# Solutions to Math 416 Homework due November 5, Chapter 11 

November 5, 2004

## 1 Problem 11-2

a. Fix an arbitrary slot, $s$. The probability that exactly $k$ keys hash to $s$ is the probability that a particular set of $k$ keys is exactly the set that hashes to $s$ times the number of sets of size $k$. The probability that the keys in the set hash to $s$ is $(1 / n)^{k}$; the probability that the keys outside the set do not hash to $s$ is $(1-1 / n)^{n-k}$, and there are $\binom{n}{k}$ sets. Thus

$$
Q_{k}=\left(\frac{1}{n}\right)\left(1-\frac{1}{n}\right)^{n-k}\binom{n}{k}
$$

b. If the slot containing the most keys contains $k$ keys, then, in particular, some slot contains exactly $k$ keys. That is, slot 1 contains $k$ keys or slot 2 contains $k$ keys or ..., and each event in this $n$-wise disjunction has probability $Q_{k}$. Thus the probability $P_{k}$ that the fullest slot has $k$ keys is at most $n Q_{k}$.
c. We will use a slightly weaker approximation to $n!$, namely, $n!=\Theta\left(\sqrt{n}(n / e)^{n}\right)$. Then

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{k!(n-k)!} \\
& =\Theta\left(\sqrt{\frac{n}{k(n-k)}} \frac{(n / e)^{n}}{(k / e)^{k}((n-k) / e)^{n-k}}\right) \\
& =\Theta\left(\sqrt{\frac{n}{k(n-k)}} \frac{n^{n}}{k^{k}(n-k)^{n-k}}\right) \\
& \leq O\left(\frac{n^{n}}{k^{k}(n-k)^{n-k}}\right),
\end{aligned}
$$

since $k \geq n / 2$ or $n-k \geq n / 2$. Thus

$$
\begin{aligned}
Q_{k} & \leq O\left(\frac{1}{n^{k}}\left(\frac{n-1}{n}\right)^{n-k} \frac{n^{n}}{k^{k}(n-k)^{n-k}}\right) \\
& \leq O\left(\frac{1}{k^{k}}\left(\frac{n-1}{n-k}\right)^{n-k}\right) \\
& \leq O\left(\frac{1}{k^{k}}\left(1+\frac{k-1}{n-k}\right)^{n-k}\right) \\
& \leq O\left(\frac{1}{k^{k}}\left(e^{\frac{k-1}{n-k}}\right)^{n-k}\right) \\
& \leq O\left(\frac{1}{k^{k}} e^{k-1}\right),
\end{aligned}
$$

using the fact that $1+x \leq e^{x}$. Thus $Q_{k} \leq O\left(e^{k} / k^{k}\right)$.
d. We want a constant $c>1$ such that $Q_{k_{0}}<1 / n^{3}$ for $k_{0}=c \lg n / \lg \lg n$.

Taking natural logs, we have $\ln Q_{k}<k(1-\ln k)+O(1)=-k(\ln k-1)+O(1)$. For large enough $k$, we have $\ln Q_{k}<-k \ln (k) / 2$, and we need this to be at most $\ln \left(1 / n^{3}\right)=-3 \ln n$, or $k \ln (k) \geq 6 \ln n$.

Put $k=\frac{12 \ln (n)}{\ln \ln (n)}=\frac{12 \lg (n)}{\lg \ln (n)}=\frac{12 \lg (n)}{\lg \lg (n)-\lg \lg (e)}$; thus $k \leq O\left(\frac{\lg (n)}{\lg \lg (n)}\right)$. Then $\ln (k)=\ln (12)+\ln \ln (n)-$ $\ln \ln \ln (n)$, and $k \ln (k) \geq(\ln (12)+\ln \ln (n)-\ln \ln \ln (n)) \frac{12 \ln (n)}{\ln \ln (n)} \geq 6 \ln (n)$ for sufficiently large $n$, as desired. (To handle smaller $n$, just increase $c$.)

We also assume that $k_{0} \geq e$, so that $e^{k} / k^{k}$ is strictly decreasing as $k \geq k_{0}$ increases. It follows that, for all $k>\frac{12 \ln (n)}{\ln \ln (n)}$, we have $Q_{k}<1 / n^{3}$. Thus $P_{k} \leq n Q_{k}<1 / n^{2}$ for such $k$.
e (and conclusion). We have

$$
\begin{aligned}
E[M] & =\sum_{k} k P_{k} \\
& =\sum_{k_{0}<k \leq n} k P_{k}+\sum_{k \leq k_{0}} k P_{k} \\
& \leq \sum_{k_{0}<k \leq n} n\left(1 / n^{2}\right)+\sum_{k \leq k_{0}} k_{0} P_{k} \\
& \leq 1+k_{0} \sum_{k \leq k_{0}} P_{k} \\
& \leq 1+k_{0}
\end{aligned}
$$

## 2 Problem 11-4

a. Suppose $\mathcal{H}$ is 2-univeral and suppose $i_{1} \neq i_{2}$. Let $h$ be a random element of $\mathcal{H}$. Then

$$
\operatorname{Pr}\left(h\left(i_{1}\right)=h\left(i_{2}\right)\right)=\sum_{t} \operatorname{Pr}\left(h\left(i_{1}\right)=h\left(i_{2}\right)=t\right)=\sum_{t}\left(1 / m^{2}\right)=1 / m
$$

b (second printing, 2001), and c (third printing, 2002). Suppose $h_{a, b}(x)=\left(\sum_{j=0}^{n-1} a_{j} x_{j}+b\right) \bmod p$, suppose $x \neq y$, and suppose $s, t \in B$. Then $h(x)=s$ and $h(y)=t$ iff

$$
\left(\begin{array}{cccccc}
x_{0} & x_{1} & x_{2} & \cdots & x_{n-1} & 1 \\
y_{0} & y_{1} & y_{2} & \cdots & y_{n-1} & 1
\end{array}\right) \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1} \\
b
\end{array}\right)=\binom{s}{t}
$$

Since $x \neq y$, we have $x_{i} \neq y_{i}$ for some $i$, or

$$
\left(\begin{array}{ll}
x_{i} & 1 \\
y_{i} & 1
\end{array}\right) \cdot\binom{a_{i}}{b}=\binom{s-\sum_{j \neq i} a_{j} x_{j}}{s-\sum_{j \neq i} a_{j} y_{j}} .
$$

We claim that the statement holds even conditioning on all the values of $a_{j}$ 's except $a_{i}$. Since the matrix

$$
\left(\begin{array}{ll}
x_{i} & 1 \\
y_{i} & 1
\end{array}\right)
$$

is invertible, there is exactly one setting (out of $m^{2}$ ) of $a_{i}$ and $b$ that works. Thus $\mathcal{H}$ is 2-universal.
b (third printing, 2002). We now define $h_{a}(x)=\left(\sum_{j=0}^{n-1} a_{j} x_{j}\right) \bmod p$. We need to show that the family of $h_{a}$ 's is universal, but not 2-universal. First, suppose $x \neq y$. Then $x_{i} \neq y_{i}$ for some $i$. Then $\operatorname{Pr}\left(h_{a}(x)=\right.$
$\left.h_{a}(y)\right)=\operatorname{Pr}\left(h_{a}(x-y)=0\right)=\operatorname{Pr}\left(a_{i}\left(x_{i}-y_{i}\right)=\sum_{j \neq i} a_{j}\left(x_{j}-y_{j}\right)\right)=\operatorname{Pr}\left(a_{i}=\left(x_{i}-y_{i}\right)^{-1} \sum_{j \neq i} a_{j}\left(x_{j}-y_{j}\right)\right)$. Conditioned on any setting of $a_{j}$ 's for $j \neq i$, this probability is $1 / m$. Thus the family is universal.

To show that it is not 2-universal, suppose $x=0$ and $t \neq 0$. Then $\operatorname{Pr}\left(h_{a}(x)=t \& h_{a}(y)=s\right) \leq$ $\operatorname{Pr}\left(h_{a}(x)=t\right)=0 \neq 1 / m^{2}$.
c (second printing) and d (third printing).
This piece is not for credit. But please think about it!
What we really want is $\operatorname{Pr}_{a, b}\left(h\left(m^{\prime}\right)=t^{\prime} \mid h(m)=t\right)=\operatorname{Pr}\left(h(m)=t \& h\left(m^{\prime}\right)=t^{\prime}\right) / \operatorname{Pr}(h(m)=t)$. (It may take some thought to see this.) Because the family is 2-universal, the numerator is $1 / p^{2}$ and the denominator is $1 / p \neq 0$. So the probability is $1 / p$.

