
Solutions to Math 416 Homework due December 10, Chapter 30

December 10, 2004

Problem 30.2-8

We are given a = (a0, . . . , an−1) and a complex number z; we want y = (y0, . . . , yn−1), where yk =∑n−1
j=0 ajz

kj .
Following the hint, define a vector f by fj = ajz

j2/2 and a vector g by gj = z−j2/2. (Here, use either
square root of z, but be consistent.) Then, from the definition of convolution,

(f ⊗ g)(k) =
∑

j

fjgk−j

=
∑

j

(ajz
j2/2)(z−(k−j)2/2)

=
∑

j

(ajz
j2/2)(z(−k2+2jk−j2)/2)

=
∑

j

aj(z(−k2+2jk)/2)

= z−k2/2
∑

j

ajz
jk,

so yk = zk2/2(f ⊗ g)(k) is the chirp transform.
We can compute f and g from a and z in time O(n log(n)) as follows. First, compute a square root

w = z1/2 of z. Next, compute w1, w2, w4, w8, . . . , wn (i.e., w2`

, by repeated squaring, in total time O(log(n))).
Finally, for each j, compute wj2

by multiplying together O(log(n)) appropriate powers of w, according to
the binary expansion of j. We can then compute ajw

j2
and w−j2

= 1/wj2
in constant time each.

Alternatively, to compute wj2
for all these j’s, compute 1, w, w2, w3, . . ., computing each wj from wj−1

and w in constant time. Then compute 1, w1, w4, w9, . . ., by computing wj2
= w(j−1)2+2j−1 = w(j−1)2 · wj ·

wj−1 in constant time from w(j−1)2 , wj , and wj−1. This takes time O(n) instead of time O(n log(n)).
Next, compute the convolution of f and g in time O(n log(n)), using the FFT algorithm. Finally, multiply

wk2
by (f ⊗ g)(k) in constant time for each of n possible k’s, for a total of time O(n).

ADDITIONAL COMMENTARY: Note that if |z| is bigger than around 1 + 1/n2, then zj2/2 is going to
grow out of control. Depending on the a’s, the result may be dominated by the largest few terms, so time
much less than n suffices to get a good floating point represenation. If one really wants an exact representation
(assuming z has terminating real and imaginary decimal expansions), then one needs precision around n2

bits to store a number like 2n2
. The resulting algorithm will take time at least n3 in any reasonable model

of computation and the output itself will be of size around n2 bits. A similar statement holds if |z| is less
than around 1 − 1/n2. These problems go away if |z| = 1.

It follows that the DFT, for any n, can be reduced to a convolution. The main result of this section is
that any convolution can be reduced to a DFT for n a power of 2. Also, convolution of length n can be
reduced to convolution of length n′ > n by padding with zeros. It follows that the DFT for any n can be
done in time O(n log(n)), by reducing to the DFT of the next larger power of 2.

1

Problem 30-2

(a) The sum of two Toeplitz matrices is Toeplitz. (See part (b).) The product is not necessarily Toeplitz.
For example, (

1 1
0 1

) (
1 0
1 1

)
=

(
2 1
1 1

)
.

(b) For convenience, define bi = ai,0 = ai+1,1 for i = 0, 1, . . . , n − 1. Also define ai,0 = a1,1−i for
i = −1,−2, . . . ,−n + 1. Thus we have

a−3,0 a−2,0 a−1,0 a0,0 a1,0 a2,0 a3,0

a1,1 a2,1 a3,1

a1,2 a1,1 a2,1

a1,3 a1,2 a1,1

a1,4 a1,3 a1,2

 ,

where the top row (which is not part of the matrix) is also (a1,4, a1,3, a1,2, a1,1 = a0,0, a2,1, a3,1, a4,1). Observe
that aij = ak` if j − i = ` − k; this formula extends also to the top (0’th) row. It follows that aj,k = bk−j .

It then follows that one can represent a Toeplitz matrix by just the top row of b’s (2n− 1 numbers). The
sum of two Toeplitz matrices is represented by the sum of the two corresponding top rows, which can be
computed in time O(n). (Since any top row leads to a Toeplitz matrix, it follows, in part (a), that the sum
of two Toeplitz matrices is Toeplitz.)

(c) To multiply by a vector, it is convenient to index the vector backwards: v = (vn−1, vn−2, . . . , v0).
Also, we will multiply separately by the upper and lower triangle:


b0 b1 b2 b3

0 b0 b1 b2

0 0 b0 b1

0 0 0 b0

 ·


vn−1

vn−2

...
v1

v0


The resulting vector product is n of the 2n − 1 terms in the convolution of the bi≥0 sequence and the
v sequence. We can do this in time O(n log(n)). Similarly, we can multiply the lower triangle by v by
convolving the bi<0 sequence with the v sequence. We then add the two vectors of length n.

(d) We can multiply a Toeplitz matrix by an arbitrary matrix M in time n2 log(n) by multiplying by
each column of M separately. Some speedups are possible if M is also Toeplitz, but note that we need to
output n2 numbers.

ADDITIONAL COMMENTARY: Is somewhat more natural and elegant to define the convolution as
(f ⊗ g)(k) =

∑
0≤j<n fjgk−j , where k and k − j are taken modulo n. Thus there are only n elements in

(f ⊗ g), not 2n − 1. This corresponds to multiplying polynomials modulo xn − 1, rather than multiplying
polynomials without modular reduction. This may be regarded as an alternative to padding with zeros. We
then have the formula that the Fourier transform of f ⊗ g is the pointwise product of the Fourier transform
of f and the Fourier transform of g.

This corresponds to the circulant variation of Toeplitz matrices, of the form
a b c d
d a b c
c d a b
b c d a

 .

Note that a circulant matrix is a special kind of Toeplitz matrix. The sum of two circulant matrices is
circulant and the product of two circulants is circulant, which can be checked easily. One can represent
a circulant matrix by its top row (which is now part of the matrix). To multiply two circulants, take the
Fourier transforms of each top row, multiply those together, then form a circulant from the result. This
takes time O(n log(n)).

2

