Quiz 6, Math 115-11, Calculus I
 March 14, 2007

Name:
Extinguish all cell phones, pagers, beepers, etc. No headphones allowed. Calculators are allowed. Show appropriate work and provide units where appropriate.

1. For what values of a is $x+a \sin (x)$ increasing for all x ?
2. An object on a spring oscillates about its equilibrium position at $y=0$. Its distance from equilibrium is given as a function of time, t, by $y=e^{-t} \cos (t)$. Find the greatest distance the object goes above and below the equilibrium for $t \geq 0$.

Solutions:

1. Let $f(x)=x+a \sin (x)$. Then $f^{\prime}(x)=1+a \cos (x)$. For f to be strictly increasing, we need $f^{\prime}(x)>0$ for all x, i.e., $a \cos (x)>-1$ for all x. Since $\cos (x)$ takes values between -1 and +1 , we can see that, if $|a|<1$, then $|a \cos (x)|<1$, so $a \cos (x)>-1$. On the other hand, since $\cos (0)=+1$, we know that $a \cos (0)=a$, so $a \leq-1$ will not make $a \cos (x)>-1$ for all x. Similarly, $\cos (\pi)=-1$, so $a \cos (\pi)=-a$, and so $a \geq+1$ will not work.
We have shown that values of a in the range $-1<a<+1$ all work and values in the ranges $a \leq-1$ and $a \geq+1$ will not work. So the complete specification of the a 's that work is $-1<a<+1$.
There are different conventions as to whether "increasing" means "strictly increasing" or "increasing, but not necessarily strictly increasing." If you subscribe to an alternate convention, $-1 \leq a \leq+1$ would also be an acceptable answer. Don't mix conventions; i.e., don't write $-1 \leq a<1$.
A common mistake on this problem was to write $a>\frac{-1}{\cos (x)}$. This is wrong on two counts. First, note that multiplying through an equation by a negative number reverses the $<$ sign. For example, if $-x>-2$ then $x<2$, by multiplying through by -1 . In our case, we have $a \cos (x)>-1$ and we attempt to multiply through by $\frac{1}{\cos (x)}$, but $\frac{1}{\cos (x)}$ is neither always positive nor always negative, so we really can't multiply through and get something simple and useful. Second, we want our final answer to be a condition on a that does not depend on x.
2. The $e^{-t} \cos (t)$ problem is Example 4 in Section 4.3.
