (n) = Θ(
√

n log(n)).

g. T (n) = T (n− 1)+n: This is ∆T (n) = n+1. Note that
∑

0≤k<n ∆T (k) = T (n)−T (0) by telescoping:
(T (k)− T (k − 1)) + (T (k − 1)− T (k − 2)) + · · ·+ (T (1)− T (0)). Thus

T (n)− T (0) =
∑

0≤k<n

(k + 1)

=
(

k

2

)
+

(
k

1

)∣∣n
0

=
n(n− 1)

2
+ n =

n(n + 1)
2

.

Alternatively, get intuition by starting at 0: T (1) = T (0) + 1, T (2) = T (1) + 2 = T (0) + 1 + 2,
T (3) = T (2) + 3 = T (0) + 1 + 2 + 3, etc.

h. T (n) = T (
√

m) + 1: Here we’ll assume n is of the form 22m

. We get T (22m

) = T (22m−1
) + 1 =

T (22m−2
) + 2 = · · · . The height of the recursion tree is m = lg lg(n), so we get T (n) = lg lg(n) + T (0).

Note: if n is not of this form, if T (n) describes a runtime, and if, in the application, we can reduce our

problem to a larger problem, we can round n up to 22dlg lg(n)ee ≤ 22lg lg(n)+1
= 22·2lg lg(n)

=
(
22lg lg(n)

)2

=

n2. Then lg lg(n2) ≤ lg(lg(n) + 1) = lg lg(n)(1 + o(1)). Thus the asymptotics are the same for all n.

Alternatively, put n = 2m and S(m) = T (2m). Then S(m) = T (n) = T (
√

n) + 1 = S(m/2) + 1. By
the master method, S(m) = Θ(lg(m)). Thus T (n) = S(m) = Θ(lg lg(n)).
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