Solutions to Math 416 Homework Assignment 1

September 20, 2004

1 Problem 2.1-3

Linear search pseudocode:

```
LINEAR-SEARCH(A,v)
for( }i\leftarrow1;i\leqlength[A];i++)
    if(A[i]==v)
        return(i);
}
return( NIL);
```

Loop invariant:
At the start of a loop iteration, v is not among $A[1], \ldots, A[i-1]$.
(That is, if $1 \leq j$ and $j<i$, then $v \neq A[j]$.)
Initialization: There is no j with $1 \leq j<1=i$, so the the statement holds.
Maintenance: Suppose the statement is true at a particular iteration k. We consider two cases. If $A[i]==v$, then the code will return i and there is no next $(k+1)$ 'st iteration. If $A[i] \neq v$, then, using the loop invariant, we know v is not among $A[1], \ldots, A\left[i_{k}\right]$, where i_{k} is the value of i during the k 'th iteration. At the start of the next iteration, we have v is not among $A[1], \ldots, A\left[i_{k}\right]=A\left[i_{k+1}-1\right]$, so the loop invariant holds.

Termination: The loop may terminate for two reasons. If it terminates early, then it returns i with $A[i]==v$, which is correct. Otherwise, the code returns NIL. In that case, by the loop invariant, v is not among $A[1], \ldots, A[$ length $[A]]$, so the NIL output is correct.

2 Problem 2.3-5

Binary search pseudocode:

```
Binary-search \((\mathrm{A}, \mathrm{v}) / / A\) indexed from 0 to length \([A]-1\)
if length \([A]=0\)
    return( NIL);
\(m \leftarrow\lfloor\) length \([A] / 2\rfloor\);
if \((v>A[m])\)
    return BINARY-SEARCH \((A[0 . . m-1], v)\);
if \((v==A[m])\)
    return \((\mathrm{m})\);
\(/ /\) if \((v<A[m])\)
return BINARY-SEARCH \((A[m+1\)..length \([A]], v) ; / /\) indices get relabeled to start from zero
```

If $T(n)$ is the worst-case cost of the algorithm on input sequences of length n, then, for some c,

$$
T(n) \leq \begin{cases}T(\lfloor n / 2\rfloor)+c, & n>0 \\ c, & n=0\end{cases}
$$

This is because, for $n>0$, a call on an array of length n results in one recursive call on an array of length at most $n / 2$ and, by induction, one can show that T is monotonically increasing.

We now show by induction that $T(n) \leq c(\lg (n)+2)$ for $n>0$. (We avoid $\lg (0)$.)
First, $T(0) \leq c$. It follows that $T(1) \leq T(0)+c \leq 2 c=c(\lg (n)+2)$.
Suppose that, for all $m>1$ and all $n<m$, we have $T(n) \leq c(\lg (n)+2)$. Now consider $T(m)$. Note that $m / 2<m$, so this is covered inductively. We have $T(m) \leq T(m / 2)+c \leq c(\lg (m / 2)+2)+c=$ $c(\lg (m)+1)+c=c(\lg (m)+2)$.

Informally, we are allowed to assume that a binary tree of height h has 2^{h} leaves and $2^{h+1}-1$ nodes. Assuming that the original string has $2^{h+1}-1$ elements, we can consider a binary tree of height h, whose nodes are associated with input elements, and whose in-order traversal enumerates the elements in sorted order. Then binary search follows a path from root downwards to some node (not necessarily a leaf). Thus the worst-case time cost is the height of the tree. As long as the degree of the tree is at least 2 and at most $O(1)$, the height of the tree is $O(\log (n))$ and we don't need to be any more careful about how the tree branches.

3 Problem 2-3

a. The asymptotic running time is $\Theta(n)$, since there are n loop iterations and each takes some constant amount of time.
b. Naive polynomial pseudocode:

```
NAIVE-POLY \(\left(a_{0}, a_{1}, \ldots, a_{n} ; x\right)\)
\(y \leftarrow 0\)
for \((i \leftarrow 0 ; i \leq n ; i++)\{\)
    \(z \leftarrow 1\)
    for \((j \leftarrow 0 ; j<i ; j++)\)
            \(z^{*}=x ;\)
        \(y+=a_{i} \cdot z ;\)
\}
// \(y\) is set to the output
```

Note we are evaluating the polynomial from lowest degree to highest degree.
For some constant, the runtime is $\sum_{0 \leq i \leq n} \sum_{0 \leq j<i} c$. This is

$$
\begin{aligned}
\sum_{0 \leq i \leq n} \sum_{0 \leq j<i} c & =\sum_{0 \leq i \leq n} c i \\
& =c \frac{n(n+1)}{2} \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

which we can informally see from looking at the loops. (E.g., consider the runtime for the last $n / 2$ iterations of the outer loop. There, $i \geq n / 2$ so the inner loop executes at least $n / 2$ times for each iteration of the outer loop, so the inner loop iterates at least $(n / 2)^{2}$ times altogether. On the other hand, i and j are at most n, so the inner loop iterates at most n^{2} times.)
c. Initialization. At the start, $i=n$, so $n-(i+1)=-1$. The sum $\sum_{k=0}^{-1}$ is the empty sum, zero, which equals y.

Maintenance. Suppose the invariant is true at the start of some loop. During that loop, y gets

$$
\begin{aligned}
a_{i}+x \cdot y & =a_{i}+\sum_{k=0}^{n-(i+1)} a_{k+i+1} x^{k+1} \\
& =\sum_{k=-1}^{n-(i+1)} a_{k+i+1} x^{k+1} \\
& =\sum_{k^{\prime}=0}^{n-i} a_{k^{\prime}+i} x^{k^{\prime}}, \quad \text { for } k^{\prime}=k+1 \\
& =\sum_{k^{\prime}=0}^{n-((i-1)+1)} a_{k^{\prime}+(i-1)+1} x^{k^{\prime}} \\
& =\sum_{k^{\prime}=0}^{n-\left(i^{\prime}+1\right)} a_{k^{\prime}+i^{\prime}+1} x^{k^{\prime}},
\end{aligned}
$$

where $i^{\prime}=i-1$ is the value of i at the start of the next iteration.
Termination. At termination, we have $y=\sum_{k=0}^{n-(i+1)} a_{k+i+1} x^{k}$ for $i=-1$; i.e., $y=\sum_{k=0}^{n} a_{k} x^{k}$.

