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15–16

November 15, 2004

1 Problem 15.4-5

Given a sequence X of length n, let Y be a sorted sequence of the elements in X. Let Z be an LCS of X
and Y , which can be found in time O(n2) by dynamic programming. Then Z is a longest monotonically
increasing subsequence of X.

To see this, assume the entries of X are unique (the general case is similar). It is straightforward to check
that any common subsequence of X and Y is a monotonically increasing subsequence of X and, conversely,
any monotonic subsequence corresponds to an LCS. (If X has duplicates, it helps to use a stable sort, in
which two records with equal keys retain their relative order in the sorted output.)

The following is only slightly different from unwinding the above reduction. Define a table with cells
c[i, j], for 0 ≤ i, j ≤ n. The cell c[i, j] stores the longest monotonically increasing subsequence of the prefix
Xi = 〈x1, x2, . . . , xi〉 such that each element of the sequence is at most xj . Fill in the appropriate boundaries
of the table and fill in the innards of the table as follows:

for( i← 0; i ≤ n; i + +)
for( j ← 0; j ≤ n; j + +)

if( xi > xj)
c[i, j]← c[i− 1, j]

else
c[i, j]← max(c[i− 1, j], c[i− 1, i] + 1)

The idea is if xi > xj , then xi cannot be used in a sequence where every item is at most xj . So we use
the longest sequence up to i − 1. Otherwise, xi is allowed, but it might still be optimal to omit it. If we
don’t use xi, then, as before, we want a sequence on Xi−1 bounded by xj . If we do use xi, then we want a
sequence on Xi−1 bounded by xi, which we extend by a single element (xi).

One can arrive at this by trying to form a monotonic subsequence of Xi from subsequences Z of Xi−1,
and realizing that there’s a condition on Z and xi needed to make this work, namely, all entries in Z must
be at most xi. The setup of dynamic programming means that we’ll need to attend to this condition while
considering Z, before seeing xi. One way to do this is by anticipating every possible xi as a bound for the
sequence Z.

2 Problem 15-3

Part a.
To transform x into y, we can either transform a prefix of x into y without the kill operation and then use

a final kill, or we can transform all of x into y with no final kill. So we’ll compute the cost of transforming
each prefix of x into y. To do that, we’ll also compute, for each i and j, the cost of transforming x[1..i] to
y[1..j].
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To transform x[1..i] to y[1..j], we consider each of the five operations Copy, Replace, Delete, Insert, and
Twiddle as a possible last operation, and compute the cost conditioned on that. Let c′[i, j, t] denote this
conditional cost, conditioned on the last operation being t. Let c[i, j] be the unconditional cost. We have:

• If Copy is the last operation, then c′[i, j, Copy] = c[i − 1, j − 1] + cost[Copy]. Only consider this if
xi = yj ; otherwise, c′[i, j, Copy] = +∞.

• If Replace is the last operation, then c′[i, j, Replace] = c[i− 1, j − 1] + cost[Replace].

• If Delete is the last operation, then c′[i, j, Delete] = c[i− 1, j] + cost[Delete].

• If Insert is the last operation, then c′[i, j, Insert] = c[i, j − 1] + cost[Insert].

• If Twiddle is the last operation, then c′[i, j, Twiddle] = c[i − 2, j − 2] + cost[Twiddle]. Only consider
this if xi−2 = yj−1 and xi−1 = yj−2; otherwise, c′[i, j, Twiddle] = +∞.

Finally, let c[i, j] = mint c′[i, j, t].
We can store along with c[i, j] one of the values of t (i.e., the choice of final operation) that leads to the

minimum cost.
Note that, to compute c[i, j], we only require c[k, `] for k ≤ i, ` ≤ j, and either k < i or ` < j. It follows

that we can fill in the table one diagonal at time, in order of increasing i + j.
By induction and the definition of the operations, it follows that c[i, j] properly computes a minimal cost,

as desired. Once the table is filled in, we can consider min(c[m,n],mini<m c[i, n] + cost[Kill]); that is the
minimal cost. We can print out a sequence of transformations by tracing backwards over the stored choices
(including the choices involving the final Kill).

The time for this algorithm is Θ(mn), since there are mn cells and each cell takes constant time to fill
in, and the final minimization over kills is quick. The space cost of this algorithm is also Θ(mn).

[Note: the instructions say “analyze the ... requirements,” but it does not say “find the most efficient
algorithm.” Any polynomial time algorithm is ok here. There are other possible space/time tradeoffs,
depending on whether we want just the cost or also want to print the sequence, and how fast we want to
print the sequence.]

Part b.

Use the following costs for edit distance:

Operation Cost
Copy −1
Replace +1
Delete +2
Insert +2
Twiddle +∞
Kill +∞

We will show that, given two sequences, an optimal alignment (i.e., an alignment with maximal score),
corresponds to a sequence of edits with minimal cost. To do this, we need to show that the set of optimal
alignments corresponds to the set of optimal edit sequences.

Given any alignment, we read off an edit sequence from left to right. Corresponding symbols gives a
Copy, differing symbols gives a Replace, space-nonspace gives an Insert and nonspace-space gives a Delete.
The alignment score equals the negative of the edit cost, position by position. The converse is similar.

It follows that the maximum alignment score is the maximum of the negative of the edit cost; i.e., the
negative of the minimum edit cost, which is the negative of the edit distance.

[Note: My hint incorrectly said that the alignment score should be the edit distance, whereas these should
be negatives of each other.]

3 Problem 16.3-8

The task is as follows:
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We are trying to compress uniformly random files of exactly n
characters, where n is known and there are 256 = 2^8 different
characters. We will compress the file x by the bit string f(x). We
require that, if x and y are different, then f(x) and f(y) are
different. It is not necessary that the range of f be prefix.

Show that, for any such f, E[|f(x)|] > 8n - 2.

The idea is that any such encoding f is a map into the complete binary tree. In an optimal encoding,
the tree fills up layer by layer, starting with the root; that is, if |f(x)| > c for some x and some c and there
is some target string t of length c that is unused, it would be at least as good to make f(x) = t instead. By
hypothesis, there are 28n nodes used in the tree, which means all nodes at depth less than 8n and one node
at depth 8n. The nodes have equal frequency, so the expectation is

2−8n

 ∑
0≤j<8n

j2j + 8n

 ,

where j is the depth in the tree (the length |f(x)| of the codeword f(x)), 2−8n is the uniform probability of
selecting a particular x, and 2j is the number of x with |f(x)| = j. The extra 8n corresponds to the lonely
codeword at depth 8n.

It’s convenient to think about the compression savings compared with 8n. The one lonely x gets no
savings. For each of 28n−1 of the x’s (i.e., half of the x’s) the savings is 1 bit. For 1/4 of the x’s, the savings
is two bits, etc. Thus the total savings is

∑
1≤k≤8n k2−k. The infinite sum

∑
0≤k k2−k is 2, so the partial

sum is less than 2, as desired.
To see the infinite sum, let S =

∑
0≤k k2−k =

∑
1≤k k2−k. Then 2S =

∑
1≤k k21−k =

∑
0≤k(k + 1)2−k,

so that S = 2S − S =
∑

0≤k 2−k. Repeating this argument, the sum of this geometric series is 2.
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