
Solutions to Math 416 Homework Assignment 1

September 20, 2004

1 Problem 2.1-3

Linear search pseudocode:

linear-search(A,v)
for(i← 1; i ≤ length[A]; i + +){

if(A[i] == v)
return(i);

}
return(NIL);

Loop invariant:

At the start of a loop iteration, v is not among A[1], . . . , A[i− 1].

(That is, if 1 ≤ j and j < i, then v 6= A[j].)
Initialization: There is no j with 1 ≤ j < 1 = i, so the the statement holds.
Maintenance: Suppose the statement is true at a particular iteration k. We consider two cases. If

A[i] == v, then the code will return i and there is no next (k + 1)’st iteration. If A[i] 6= v, then, using the
loop invariant, we know v is not among A[1], . . . , A[ik], where ik is the value of i during the k’th iteration.
At the start of the next iteration, we have v is not among A[1], . . . , A[ik] = A[ik+1− 1], so the loop invariant
holds.

Termination: The loop may terminate for two reasons. If it terminates early, then it returns i with
A[i] == v, which is correct. Otherwise, the code returns NIL. In that case, by the loop invariant, v is not
among A[1], . . . , A[length[A]], so the NIL output is correct.

2 Problem 2.3-5

Binary search pseudocode:

binary-search(A,v) //A indexed from 0 to length[A] - 1
if length[A] = 0

return(NIL);
m← blength[A] / 2c;
if (v > A[m])

return binary-search(A[0..m− 1], v);
if (v == A[m])

return(m);
// if (v < A[m])
return binary-search(A[m + 1..length[A]], v); // indices get relabeled to start from zero

1

If T (n) is the worst-case cost of the algorithm on input sequences of length n, then, for some c,

T (n) ≤
{

T (bn/2c) + c, n > 0;
c, n = 0.

This is because, for n > 0, a call on an array of length n results in one recursive call on an array of length
at most n/2 and, by induction, one can show that T is monotonically increasing.

We now show by induction that T (n) ≤ c(lg(n) + 2) for n > 0. (We avoid lg(0).)
First, T (0) ≤ c. It follows that T (1) ≤ T (0) + c ≤ 2c = c(lg(n) + 2).
Suppose that, for all m > 1 and all n < m, we have T (n) ≤ c(lg(n) + 2). Now consider T (m). Note

that m/2 < m, so this is covered inductively. We have T (m) ≤ T (m/2) + c ≤ c(lg(m/2) + 2) + c =
c(lg(m) + 1) + c = c(lg(m) + 2).

Informally, we are allowed to assume that a binary tree of height h has 2h leaves and 2h+1 − 1 nodes.
Assuming that the original string has 2h+1 − 1 elements, we can consider a binary tree of height h, whose
nodes are associated with input elements, and whose in-order traversal enumerates the elements in sorted
order. Then binary search follows a path from root downwards to some node (not necessarily a leaf). Thus
the worst-case time cost is the height of the tree. As long as the degree of the tree is at least 2 and at
most O(1), the height of the tree is O(log(n)) and we don’t need to be any more careful about how the tree
branches.

3 Problem 2-3

a. The asymptotic running time is Θ(n), since there are n loop iterations and each takes some constant
amount of time.

b. Naive polynomial pseudocode:

naive-poly(a0, a1, . . . , an;x)
y ← 0
for(i← 0; i ≤ n; i + +){

z ← 1
for(j ← 0; j < i; j + +)

z *= x;
y += ai · z;

}
// y is set to the output

Note we are evaluating the polynomial from lowest degree to highest degree.
For some constant, the runtime is

∑
0≤i≤n

∑
0≤j<i c. This is∑

0≤i≤n

∑
0≤j<i

c =
∑

0≤i≤n

ci

= c
n(n + 1)

2
= Θ(n2),

which we can informally see from looking at the loops. (E.g., consider the runtime for the last n/2 iterations
of the outer loop. There, i ≥ n/2 so the inner loop executes at least n/2 times for each iteration of the outer
loop, so the inner loop iterates at least (n/2)2 times altogether. On the other hand, i and j are at most n,
so the inner loop iterates at most n2 times.)

c. Initialization. At the start, i = n, so n− (i + 1) = −1. The sum
∑−1

k=0 is the empty sum, zero, which
equals y.

2

Maintenance. Suppose the invariant is true at the start of some loop. During that loop, y gets

ai + x · y = ai +
n−(i+1)∑

k=0

ak+i+1x
k+1

=
n−(i+1)∑

k=−1

ak+i+1x
k+1

=
n−i∑
k′=0

ak′+ix
k′

, for k′ = k + 1

=
n−((i−1)+1)∑

k′=0

ak′+(i−1)+1x
k′

=
n−(i′+1)∑

k′=0

ak′+i′+1x
k′

,

where i′ = i− 1 is the value of i at the start of the next iteration.
Termination. At termination, we have y =

∑n−(i+1)
k=0 ak+i+1x

k for i = −1; i.e., y =
∑n

k=0 akxk.

3

