Inflection points of the bell-shaped curve

March 11, 2007

Let $f(x)=e^{-x^{2}}$, whose graph is below. Then the maximum is at $(0,1)$ and the inflection points are at $\pm \frac{1}{\sqrt{2}}$. (In class I may have said something else about the inflection points.)

This document gives the completion of the problem we started in class.

1 Paradigm

For the paradigm function $f(x)=e^{-x^{2}}$, we have

$$
\begin{aligned}
f(x) & =e^{-x^{2}} \\
f^{\prime}(x) & =-2 x e^{-x^{2}} \\
f^{\prime \prime}(x) & =(-2 x)^{2} e^{-x^{2}}-2 e^{-x^{2}} \\
& =2\left(2 x^{2}-1\right) e^{-x^{2}} .
\end{aligned}
$$

Since $2 e^{-x^{2}}>0$, we conclude that

$$
\begin{cases}f^{\prime \prime}(x)>0, & 2 x^{2}-1>0 \\ f^{\prime \prime}(x)=0, & 2 x^{2}-1=0 \\ f^{\prime \prime}(x)<0, & 2 x^{2}-1<0\end{cases}
$$

The equation $2 x^{2}-1=0$ has roots at $x= \pm \frac{1}{\sqrt{2}}$. Since $2 x^{2}-1$ has positive end behavior for $x \rightarrow \pm \infty$, we see that

$$
\begin{cases}f^{\prime \prime}(x)>0, & x>\frac{1}{\sqrt{2}} \text { or } x<\frac{-1}{\sqrt{2}} \\ f^{\prime \prime}(x)=0, & x= \pm \frac{1}{\sqrt{2}} \\ f^{\prime \prime}(x)<0, & \frac{-1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}\end{cases}
$$

We can diagram this as follows:

Concavity:	\bigcup	$/$	\bigcap	\backslash	\bigcup
$f^{\prime \prime}(x):$	>0	0	<0	0	>0
\longleftrightarrow	$-1 / \sqrt{2}$		$+1 / \sqrt{2}$		

That is, the function is concave up for $x<\frac{-1}{\sqrt{2}}$ or $x>\frac{1}{\sqrt{2}}$ and concave down for $\frac{-1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$. (Note that this computation matches a computation in the text for $b=1$.)

2 Moving inflection points using horizontal stretches and shifts

Suppose we want a "Bell curve with inflection points at 5 and 13." This means "Find the formula for a horizontally stretched and shifted Bell curve whose inflection points are at 5 and 13."

In the paradigm $f(x)=e^{-x^{2}}$, the inflection points are at $\pm \frac{1}{\sqrt{2}}$, or $\frac{2}{\sqrt{2}}$ apart. So our strategy is

1. Stretch the graph horizontally by $\frac{13-5}{2 / \sqrt{2}}=4 \sqrt{2}$. This moves the inflection points from $\frac{1}{\sqrt{2}}$ to $4 \sqrt{2} \cdot \frac{1}{\sqrt{2}}=4$ and from $\frac{-1}{\sqrt{2}}$ to $4 \sqrt{2} \cdot \frac{-1}{\sqrt{2}}=-4$. The distance between inflection points is now $4-(-4)=8=13-5$.
2. Shift the graph rightward by 9 . This moves the inflection points from -4 and +4 to $-4+9=5$ and $+4+9=13$.

We accomplish this as follows. To stretch, $f(x)=e^{-x^{2}}$ beccomes $g(x)=$ $e^{-\left(\frac{x}{4 \sqrt{2}}\right)^{2}}$, by replacing x with $\left(\frac{x}{4 \sqrt{2}}\right)$. Next, to shift, we further transform by replacing x with $x-9$ in $g(x)$, getting $h(x)=e^{-\left(\frac{x-9}{4 \sqrt{2}}\right)^{2}}$. This is the answer.

3 Moving inflection points using calculus

Again, suppose we want a "Bell curve with inflection points at 5 and 13 ." We use the parametrization from the textbook: $f(x)=e^{-\frac{(x-a)^{2}}{b}}$, in which, it turns out, a represents the horizontal shift and b, which must be positive, is the square of the horizontal stretch. We have

$$
\begin{aligned}
f(x) & =e^{-\frac{(x-a)^{2}}{b}} \\
f^{\prime}(x) & =\frac{-2(x-a)}{b} e^{-\frac{(x-a)^{2}}{b}} \\
f^{\prime \prime}(x) & =\left(\frac{-2(x-a)}{b}\right)^{2} e^{-\frac{(x-a)^{2}}{b}}-\frac{2}{b} e^{-\frac{(x-a)^{2}}{b}} \\
& =\frac{1}{b}\left[\frac{4(x-a)^{2}}{b}-2\right] e^{-\frac{(x-a)^{2}}{b}}
\end{aligned}
$$

Since $\frac{1}{b} e^{-\frac{(x-a)^{2}}{b}}$ is always positive, the second derivative is negative, zero, or positive when $\frac{4(x-a)^{2}}{b}-2$ is negative, zero, or positive, respectively. This means that the inflection points occur when the second derivative is zero, or $\frac{4(x-a)^{2}}{b}-$ $2=0$. We are told that this occurs when $x=5$ and $x=13$, or $\frac{4(5-a)^{2}}{b}-2=0$ and $\frac{4(13-a)^{2}}{b}-2=0$; we want to solve for a and b.

The equations can be rewritten as

$$
\begin{cases}4(5-a)^{2} & =2 b \\ 4(13-a)^{2} & =2 b\end{cases}
$$

Subtracting, we get $4(13-a)^{2}-4(5-a)^{2}=0$. Dividing by 4 and then expanding, we get $\left(169-26 a+a^{2}\right)-\left(25-10 a+a^{2}\right)=0$, or $144-16 a=0$, so that $a=$ $144 / 16=9$. Plugging this back into one of the equations, we get $4(5-9)^{2}=2 b$, or $64=2 b$, or $b=32$. (Note that the horizontal stretch is $\sqrt{b}=\sqrt{32}=4 \sqrt{2}$.) Thus the formula is $e^{-\frac{(x-9)^{2}}{32}}$.

