1 Problem 2.1-3

Linear search pseudocode:

```
LINEAR-SEARCH(A,v)
for( i ← 1; i ≤ length[A]; i ++){
    if( A[i] == v)
        return(i);
}
return( NIL);
```

Loop invariant:

At the start of a loop iteration, \(v \) is not among \(A[1], \ldots, A[i-1] \).

(That is, if \(1 ≤ j < i \), then \(v ≠ A[j] \).)

Initialization: There is no \(j \) with \(1 ≤ j < 1 = i \), so the statement holds.

Maintenance: Suppose the statement is true at a particular iteration \(k \). We consider two cases. If \(A[i] == v \), then the code will return \(i \) and there is no next \((k + 1)'st \) iteration. If \(A[i] ≠ v \), then, using the loop invariant, we know \(v \) is not among \(A[1], \ldots, A[i_k] \), where \(i_k \) is the value of \(i \) during the \(k \)'th iteration. At the start of the next iteration, we have \(v \) is not among \(A[1], \ldots, A[i_k] = A[i_{k+1} - 1] \), so the loop invariant holds.

Termination: The loop may terminate for two reasons. If it terminates early, then it returns \(i \) with \(A[i] == v \), which is correct. Otherwise, the code returns NIL. In that case, by the loop invariant, \(v \) is not among \(A[1], \ldots, A[length[A]] \), so the NIL output is correct.

2 Problem 2.3-5

Binary search pseudocode:

```
BINARY-SEARCH(A,v) //A indexed from 0 to length[A] - 1
if length[A] = 0
    return( NIL);

m ← [length[A] / 2];
if (v > A[m])
    return BINARY-SEARCH(A[0..m-1], v);
if (v == A[m])
    return(m);
// if (v < A[m])
return BINARY-SEARCH(A[m+1..length[A]], v); // indices get relabeled to start from zero
```
If $T(n)$ is the worst-case cost of the algorithm on input sequences of length n, then, for some c,

$$
T(n) \leq \begin{cases}
T(\lfloor n/2 \rfloor) + c, & n > 0; \\
c, & n = 0.
\end{cases}
$$

This is because, for $n > 0$, a call on an array of length n results in one recursive call on an array of length at most $n/2$ and, by induction, one can show that T is monotonically increasing.

We now show by induction that $T(n) \leq c(\log(n) + 2)$ for $n > 0$. (We avoid $\log(0)$.)

First, $T(0) \leq c$. It follows that $T(1) \leq T(0) + c \leq 2c = c(\log(n) + 2)$.

Suppose that, for all $m > 1$ and all $n < m$, we have $T(n) \leq c(\log(n) + 2)$. Now consider $T(m)$. Note that $m/2 < m$, so this is covered inductively. We have $T(m) \leq T(m/2) + c \leq c(\log(m/2) + 2) + c = c(\log(m) + 1) + c = c(\log(m) + 2)$.

Informally, we are allowed to assume that a binary tree of height h has 2^h leaves and $2^{h+1} - 1$ nodes. Assuming that the original string has $2^{h+1} - 1$ elements, we can consider a binary tree of height h, whose nodes are associated with input elements, and whose in-order traversal enumerates the elements in sorted order. Then binary search follows a path from root downwards to some node (not necessarily a leaf). Thus the worst-case time cost is the height of the tree. As long as the degree of the tree is at least 2 and at most $O(1)$, the height of the tree is $O(\log(n))$ and we don’t need to be any more careful about how the tree branches.

3 Problem 2-3

a. The asymptotic running time is $\Theta(n)$, since there are n loop iterations and each takes some constant amount of time.

b. Naive polynomial pseudocode:

```plaintext
NAIVE-POLY(a_0, a_1, \ldots, a_n; x)

y ← 0
for (i ← 0; i ≤ n; i + +) {
    z ← 1
    for (j ← 0; j < i; j + +) {z *= x;}
    y += a_i · z;
}

// y is set to the output
```

Note we are evaluating the polynomial from lowest degree to highest degree.

For some constant, the runtime is $\sum_{0 \leq i \leq n} \sum_{0 \leq j < i} c$. This is

$$
\sum_{0 \leq i \leq n} \sum_{0 \leq j < i} c = \sum_{0 \leq i \leq n} ci = c \frac{n(n+1)}{2} = \Theta(n^2),
$$

which we can informally see from looking at the loops. (E.g., consider the runtime for the last $n/2$ iterations of the outer loop. There, $i \geq n/2$ so the inner loop executes at least $n/2 - 1$ times for each iteration of the outer loop, so the inner loop iterates at least $(n/2)^2$ times altogether. On the other hand, i and j are at most n, so the inner loop iterates at most n^2 times.)

c. Initialization. At the start, $i = n$, so $n - (i + 1) = -1$. The sum $\sum_{k=0}^{n-1}$ is the empty sum, zero, which equals y.

2
Maintenance. Suppose the invariant is true at the start of some loop. During that loop, \(y \) gets

\[
a_i + x \cdot y = a_i + \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^{k+1}
\]

\[
= \sum_{k=-1}^{n-(i+1)} a_{k+i+1} x^{k+1}
\]

\[
= \sum_{k'=0}^{n-i} a_{k'+i} x^{k'}, \quad \text{for } k' = k + 1
\]

\[
= \sum_{k'=-1}^{n-(i-1)+1} a_{k'+(i-1)+1} x^{k'}
\]

\[
= \sum_{k'=0}^{n-(i'+1)} a_{k'+i'+1} x^{k'},
\]

where \(i' = i - 1 \) is the value of \(i \) at the start of the next iteration.

Termination. At termination, we have \(y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k \) for \(i = -1 \); i.e., \(y = \sum_{k=0}^{n} a_k x^k \).