1 Problem 11-2

a. Fix an arbitrary slot, s. The probability that exactly k keys hash to s is the probability that a particular set of k keys is exactly the set that hashes to s times the number of sets of size k. The probability that the keys in the set hash to s is \((1/n)^k\); the probability that the keys outside the set do not hash to s is \((1 - 1/n)^{n-k}\), and there are \(\binom{n}{k}\) sets. Thus

\[
Q_k = \left(\frac{1}{n} \right)^k \binom{n}{k} \left(\frac{n}{n} - \frac{k}{n} \right)^{n-k} \binom{n}{k}.
\]

b. If the slot containing the most keys contains k keys, then, in particular, some slot contains exactly k keys. That is, slot 1 contains k keys or slot 2 contains k keys or ..., and each event in this n-wise disjunction has probability \(Q_k\). Thus the probability \(P_k\) that the fullest slot has k keys is at most \(nQ_k\).

c. We will use a slightly weaker approximation to \(n!\), namely, \(n! = \Theta(\sqrt{n}(n/e)^n)\). Then

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \Theta \left(\frac{n}{\sqrt{k(n-k)(k/e)^k((n-k)/e)^{n-k}}} \right)
\]

\[
= \Theta \left(\frac{n}{k(n-k)\frac{k}{e}((n-k)/e)^{n-k}} \right)
\]

\[
\leq O \left(\frac{n^n}{k^n(n-k)^{n-k}} \right),
\]

since \(k \geq n/2\) or \(n-k \geq n/2\). Thus

\[
Q_k \leq O \left(\frac{1}{n^k} \left(\frac{n-1}{n} \right)^{n-k} \frac{n^n}{k^n(n-k)^{n-k}} \right)
\]

\[
\leq O \left(\frac{1}{k^k} \left(\frac{n-1}{n-k} \right)^{n-k} \right)
\]

\[
\leq O \left(\frac{1}{k^k} \left(1 + \frac{k-1}{n-k} \right)^{n-k} \right)
\]

\[
\leq O \left(\frac{1}{k^k} \left(e^{k-1} \right)^{n-k} \right)
\]

\[
\leq O \left(\frac{1}{k^k} e^{k-1} \right),
\]

using the fact that \(1 + x \leq e^x\). Thus \(Q_k \leq O(e^{k}/k^k)\).
d. We want a constant $c > 1$ such that $Q_{k_0} < 1/n^3$ for $k_0 = c \log n / \log \log n$.

Taking natural logs, we have $\ln Q_k < k(1 - \ln k) + O(1) = -k(\ln k - 1) + O(1)$. For large enough k, we have $\ln Q_k < -k \ln(k)/2$, and we need this to be at most $k \ln(1/n^3) = -3 \ln n$, or $k \ln(k) \ge 6 \ln n$.

Put $k = \frac{12 \ln(n)}{\ln \ln(n)} = \frac{12 \log(n)}{\log \log(n)} = \frac{12 \log(n)}{\log \log(x)}$, thus $k \le O\left(\frac{\log(n)}{\log \log(n)}\right)$. Then $\ln(k) = \ln(12) + \ln \ln(n) - \ln \ln \ln(n)$, and $k \ln(k) \ge (\ln(12) + \ln \ln(n) - \ln \ln \ln(n)) \frac{12 \ln(n)}{\ln \ln(n)} \ge 6 \ln(n)$ for sufficiently large n, as desired. (To handle smaller n, just increase c.)

We also assume that $k_0 \ge e$, so that e^k/k^k is strictly decreasing as $k \ge k_0$ increases. It follows that, for all $k > \frac{12 \ln(n)}{\ln \ln(n)}$, we have $Q_k < 1/n^3$. Thus $P_k \le nQ_k < 1/n^2$ for such k.

e (and conclusion). We have

$$E[M] = \sum_k kP_k$$
$$= \sum_{k_0 < k \le n} kP_k + \sum_{k \le k_0} kP_k$$
$$\le \sum_{k_0 < k \le n} n(1/n^2) + \sum_{k \le k_0} k_0 P_k$$
$$\le 1 + k_0 \sum_{k \le k_0} P_k$$
$$\le 1 + k_0.$$

2 Problem 11-4

a. Suppose \mathcal{H} is 2-universal and suppose $i_1 \neq i_2$. Let h be a random element of \mathcal{H}. Then

$$\Pr(h(i_1) = h(i_2)) = \sum_t \Pr(h(i_1) = h(i_2) = t) = \sum_t (1/m^2) = 1/m.$$

b (second printing, 2001), and c (third printing, 2002). Suppose $h_{a,b}(x) = \left(\sum_{j=0}^{n-1} a_j x_j + b\right) \mod p$, suppose $x \neq y$, and suppose $s, t \in B$. Then $h(x) = s$ and $h(y) = t$ iff

$$\left(\begin{array}{cccc} x_0 & x_1 & x_2 & \cdots & x_{n-1} & 1 \\ y_0 & y_1 & y_2 & \cdots & y_{n-1} & 1 \end{array}\right) \cdot \left(\begin{array}{c} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \\ b \end{array}\right) = \left(\begin{array}{c} s \\ t \end{array}\right).$$

Since $x \neq y$, we have $x_i \neq y_i$ for some i, or

$$\left(\begin{array}{c} x_i \\ y_i \\ 1 \end{array}\right) \cdot \left(\begin{array}{c} a_i \\ b \end{array}\right) = \left(\begin{array}{c} s - \sum_{j \neq i} a_j x_j \\ s - \sum_{j \neq i} a_j y_j \end{array}\right).$$

We claim that the statement holds even conditioning on all the values of a_j’s except a_i. Since the matrix

$$\left(\begin{array}{c} x_i \\ y_i \\ 1 \end{array}\right)$$

is invertible, there is exactly one setting (out of m^2) of a_i and b that works. Thus \mathcal{H} is 2-universal.

b (third printing, 2002). We now define $h_a(x) = \left(\sum_{j=0}^{n-1} a_j x_j\right) \mod p$. We need to show that the family of h_a’s is universal, but not 2-universal. First, suppose $x \neq y$. Then $x_i \neq y_i$ for some i. Then $\Pr(h_a(x) =
\[h_a(y) = \text{Pr}(h_a(x - y) = 0) = \text{Pr}(a_i(x_i - y_i) = \sum_{j \neq i} a_j(x_j - y_j)) = \text{Pr}(a_i = (x_i - y_i)^{-1} \sum_{j \neq i} a_j(x_j - y_j)). \]

Conditioned on any setting of \(a_j \)’s for \(j \neq i \), this probability is \(1/m \). Thus the family is universal.

To show that it is not 2-universal, suppose \(x = 0 \) and \(t \neq 0 \). Then \(\text{Pr}(h_a(x) = t & h_a(y) = s) \leq \text{Pr}(h_a(x) = t) = 0 \neq 1/m^2 \).

c (second printing) and d (third printing).

This piece is not for credit. But please think about it!

What we really want is \(\text{Pr}_{a,b}(h(m') = t'|h(m) = t) = \text{Pr}(h(m) = t & h(m') = t')/\text{Pr}(h(m) = t) \). (It may take some thought to see this.) Because the family is 2-universal, the numerator is \(1/p^2 \) and the denominator is \(1/p \neq 0 \). So the probability is \(1/p \).