Problem 30.2-8

We are given \(a = (a_0, \ldots, a_{n-1}) \) and a complex number \(z \); we want \(y = (y_0, \ldots, y_{n-1}) \), where \(y_k = \sum_{j=0}^{n-1} a_j z^{kj} \).

Following the hint, define a vector \(f \) by \(f_j = a_j z^{j^2/2} \) and a vector \(g \) by \(g_j = z^{-j^2/2} \). (Here, use either square root of \(z \), but be consistent.) Then, from the definition of convolution,

\[
(f \otimes g)(k) = \sum_j f_j g_{k-j}
\]

\[
= \sum_j (a_j z^{j^2/2})(z^{-(k-j)^2/2})
\]

\[
= \sum_j (a_j z^{j^2/2})(z^{(-k^2+2jk-j^2)/2})
\]

\[
= \sum_j a_j (z^{-k^2+2jk}/2)
\]

\[
= z^{-k^2/2} \sum_j a_j z^{jk},
\]

so \(y_k = z^{k^2/2}(f \otimes g)(k) \) is the chirp transform.

We can compute \(f \) and \(g \) from \(a \) and \(z \) in time \(O(n \log(n)) \) as follows. First, compute a square root \(w = z^{1/2} \) of \(z \). Next, compute \(w^1, w^2, w^4, w^8, \ldots, w^n \) (i.e., \(w^{2^k} \), by repeated squaring, in total time \(O(\log(n)) \)).

Finally, for each \(j \), compute \(w^{j^2} \) by multiplying together \(O(\log(n)) \) appropriate powers of \(w \), according to the binary expansion of \(j \). We can then compute \(a_j w^{j^2} \) and \(w^{-j^2} = 1/w^{j^2} \) in constant time each.

Alternatively, to compute \(w^{j^2} \) for all these \(j \)'s, compute \(1, w, w^2, w^3, \ldots, w^{j-1} \) and \(w \) in constant time. Then compute \(1, w^1, w^2, w^9, \ldots \), by computing \(w^{j^2} = w^{(j-1)^2+2j+1} = w^{(j-1)^2} \cdot w^{j^2} \cdot w^{j-1} \) in constant time from \(w^{(j-1)^2}, w^3, \) and \(w^{j-1} \). This takes time \(O(n) \) instead of time \(O(n \log(n)) \).

Next, compute the convolution of \(f \) and \(g \) in time \(O(n \log(n)) \), using the FFT algorithm. Finally, multiply \(w^{k^2} \) by \((f \otimes g)(k) \) in constant time for each of \(n \) possible \(k \)'s, for a total of time \(O(n) \).

ADDITIONAL COMMENTARY: Note that if \(|z| \) is bigger than around \(1 + 1/n^2 \), then \(z^{j^2/2} \) is going to grow out of control. Depending on the \(a \)'s, the result may be dominated by the largest few terms, so time much less than \(n \) suffices to get a good floating point represenation. If one really wants an exact representation (assuming \(z \) has terminating real and imaginary decimal expansions), then one needs precision around \(n^2 \) bits to store a number like \(2^n \). The resulting algorithm will take time at least \(n^3 \) in any reasonable model of computation and the output itself will be of size around \(n^2 \) bits. A similar statement holds if \(|z| \) is less than around \(1 - 1/n^2 \). These problems go away if \(|z| = 1 \).

It follows that the DFT, for any \(n \), can be reduced to a convolution. The main result of this section is that any convolution can be reduced to a DFT for \(n \) a power of 2. Also, convolution of length \(n \) can be reduced to convolution of length \(n' > n \) by padding with zeros. It follows that the DFT for any \(n \) can be done in time \(O(n \log(n)) \), by reducing to the DFT of the next larger power of 2.
Problem 30-2

(a) The sum of two Toeplitz matrices is Toeplitz. (See part (b).) The product is not necessarily Toeplitz. For example,

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
1 & 1
\end{pmatrix}
= \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}.
\]

(b) For convenience, define \(b_i = a_{i,0} = a_{i+1,1} \) for \(i = 0,1,\ldots,n-1 \). Also define \(a_{i,0} = a_{1,1-i} \) for \(i = -1,-2,\ldots,-n+1 \). Thus we have

\[
\begin{pmatrix}
a_{-3,0} & a_{-2,0} & a_{-1,0} & a_{0,0} & a_{1,0} & a_{2,0} & a_{3,0} \\
a_{1,1} & a_{2,1} & a_{3,1} \\
a_{1,2} & a_{1,1} & a_{2,1} \\
a_{1,3} & a_{1,2} & a_{1,1} \\
a_{1,4} & a_{1,3} & a_{1,2} \\
a_{1,4} & a_{1,3} & a_{1,2} \\
a_{1,4} & a_{1,3} & a_{1,2}
\end{pmatrix},
\]

where the top row (which is not part of the matrix) is also \(\{a_{1,4}, a_{1,3}, a_{1,2}, a_{1,1} = a_{0,0}, a_{2,1}, a_{3,1}, a_{4,1}\} \). Observe that \(a_{ij} = a_{kl} \) if \(j-i = l-k \); this formula extends also to the top \(n \) row. It follows that \(a_{j,k} = b_{k-j} \).

It then follows that one can represent a Toeplitz matrix by just the top row of \(b \)'s \((2n - 1 \) numbers)\). The sum of two Toeplitz matrices is represented by the sum of the two corresponding top rows, which can be computed in time \(O(n) \). (Since any top row leads to a Toeplitz matrix, it follows, in part (a), that the sum of two Toeplitz matrices is Toeplitz.)

(c) To multiply by a vector, it is convenient to index the vector backwards: \(v = (v_{n-1}, v_{n-2}, \ldots, v_0) \). Also, we will multiply separately by the upper and lower triangle:

\[
\begin{pmatrix}
b_0 & b_1 & b_2 & b_3 \\
0 & b_0 & b_1 & b_2 \\
0 & 0 & b_0 & b_1 \\
0 & 0 & 0 & b_0
\end{pmatrix}
\begin{pmatrix}
v_{n-1} \\
v_{n-2} \\
\vdots \\
v_0
\end{pmatrix}.
\]

The resulting vector product is \(n \) of the \(2n - 1 \) terms in the convolution of the \(b_i \geq 0 \) sequence and the \(v \) sequence. We can do this in time \(O(n \log(n)) \). Similarly, we can multiply the lower triangle by \(v \) by convolving the \(b_i < 0 \) sequence with the \(v \) sequence. We then add the two vectors of length \(n \).

(d) We can multiply a Toeplitz matrix by an arbitrary matrix \(M \) in time \(n^2 \log(n) \) by multiplying by each column of \(M \) separately. Some speedups are possible if \(M \) is also Toeplitz, but note that we need to output \(n^2 \) numbers.

ADDITIONAL COMMENTARY: Is somewhat more natural and elegant to define the convolution as \((f \circ g)(k) = \sum_{0 \leq j < n} f_j g_{k-j} \), where \(k \) and \(k-j \) are taken modulo \(n \). Thus there are only \(n \) elements in \((f \circ g) \), not \(2n-1 \). This corresponds to multiplying polynomials modulo \(x^n - 1 \), rather than multiplying polynomials without modular reduction. This may be regarded as an alternative to padding with zeros. We then have the formula that the Fourier transform of \(f \circ g \) is the pointwise product of the Fourier transform of \(f \) and the Fourier transform of \(g \).

This corresponds to the circulant variation of Toeplitz matrices, of the form

\[
\begin{pmatrix}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{pmatrix}.
\]

Note that a circulant matrix is a special kind of Toeplitz matrix. The sum of two circulant matrices is circulant and the product of two circulants is circulant, which can be checked easily. One can represent a circulant matrix by its top row (which is now part of the matrix). To multiply two circulants, take the Fourier transforms of each top row, multiply those together, then form a circulant from the result. This takes time \(O(n \log(n)) \).