Solutions to Math 416 Homework Assignment 1

September 20, 2004

1 Problem 2.1-3

Linear search pseudocode:

LINEAR-SEARCH(A,v)
for(i« 1; i < length[A]; i + +){
if(A[i] == v)
return(i);

return(NIL);

Loop invariant:
At the start of a loop iteration, v is not among A[1],..., Afi —1].

(That is, if 1 < j and j < i, then v # A[j].)

Initialization: There is no 5 with 1 < 7 < 1 =4, so the the statement holds.

Maintenance: Suppose the statement is true at a particular iteration k. We consider two cases. If
Ali] == v, then the code will return ¢ and there is no next (k + 1)’st iteration. If A[i] # v, then, using the
loop invariant, we know v is not among A[1],..., A[ix], where i), is the value of ¢ during the k’th iteration.
At the start of the next iteration, we have v is not among A[l],..., Afix] = Alig+1 — 1], so the loop invariant
holds.

Termination: The loop may terminate for two reasons. If it terminates early, then it returns i with
Ali] == v, which is correct. Otherwise, the code returns NIL. In that case, by the loop invariant, v is not
among A[l],..., Allength[A]], so the NIL output is correct.

2 Problem 2.3-5

Binary search pseudocode:

BINARY-SEARCH(A,v) //A indexed from 0 to length[A] - 1
if length[A] = 0
return(NIL);
m «— |length[A] / 2];
if (v > A[m])
return BINARY-SEARCH(A[0..m — 1], v);
if (0 == Alm)])
return(m);
/3 (v < Alm])
return BINARY-SEARCH(A[m + 1..length[A]],v); // indices get relabeled to start from zero

If T'(n) is the worst-case cost of the algorithm on input sequences of length n, then, for some c,

T(n) < { T(n/2])4+¢, n>0;

c, n =0.
This is because, for n > 0, a call on an array of length n results in one recursive call on an array of length
at most n/2 and, by induction, one can show that 7" is monotonically increasing.

We now show by induction that T'(n) < c¢(lg(n) + 2) for n > 0. (We avoid 1g(0).)

First, T(0) < c. Tt follows that T(1) < T(0) + ¢ < 2¢ = c(Ig(n) + 2).

Suppose that, for all m > 1 and all n < m, we have T(n) < c¢(lg(n) + 2). Now consider T'(m). Note
that m/2 < m, so this is covered inductively. We have T'(m) < T(m/2) + ¢ < c(lg(m/2) +2) + ¢ =
c(lg(m) + 1) + ¢ = c(lg(m) + 2).

Informally, we are allowed to assume that a binary tree of height h has 2" leaves and 2"*! — 1 nodes.
Assuming that the original string has 2"*! — 1 elements, we can consider a binary tree of height h, whose
nodes are associated with input elements, and whose in-order traversal enumerates the elements in sorted
order. Then binary search follows a path from root downwards to some node (not necessarily a leaf). Thus
the worst-case time cost is the height of the tree. As long as the degree of the tree is at least 2 and at
most O(1), the height of the tree is O(log(n)) and we don’t need to be any more careful about how the tree
branches.

3 Problem 2-3

a. The asymptotic running time is O(n), since there are n loop iterations and each takes some constant
amount of time.
b. Naive polynomial pseudocode:

NAIVE-POLY(ag, a1, . . ., ap; T)
y<—0
for(i—0;i<n;i++){
z—1
for(j« 0;j <i;j++)
z *=
yt=a;-z

}

// y is set to the output

Note we are evaluating the polynomial from lowest degree to highest degree.
For some constant, the runtime is > 5, ., > o< j; ¢. This is

Z Z c = Z ci
0<i<n 0<j<i 0<i<n
Cn(n;r 1)
= 0(n?),

which we can informally see from looking at the loops. (E.g., consider the runtime for the last n/2 iterations
of the outer loop. There, i > n/2 so the inner loop executes at least n/2 times for each iteration of the outer
loop, so the inner loop iterates at least (n/2)? times altogether. On the other hand, i and j are at most n,
so the inner loop iterates at most n? times.)

c. Initialization. At the start, i =n, son — (i + 1) = —1. The sum 2;210 is the empty sum, zero, which
equals y.

Maintenance. Suppose the invariant is true at the start of some loop. During that loop, y gets

n—(i+1)
k+1
a; + g Qprip1 2"
k=0
n—(i+1)
k+1
= E Q4412 +

k=-1

a;i +x -y

n—
= Z apqz®, for k' =k+1
k' =0

n—((i—1)+1)

= Z s (i-1) 112"
k'=0
n—(i'+1)

k/
= g Ak/ 44/ 41T,

k’'=0

’

where ¢/ =4 — 1 is the value of i at the start of the next iteration.
Termination. At termination, we have y = Z;(SZH) Apip12t for i = —1; ie, y =Y 1_, apx”.

