Solutions to Math 416 Homework due December 10, Chapter 30

December 10, 2004

Problem 30.2-8

We are given a = (ag,...,an—1) and a complex number z; we want y = (yo,...,Yn—1), Where y =
Y20 a2t

Following the hint, define a vector f by f; = aj272/2 and a vector g by g; = =92, (Here, use either
square root of z, but be consistent.) Then, from the definition of convolution,

(fog)(k) = ijgk—j
= Z(ajzf/?)(zf(kfj)?ﬂ)

j
- Z(ajzf/z)(Z(fk2+2jkfj“‘>/2)
j

_ 2 ;
Zaj(z(k +2jk)/2)
J
_ kaz/zzajzjk,
J

so Y = 2F°/2(f ® g)(k) is the chirp transform.
We can compute f and ¢ from a and z in time O(nlog(n)) as follows. First, compute a square root
1/2 of z. Next, compute w', w?, w*, w®, ... w" (i.e., wQZ, by repeated squaring, in total time O(log(n))).

Finally, for each j, compute wi” by multiplying together O(log(n)) appropriate powers of w, according to

w ==z

the binary expansion of j. We can then compute ajwj2 and w4 =1 / w?” in constant time each.

Alternatively, to compute w?” for all these j’s, compute 1,w,w?, w?, ..., computing each w/ from w’ !

and w in constant time. Then compute 1, w!, w* w?, ..., by computing v/~ = W=D +25=1 — 4, (=1* 7
w’~! in constant time from w1 wi, and wI~!. This takes time O(n) instead of time O(nlog(n)).

Next, compute the convolution of f and g in time O(nlog(n)), using the FFT algorithm. Finally, multiply
w** by (f ® g)(k) in constant time for each of n possible k’s, for a total of time O(n).

ADDITIONAL COMMENTARY: Note that if |z| is bigger than around 1+ 1/n?, then 29°/2 is going to
grow out of control. Depending on the a’s, the result may be dominated by the largest few terms, so time
much less than n suffices to get a good floating point represenation. If one really wants an exact representation
(assuming z has terminating real and imaginary decimal expansions), then one needs precision around n?
bits to store a number like 2"°. The resulting algorithm will take time at least n> in any reasonable model
of computation and the output itself will be of size around n? bits. A similar statement holds if |z is less
than around 1 — 1/n?. These problems go away if |z| = 1.

It follows that the DFT, for any n, can be reduced to a convolution. The main result of this section is
that any convolution can be reduced to a DFT for n a power of 2. Also, convolution of length n can be
reduced to convolution of length n’ > n by padding with zeros. It follows that the DFT for any n can be
done in time O(nlog(n)), by reducing to the DFT of the next larger power of 2.

Problem 30-2

(a) The sum of two Toeplitz matrices is Toeplitz. (See part (b).) The product is not necessarily Toeplitz.

For example,

1
0 1

1

)

1 0
11

)

(2

21
11
1,.

(b) For convenience, define b; = a;0 = aj+1,1 for i = 0,1, — 1. Also define a;0 = a1,1—; for
i=-1,-2,...,—n+ 1. Thus we have
a-3o0 G-20 Aa-1,0 40,0 ‘ a0 a20 aso
a1 021 G631
ai2 ail a21)
airs dai2 ain
14 ai3 a12

where the top row (which is not part of the matrix) is also (a1 4, a1,3,a1,2,01,1 = @0,0,02,1,03,1,04,1). Observe
that a;; = age if j — i = £ — k; this formula extends also to the top (0’th) row. It follows that a;; = by—;.

It then follows that one can represent a Toeplitz matrix by just the top row of b’s (2n — 1 numbers). The
sum of two Toeplitz matrices is represented by the sum of the two corresponding top rows, which can be
computed in time O(n). (Since any top row leads to a Toeplitz matrix, it follows, in part (a), that the sum
of two Toeplitz matrices is Toeplitz.)

(¢) To multiply by a vector, it is convenient to index the vector backwards: v = (vp—1,0p—2,...
Also, we will multiply separately by the upper and lower triangle:

7UO)'

Un—1
bo b1 by b3 Vo
0 by by be
0 0 by by
0 0 0 b U1
Vo

The resulting vector product is n of the 2n — 1 terms in the convolution of the b;>¢ sequence and the
v sequence. We can do this in time O(nlog(n)). Similarly, we can multiply the lower triangle by v by
convolving the b, sequence with the v sequence. We then add the two vectors of length n.

(d) We can multiply a Toeplitz matrix by an arbitrary matrix M in time n?log(n) by multiplying by
each column of M separately. Some speedups are possible if M is also Toeplitz, but note that we need to
output n? numbers.

ADDITIONAL COMMENTARY: Is somewhat more natural and elegant to define the convolution as
(f ®9)(k) = > 0<j<n [igk—j, where k and k — j are taken modulo n. Thus there are only n elements in
(f ® g), not 2n — 1. This corresponds to multiplying polynomials modulo 2™ — 1, rather than multiplying
polynomials without modular reduction. This may be regarded as an alternative to padding with zeros. We
then have the formula that the Fourier transform of f ® g is the pointwise product of the Fourier transform
of f and the Fourier transform of g.

This corresponds to the circulant variation of Toeplitz matrices, of the form

d

SN0 e
0O L
QUL 0
Q 0

Note that a circulant matrix is a special kind of Toeplitz matrix. The sum of two circulant matrices is
circulant and the product of two circulants is circulant, which can be checked easily. One can represent
a circulant matrix by its top row (which is now part of the matrix). To multiply two circulants, take the
Fourier transforms of each top row, multiply those together, then form a circulant from the result. This
takes time O(nlog(n)).

