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Abstract

Histograms are used in many ways in conventional databases and in data stream processing for
summarizing massive data distributions. Previous work on constructing histograms on data streams
with provable guarantees have not taken into account the workload characteristics of databases which
show some parts of the distributions to be more frequently used than the others; on the other hand,
previous work for constructing histograms that do make use of the workload characteristics–and have
demonstrated the significant advantage of exploiting workload information–have not come with provable
guarantees on the accuracy of the histograms or the time and space bounds needed to obtain reasonable
accuracy. We study the algorithmic complexity of constructing workload-optimal histograms on data
streams.

We present an algorithm for constructing a nearly-optimal histogram in nearly linear time and poly-
logarithmic space, in one pass. In the more general cash register model where data is streamed as a
series of updates, we can build a histogram using polylogarithmic space, polylogarithmic time to process
each item, and polylogarithmic post-processing time to build the histogram. These are the first known
algorithmic results with provable guarantees for workload-optimal histogram construction, and rely on a
notion oflinear robustnesswe introduce here. All these results need the workload to be explicitly stored
since we show that if the workload is summarized in small space lossily, algorithmic results such as
above do not exist. However, we show that our algorithmic results can be extended efficiently to the case
when the workload is compressed without loss by using, for example, run-length encoding or a universal
compression scheme of Lempel-Ziv.

1 Introduction

A histogram is a piecewise-constant approximation of an observed data distribution. A histograms is used
as a small space, approximate synopsis of the underlying data distribution, which is often too large to be
stored precisely. Histograms have found many applications in database management systems, perhaps most
commonly for query selectivity estimation in query optimizers [15], but have also found applications in ap-
proximate query answering [2], load balancing in parallel join execution [25], mining time-series data [18],
partition-based temporal join execution, query profiling for user feedback, etc. Ioannidis has a nice overview
of the history of histograms, their applications, and their use in commercial DBMSs [14]. Also, Poosala’s
thesis provides a systematic treatment of different types of histograms [25].

∗Supported by NSF ITR 0220280. Rutgers University.muthu@cs.rutgers.edu.
†Supported by NSF DMS 0354600. Dept. of Mathematics, University of Michigan, 2074 East Hall, 525 E. University Ave.,

Ann Arbor, Michigan, 48109-1109. Fax: +1-734-763-0937.martinjs@umich.edu
‡University of Michigan.xuanzh@eecs.umich.edu

1



Formally, aB-buckethistogramH of lengthN is a partition of[0, N) into intervals[b0, b1) ∪ [b1, b2) ∪
· · · ∪ [bB−1, bB), whereb0 = 0 andbB = N , together with a collection ofB heightshj , for 0 ≤ j < B,
one for each bucket. a that is, the uniquej with bj ≤ i < bj+1. In building aB-bucket histogram, we
want to chooseB − 1 boundariesbj andB heightshj , dependent onA. A number of different choices
are known [25] forbj ’s andhj ’s, but the popular and effective one is theV-Opt histogram[16], wherebj ’s
andhj ’s are chosen to minimize the total square error, takenuniformly over the set of all point queries, or,
equivalently,‖A−H‖2 =

∑
i(A[i]−hj(i))2. (Once we have chosen the boundaries, the best bucket height

on an intervalI is the average ofA overI.)
In [17], the authors presented anO(N2B) time algorithm for determining the optimal histogramHopt

that minimizes the total square error. This algorithm has two drawbacks: first, it is expensive—quadratic
in N ; second, it needsA to be stored explicitly which is prohibitive in space for large distributions where
histograms are used as synopses. In order to overcome the first drawback, focus has been on(1 + ε)-
approximations, that is, algorithms to find a histogramH such that‖A −H‖2 ≤ (1 + ε)‖A −Hopt‖2. In
order to overcome the second drawback, the focus has been on thedata stream modelof computation where
(a) the algorithm reads the signal left to right in one pass asA[1],A[2], . . . , using space sublinear in the
input lengthN ; this is the so-calledtime-series model[22], or, (b)A is specified as a series ofupdatesand
the algorithm has to track the changes toA in space and time per update polylogarithmic in inputN ; this is
the so calledcash register modelif only additions are allowed, or more generally, thedynamic maintenance
modelif both additions and deletions are allowed [22]. Besides the parametersB,N , andε, the algorithms’
costs depend on the numerical precision involved; we letM be a parameter such thatlog(M) is roughly
the number of bits of precision used (see below for a formal definition). A series of(1 + ε)-approximation

algorithms have been proposed that work in time inc1N +
(

B log N log M
ε

)c2
(for constantsc1 andc2) in

the time series model using no more than
(

B log N log M
ε

)O(1)
space enroute [12, 11, 10]. In the dynamic

maintenance model, [8] presents an algorithm that uses time per update, space, and post-processing time

time only
(

B log N log M
ε

)O(1)
. This solves the approximateV -Opt histogram computation problem from a

theoretical point of view, modulo getting the constants involved to be as small as possible.
It has, however, long been an issue that theV -Opt histogram as defined above is limited in its applica-

tions because it does not take into account theworkloadof queries for which the histogram is optimized.
In particular, when some of the point queries are more frequent than the others, then the histogram needs
to be better at approximating answers to the frequent queries rather than the infrequent ones. In other
words, the metric to minimize is not the sum of squared errorsuniformly over all point queries, but that
obtained by weighting the error on each point query by the workload of how frequently each point query
is posed. Formally, given an input signalA[0 · · ·N − 1] and workload w[0 · · ·N − 1], 0 ≤ wi ≤ 1,∑

i w(i) = 1, theworkload-optimalB-bucket histogramHopt is the choice ofbj ’s andhj ’s that minimize
‖A − H‖2

w =
∑

i wi(A[i] − hj(i))2. The problem of findingHopt is interesting on stored or streamed
signals as well as stored or streamed workloads.

The database community has proposed methods not merely to synposize data distributions but also to
take the workload into account. Query feedback from the execution engine of a DBMS was used in [5]
to modify the synopsis. Histogram boundaries are refined adaptively in [19, 1, 26] based on dynamically
evolving workload that is continuously updated based on feedback from the query engine; they differ in
how they approximate values within buckets, how they weight the workload etc. Still, these methods do
not give any provable results on approximatingHopt. There has some work onother synopsis that are
workload-aware. For example, [7] proposed sampling methods that adapt to recent workload. IBM’s LEO
optimizer [27] uses workload information for variety of synopsis. In [24], aO(N2B/ log B) time algorithm
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is presented for determining the optimal choice ofB Haar wavelet synopsis; this has recently been improved
to O(N2) time [9]. The Haar basis is modified in [20] with the knowledge of the workload and algorithms
for obtainingB-term synopsis are designed for this new basis; while this algorithm works in linear time,
it does not provide near-optimalB Haar wavelet synopsis. For special workloads, [24] presented a near-
linear algorithm for finding the optimalB-term Haar wavelet basis. All of these results for Haar and related
basis [24, 9, 20] work only whenboth the signal and workload are available in a stored form, and not
streamed. In such a scenario however, the dynamic programming from [17] immediately gives anO(N2B)
time algorithm for finding the optimalHopt, so the challenge in [24, 9] arises from working with the Haar
wavelet basis and does not reflect on the difficulty in constructingHopt. The significant open problem with
findingHopt is when either the signal or the workload is streamed, or both are steamed.

In this paper, we address the problem of computingHopt on data streams from a foundational point of
view. Our primary question is, do the powerful theoretical results known for uniform histogram construction
in one pass and on data streams hold for the workload-aware case as well? Is there a difference in streaming
the signal versus the streaming the workload? How accurately can we track the workload in polylogarithmic
space? What is the information-content of the workload and how does it affect the complexity of histogram
construction? We initiate the formal study of the complexity of workload-optimal histogram problems, and
prove first-known theoretical results.

Our contributions are as follows. Suppose the data items are (positive, negative, or zero) integers, and
the weights are positive integers between the minimum weight,wmin, and the maximum weight,wmax. Let
M = max{||A||2, wmax

wmin
} and letc1 andc2 denote constants.

• (StoredA, storedw) We present anc1N +
(

B log N log M
ε

)c2
-time algorithm to compute aB-bucket

histogramH with ‖A−H‖2
w ≤ (1+ ε)‖A−Hopt‖2

w whereHopt is the workload-optimalB-bucket
histogram, with respect to arbitraryw. This is the first near-linear1 time algorithm for approximating
Hopt under non-uniform workloads.

• (Storedw, streamingA) The above algorithm can be run in the time series model taking onlyO(1)

time per new item and using
(

B log N log M
ε

)O(1)
space and time to construct the1 + ε approximate

histogram. Under the more general dynamic maintenance mode, the above algorithm can be modified
using previously known techniques so that the time per update, total space used, and postprocessing

time are all
(

B log N log M
ε

)O(1)
. This is the first known algorithms that use sublinear—polynomial

in B, 1/ε and polylogarithmic inN,M—space for dealing with data stream signals and yet yields
(1 + ε) approximateHopt histograms for anyw.

• (Streamingw, A.) To get a(1 + ε)-factor approximation, one can round each workload weight to
within the factor(1 + Ω(ε)). But this is essentially all the lossy compression one can do, as our
(straightforward) lower bounds show.

• (Compressedw, streamingA.) We show that, if the vectorw′ of rounded weights is losslessly
compressible to a structureC(w′) of size |C(w′)| by run-length encoding or by the Ziv-Lempel
method [30], then the preprocessing time and space can be reduced from linear inN to linear in
|C(w′)|. We present aO(C(w))-spaced data structure to answer “symbol range count” queries which
enable all our workload-optimal histogram construction algorithms above to be implemented in space

1Note that, for moderate values of the parameters other thanN , the run time is dominated byc1N . In this paper, we use the
term “near-linear” for this type of cost.
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and timeC(w)
(

B log N log M
ε

)O(1)
. This is an advantage for highly compressible workloadw’s, where

|C(w)| � o(|w|).

Section 2 has the definitions and preliminaries. Ourc1N +
(

B log N log M
ε

)c2
time algorithm illustrates

the main new ideas in this paper, and it is presented in 3. The natural starting point for this algorithm is
to round the workloadw(i)’s so there are only a few workload “classes”, within each of which we build a
robust histogram, a concept borrowed from [8]. The crux of the contribution here is to prove that combining
the individual robust histograms gives a robust histogram for the overall data and workload. Extensions of
this result to the stream models of the signal are straightforward and are sketched in Section 4. The lower
bound on space when the workload is streamed is in Section 5 and is fairly simple. In 6, we describe methods
for managing a compressed workloadw and computingHopt on a data stream ofA efficiently. Our work
initiates a number of open problems and directions which we list in Section 7.

In this extended abstract, proofs are omitted. They can be found in an appendix.

2 Preliminaries

2.1 Definitions and Lemmas from previous work

Definition 1 Inner Product with Weight: For any two signalsA andB with lengthN respectively and the
same lengthN weight vectorw, define〈A,B〉w =

∑N
i=1 AiBiwi and‖A‖2

w = 〈A,A〉w wherewi is a
non-negative weight at indexi. We continue to write〈A,B〉 and‖A‖ for the dot product and norm under
uniform workload.

Definition 2 Robust Representation [8, 10]. Fix a signalA. A representationHr is called a(B, ε)-robust
approximation toA if, for any representationH on the boundaries ofHr and any otherB − 1 boundaries,
with optimal parameters, we have(1− ε)‖A− Hr‖2 ≤ ‖A− H‖2.

Lemma 3 ([10]) GivenB, N , εr and M , for any integer-valued signalA with ‖A‖ ≤ M , there exists

a B′ ≤
(

B log N log M
εr

)O(1)
and a (B′)O(1) time algorithm to find a(B, εr)-robust approximation toA

presented in the time-series model.

For completeness, we sketch the construction from [10]. Convert the time seriesA to a time series of its
Haar waveletdecomposition, in timeO(N) and spacedO(log(N)). Using a buffer of sizeO(B′′) and a
selection algorithm, find the Haar wavelet terms with largest coefficients, in timeO(N) and spaceO(B′′).
Finally, use a greedy algorithm with appropriate stopping condition to select theB′ largest wavelet terms,
which can be regarded as the desiredO(B′)-bucket robust histogram.

Lemma 4 GivenB,N , andε, there existsεr ≥ (ε/B)O(1) such that a nearly-optimal representationH to
a (B, εr)-robust representationHr is also

(
1 + εΩ(1)

)
-nearly optimal toA.

3 Algorithm

In this section, we give an algorithm for time series data.
At a high level, our algorithm proceeds as follows. We will regard the weights as rounded to a power of

(1+ε); there is a small numberp = log1+ε(M) of these classes. We multiplex the incoming time series into
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p new time series, according to the associated weight. For each subseries, we create a robust representation,
as in [10]. Combining the robust representations gives a linearly-robust representationHr, that we define
below. Finally, a near-bestB-bucket representation toHr can be constructed efficiently and will also be
near-best to the original data,A.

3.1 Notation and Basics

We consider signals of lengthN , with weightsw1, · · · , wN , and such that‖A‖2 ≤ M . We will assume
that data items are integers (positive, zero, or negative) and that weights are positive integers in the range
wmin = 1 to somewmax ≤ M (so we abandon the normalization

∑
i wi = 1.)

Definition 5 Rounded weights with respect to original weights: Definep = log1+ε M + 1, andp different
rounded weightsw1, w2, · · · , wp, wherewi = (1+ ε)i−1. Round all the original weightsw1, · · · , wN down
to rounded weightsw′

1, · · · , w′
N respectively, i.e.,∀i ∈ {1, · · · , N},∃j ∈ {1, · · · , p}, such thatwj = w′

i

and
wi ≤ (1 + ε)w′

i ≤ (1 + ε)wi. (1)

We usew′ = (w′
1 · · ·w′

N ) to represent the length-N rounded weight vector.

In the sequel, any rounding scheme will work if it satisfies Equation (1) and gives just a moderate number
of possible different rounded weight values.

Lemma 6 Fix a singleA of dimensionN . Then‖A−H′
opt‖2

w ≤ (1 + ε)‖A−Hopt‖2
w , whereHopt is the

optimalB bucket representation toA under weightw, andH′
opt is the optimalB bucket representation to

A under weightw′.

Definition 7 A symbol-range-count structurefor a rounded weight vectorw′ supports the following opera-
tions:

• For all j < N , we can recoverw′
j in constant time per query, provided we are queried with allj’s in

order,j = 0, 1, 2, . . . , N − 1.

• For all j < N , we can recover the number ofk < j such thatw′
k = w′

j .

The time for the second operation will be called the (symbol-range-count)query time, and must be

at most
(

B log N log M
ε

)O(1)
. Besides this, we will be interested in thesizeof the structure and thepre-

processingtime needed to construct the structure. (All implementations we consider will support the first
query in the time indicated.)

It is straightforward to build such structureR of sizeO(N), in pre-processing timeO(N), that answers
both queries in constant time (using, say, perfect hashing), for any order of queries. In Section 6, we will be
interested in smallerR’s and we will exploit the particular requirements listed here.

3.2 Linearly Robust Representations

Definition 8 Linearly Robust Representations with respect to weights: Fix a signalA and rounded weight
vectorw′. A representationHr is called a(B, ε)-robust approximation toA under weightw′, if, for any
B-bucket histogramHB and any scalarsa andb, we have

(1− ε)‖A−Hr‖2
w ≤ ‖A− (aHr + bHB)‖2

w.
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Definition 9 Partition and combination of representations: Given a streamA and given a partitionP =
{P0, P1, . . . , Pm−1} of [0, N), for eachi ∈ [0,m), defineAP

i to beA restricted toPi, viewed as a sub-
stream. Define#i∈[0,m)AP

i as the inverse (recombination) operator, so, for example,A = #i∈[0,m)AP
i or,

briefly,A = #AP
i .

Definition 10 Given a streamA and vectorw′ of rounded weights, define the partitionP of [0, N) as
follows: For eachi ∈ [0, N), if w′

i = wj , put i into thej’th group. LetHi be a(B, ε)-robust representation
for AP

i . DefineHr to be#Hi.

Lemma 11 The representationHr is a (B, ε)-robust representation toA, under weightw′.

Lemma 12 There are two constantsc1 andc2, s.t.,Hr can be computed inc1N +
(

B log N log M
ε

)c2
time.

Note that we need constant time per item to multiplex each data item in the original stream into the
corresponding substream, according toP. We then run an algorithm on each substream that takes time

linear plus
(

B log N log M
ε

)c2
. Since the substreams’ total length isN , the result follows.

We use an arraySi to store eachHi in the form(wi : h1, l1, h2, l2 · · · , hB′ , lB′), wherehi is the height

andli is the right boundary. By lemma 3,Hr has someB′ ≤
(

B log N log M
ε

)O(1)
buckets. Thus, on inputj,

we can findHr[j] in timeO(log(B′)) by using a simple index structure. (Other data structures are possible.)

Lemma 13 GivenHr, there is an algorithm that takes as input parametersp, B′, N , andM and histogram
Hr = #Hi equal to the#-combination ofp B′-bucket histograms with respect to a partitionP, and, on
query[i, j), computes the best heighth toHr on the interval[i, j) and the associated error

∑
k∈[i,j) |Hr[k]−

h|2. The algorithm’s runtime is at most the time to performO(pB′) symbol-range-count queries.

(Recall that a simple symbol-range-count structure requires preprocessing time and spaceO(N) and
supports queries in constant time.)

3.3 Histogram extracted from robust representation

As in [10], our strategy is to compute a nearly-optimal representationH to Hr and show that it is also nearly
optimal forA.

Lemma 14 Fix a signalA with rounded weightw′, and letHr be a(B, ε)-robust approximation toA under
weightw′. LetH be aB-bucket(1 + ε)-nearly optimal histogram forHr. Then

‖A−H‖2
w′ ≤ (1 + O(ε))‖A−H′

opt‖2
w′

whereH′
opt is the optimalB-bucket representation toA under weightw′.

Now we consider efficient computation ofH.

Lemma 15 Given parametersB,N, M, p, w′, andε, and robust representationsH1, · · · ,Hp of lengthN

with each‖Hi‖ ≤ M , using a symbol-range-count structure with query time in
(

B log N log M
ε

)O(1)
, and

O(B2/ε) additional space, we can output aB-bucket representationH in
(

B log N log M
ε

)O(1)
time, with

‖Hr −H‖2
w′ ≤ (1 + ε)‖Hr − Ĥ‖2

w′

whereĤ is the bestB-bucket representation toHr.
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3.4 Main Results, Stored Weights

Thus we have, using a simple symbol-range-count structure,

Theorem 16 There is an algorithm that, given parametersB, N , M , ε, weight vectorw, preprocessw in
time (and space)O(N), reads dataA with ‖A‖2

w ≤ M in time series, then outputs aB-bucket histogram
H with ‖A − H‖2

w ≤ (1 + O(ε))‖A − Hopt‖2
w, whereHopt is the best possibleB-bucket histogram

representation toA under weightw. The algorithm uses space
(

B log N log M
ε

)O(1)
in addition to the space

associated withw (independent of the input). The algorithm uses timeO(N) to read the stream of data and

post-processing time
(

B log N log M
ε

)O(1)
to buildH.

4 Streaming Data

In this section, we consider dynamic or “turnstile” data. Specifically, we are presented with a stream of
updates of the form(i, v), meaning, “addv to A[i].” (Here v may be positive or negative.) We have the
following from [8]:

Lemma 17 For parametersN,M,B, εr, there is a randomized data structure for an arrayA that requires

space
(

B log N log M
ε

)O(1)
and supports the following operations in time

(
B log N log M

ε

)O(1)
(some only with

overwhelming probability):

• update: Addv to A[i]

• build: Build a robust representation to the then-current datasetA with respect to the uniform work-
load.

Thus we immediately have:

Theorem 18 For parametersN,M,B, ε, there is a randomized data structure for an arrayA that prepro-

cesses a workloadw in time and spaceO(N), requires additional space
(

B log N log M
ε

)O(1)
, and supports

the following operations in time
(

B log N log M
ε

)O(1)
(some only with overwhelming probability):

• update: Addv to A[i]

• build: Build a (1 + ε)-near optimal histogram with respect to the then-current datasetA, under
workloadw.

5 Lower Bounds

It is easy to see that a histogram algorithm that first reads the data and then is given a workload must store
all the data, since the choice of workload and histogram approximation criterion can force the algorithm to
recover any data item exactly. A similar bound can be shown if we read the workload first. Above we
showed that, to get a(1 + ε)-factor approximation, one can round weights to a power of(1 + ε). We now
show that, in a sense, this is the only kind of lossy compression that is possible.
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Theorem 19 Suppose an algorithm reads and processes a workload of lengthN and boundM into an
objects of size|s|, then discards everything about the workload excepts, then reads time series data. If, for
any workload, any data, and any sufficiently smallε > 0, the algorithm produces, with probability� 1/2,
a (1 + ε)-approximation to the best 3-bucket histogram, then the algorithm can be used as a subroutine to
store any value from a vector of positive integer entries bounded byM/4, of length≈ N , up to the factor
(1 + O(ε)).

6 Compressed Weights

In the previous section, we showed that lossy compression of the workload beyond rounding is not possible,
even information-theoretically. In this section, we consider efficient algorithms for manipulating losslessly
compressed workloads of rounded weights. We consider principally two types of compression, run-length
encoding and Lempel-Ziv-78. Our goal in this section is to build a symbol-range-count structureR to match
the given compression scheme. That is, if the compressed textC(w′) has size|C(w′)|, then, ideally, we want
to build R with preprocessing timeO(|C(w′)|), we want|R| ≤ O(|C(w′)|), and we want symbol-range-

count queries to be as quick as possible—plausible guarantees are
(

B log N log M
ε

)O(1)
or some function of

the compressed string. Thus, the challenge is to beopportunisticand design data structures bounded in
size by|C(w′)|. We also discuss buildingR′ of size |R′| < o(|C(w′)|) such thatR′ andC(w′) together
constitute a symbol-range-query structure. This has the advantage that the total size|R| can be compared
directly to|C(w′)|, without giving up any constant factors; this is useful if, say,|C(w′)| = |w′|/100.

6.1 Run-length Encoding

A run of a sequence is a maximal substring that uses just a single character. Run-length encoding is a simple
scheme whereby each run is replaced by a single copy of the character used and the length of the run. We’ll
denote the run-length encoding of the rounded workloadw′ by C(w′) and its length by|C(w′)|.

Next, consider building a symbol-range-count structure to match the run-length encoding bound. It
is easy to see that the run-length encodingC(w′) itself lets us recoverw′

j in constant time for queries
j = 0, 1, 2, . . . , N − 1 in order. For allj < N , we can recover the number ofk < j such thatw′

k = w′
j in

time polynomial in|C(w′)|. For some workloads,|C(w′)| is so small that this straightforward approach is
reasonable. For example, theoretically,|C(w′)| can be constant-sized. Alternatively, in some applications,
the workload is monotonic, so that more recent data is queried more often than older data. In that case, there
is exactly one run per rounded weight, so|C(w′)| = log(M)/ε, which is often small.

In other situations, however,|C(w′)| is larger, and we would want to do better in terms of symbol-
range-count query time. First, for anyj, we can find, in timeO(log(|C(w′)|), the run containingj by using
an index structure of size|C(w′)|. (The classic van Emde Boas data structure [28] for the “predecessor
query” improves this time toO(log log(N)).) Then store, at each runr, for all possible rounded weights
v, the number ofk’s preceding the run such thatw′

k = v. Unfortunately, the space requirement for this is
O(|C(w′)| log(M)/ε), which is (theoretically) unacceptable. A simple alternative is to store these statistics
only for one out of everylog(M)/ε runs, so the space is now acceptablyO(|C(w′)|). The query time is
now log(M)/ε rather than constant time, but this multiplies (and, therefore, blends into) the comparable
expression(B log(N) log(M)/ε)O(1). We call this technique “decimated statistics.” Finally, we note that
one can smoothly tradeoff query time and additional space. That is, one can store statistics somewhat more
sparsely than one out of everylog(M)/ε runs, getting an auxiliary structureR′ of size|R′| < o(|C(w′)|).
The other index structures can similarly be decimated appropriately. Thus we have:
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Theorem 20 Given a vectorw′ over an alphabetΣ (here, of rounded weights) with run-length encoding
C(w′), one can, in timeO(|C(w′)|), construct anR′ of size|R′| < o(|C(w′)|), such thatC(w′) together
with R′ constitute a symbol-range-count structure with query time(log(N)|Σ|)O(1).

6.2 Lempel-Ziv

In this section, we consider the Lempel-Ziv algorithm. Opportunistic data structures are known for indexing
a string for full-text substring queries [6], but no previous results are known for our problem of supporting
the symbol range-count query. The results of this section may of interest separately in database and string
processing.

We are given a stringS[1, ..., N ], with eachS[i] in alphabet set of sizem given by {1, 2, ...,m}.
We compressS using Lempel-Ziv algorithm, denotedLZ78 , which works as follows. SayS[1, ..., i]
has been compressed; a dictionaryD of tuples(dk, lk) would have been constructed thus far with each
dk = S[lk, . . . , lk + |dk| − 1]. The algorithm iteratively proceeds by finding the longest prefixS[i + 1, .., j]
that equals somedk, compressingS[i + 1, ..., j + 1] as(lk, |dk|, S[j + 1]), adding(S[i + 1, ..., j + 1], i + 1)
to D and continuing. Each such step is called a “parse” and the number of parses is directly related to the
size of the compressed representationC(S) of S upto constant factors. Hereafter, we will let|C(S)| be the
number of such parses, as is standard in the string compression area, without being specific about how to
code each(lk, |dk|, S[j + 1]) in smallest number of bits.

There are many variants of this basic method, depending on whether windowing is used, whetherS[i +
1, ..., j] andS[lk, ..., l+k+ |dk|−1] may overlap or not, how the parses are encoded using bits, etc. We will
focus on the basic version above and our results will hold for these other variants as well. A significantly
different variant is theLZ77 [29] algorithm in which we add all substrings ofS[i + 1, .., j] to D. This leads
to largerD and hence, fewer parses and smallerC(S). Our algorithm in this section will work with the
LZ77 compression method as well, but we omit the details in this extended abstract.

Theorem 21 A stringS given in itsLZ78 compressed formC(S) can be preprocessed in time and space
O(|C(S)|). A symbol range-count query(i, j, α) can be answered in timeO(|C[i, j]| log log N) where
|C[i, j]| is the number ofLZ78 parses overlapping[i, j].

Finally, we note that the decimated statistics technique applies also toLZ78 and to other dictionary/trie
compression techniques. We need to store decimated statistics for prefixes of rounded weights within parses
and also for prefixes of parses within the text. We also need to decimate the level-ancestor algorithm and
other indices.2

This result is incomparable with Theorem 21, since Theorem 21 gives query time|C[i, j]| log log(N)
for range[i, j] whereas the decimation technique gives time polynomial inlog(M)/ε; either of these may
be bigger than the other. We note, however, that, in the context of our algorithm, we will query on a set
of ranges[i, j] that (several times) cover[0, N), so every parse gets touched. Since the minimum number
of parses inLZ78 is

√
N , it follows that the overall contribution to the runtime of Theorem 21 is at least√

N . Also note that the decimation technique appears to be the only technique that works for certain other
dictionary/trie compression schemes, likeLZ77 .

The decimated statistics technique can also be used withLZ78 to give sublinear auxiliary space cost.
That is:

2Note that, in our context, we can accept query time(log(N) log(M)/ε)O(1), so level-ancestor and predecessor algorithms can
be implemented in a manner that is much more straightforward than some of the optimal implementations. No new data structure
is needed beyond basic engineering.
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Theorem 22 Given vectorw′ over alphabetΣ with LZ78 C(w′) under a plausible implementation, one
can, in timeO(|C(w′)|), construct anR′ of size|R′| < o(|C(w′)|), such thatC(w′) together withR′

constitute a symbol-range-count structure with query time(log(N)|Σ|)O(1).

7 Concluding Remarks

We have shown, for the first time, given a data set of lengthN and boundM , how to build a(1 + ε)-
near optimalB-bucket histogram that is provably nearly optimal with respect to a non-uniform workload

also bounded byM , where the algorithm runs in nearly linear timec1N +
(

B log N log M
ε

)c2
and space(

B log N log M
ε

)O(1)
beyond what is needed to store the workload. This algorithm generalizes to the dynamic

additive update model. For both time-series and addtive update models, our time and space costs are com-
parable to those for the uniform workload. We have also shown that lossy compression of the workload is
not possible beyond rounding to within the factor(1 + ε). Finally, we show how to improve the space cost
to essentially the space used to compress losslessly the rounded workload by either run-length encoding or
the Lempel-Ziv algorithm.

Many open problems remain in the area of tracking synopsis such as the histograms taking the workload
into account. For example, a natural problem is to extend our work to two and higher dimensionalA’s.
STholes is a known heuristic for multidimensional histograms that are workload-aware [4], but it will be of
interest to study the complexity of this problem. Another natural problem is to not consider the workload on
point queries alone, but also consider the workload onrange queries. Database research such as [19, 5] has
considered using range query workload to refine histograms; [21] has recently proposed changing the Haar
basis to be workload-aware and findB-term wavelet synopsis for range workloads. Again, these results do
not provide any theoretical guarantees on complexity and accuracy of the problem of computingHopt for
range workloads, and provable results are of our interest. Foruniformworkload over the range queries, see
results in [23] for the rangesum histogram problem.
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A Appendix—Proofs

Lemma 6Fix a singleA of dimensionN . Then‖A−H′
opt‖2

w ≤ (1 + ε)‖A−Hopt‖2
w , whereHopt is the

optimalB bucket representation toA under weightw, andH′
opt is the optimalB bucket representation to

A under weightw′.

Proof. We have

‖A−H′
opt‖2

w =
N∑

i=1

[Ai −H′
opt(i)]

2wi

≤ (1 + ε)
N∑

i=1

[Ai −H′
opt(i)]

2w′
i

≤ (1 + ε)
N∑

i=1

[Ai −Hopt(i)]2w′
i

≤ (1 + ε)
N∑

i=1

[Ai −Hopt(i)]2wi

= (1 + ε)‖A−Hopt‖2
w.

Lemma 11The representationHr is a (B, ε)-robust representation toA, under weightw′.

Proof. The proof is derived from the definition of robustness.
Given scalarsa andb and aB-bucket representationHB, multiplex aHr + bHB into p sub-streams

H∗
1, · · · ,H∗

p, based on the partitionP derived fromw′. Notice that the boundaries of eachH∗
i will fall in

the boundaries of correspondingHi and no more thanB − 1 additional boundaries respectively, since the
representationHB itself takes no more thanB − 1 additional boundaries. According to the definition of
robustness with respect to uniform workloads, we have for thei’th stream:

‖AP
i −H∗

i ‖2 ≥ (1− ε)‖AP
i −Hi‖2

By scaling, we have for thei’th stream:

(1 + ε)i−1‖AP
i −H∗

i ‖2 ≥ (1− ε)(1 + ε)i−1‖AP
i −Hi‖2.

By summing the inequalities for all the sub-streams together, we have

‖A−H∗‖2
w′ ≥ (1− ε)‖A−Hr‖2

w′

SoHr is a(B, ε)-robust representation toA under weightw′.

Lemma 13GivenHr, there is an algorithm that takes as input parametersp, B′, N , andM and histogram
Hr = #Hi equal to the#-combination ofp B′-bucket histograms with respect to a partitionP, and, on
query[i, j), computes the best heighth toHr on the interval[i, j) and the associated error

∑
k∈[i,j) |Hr[k]−

h|2. The algorithm’s runtime is at most the time to performO(pB′) symbol-range-count queries.
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Figure 1: Illustration of histograms in Lemma 14. By optimality ofHr, there are near right angles as
indicated.
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Proof. Letwsum =
∑j

k=i w
′
k. Define a random variableX by lettingX = Hr[k] with probability

w′
k

wsum
, for

k ∈ [i, j) at random. ThenE[X] = h is the height of the optimal one-bucket representation toHr between

i andj. Therefore,h =
Pj

k=i w′
kHr[k]Pj

k=i(w
′
k)

=
Pj

k=i w′
kHr[k]

wsum
.

Note that all the data in one bucket of a robust representation in each streami have the same rounded
weight and the same height inHr. So we will break[i, j) into p substreams and at mostB′ buckets from
the correspondingHi. For each such bucket, we need to make a single symbol-range-count query.

Computing the error,
∑j

k=i w
′
k(Hr[k]− h)2, is similar.

Lemma 14Fix a signalA with rounded weightw′, and letHr be a(B, ε)-robust approximation toA under
weightw′. LetH be aB-bucket(1 + ε)-nearly optimal histogram forHr. Then

‖A−H‖2
w′ ≤ (1 + O(ε))‖A−H′

opt‖2
w′

whereH′
opt is the optimalB-bucket representation toA under weightw′.

Proof. Extend the proof from [8, 10] under uniform weight to weightw′. Notice that, the proof under
uniform weight uses robustness, the triangle inequality and the Pythagorean theorem.3 Since all these prop-
erties hold under weightw′, we can get the above result. Roughly speaking, the linear robustness property
insures that there is are near-right angles atA-Hr-Hopt andA-Hr-H. Since the legA-Hr is the same in
the two triangles and sinceH-Hr is shorter thanHopt-Hr, it follows thatH-A is not much longer than
Hopt-A. See Figure 1.

Lemma 15Given parametersB,N, M, p, w′, andε, and robust representationsH1, · · · ,Hp of lengthN

with each‖Hi‖ ≤ M , using a symbol-range-count structure with query time in
(

B log N log M
ε

)O(1)
, and

O(B2/ε) additional space, we can output aB-bucket representationH in
(

B log N log M
ε

)O(1)
time, with

‖Hr −H‖2
w′ ≤ (1 + ε)‖Hr − Ĥ‖2

w′

3In this context, the Pythagorean Theorem says that if〈C−A,B−A〉w = 0, then‖C−B‖2
w = ‖C−A‖2

w + ‖B−A‖2
w.

The vectorsC−A andB−A have a near-right angle if〈C−A,B−A〉w ≤ εO(1) ‖C−A‖ ‖B−A‖.
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whereĤ is the bestB-bucket representation toHr.

Proof. Our proof is as in [10] (similar to [12, 11]), so we give just a brief sketch. We use dynamic pro-
gramming to get aB-bucket representationH to Hr. First assume that we know an approximationE to the
optimal errorEopt, satisfyingEopt ≤ E ≤ 2Eopt, whereEopt = ‖Hr − Ĥ‖2

w′ , andĤ is the optimal rep-
resentation toHr under weightw′. DefineFar[j, l] to be a positionx such that somej-bucket histogram on
[0, x) has error at most(`+j+1) ε

2B E but noj-bucket histogram on[0, x+1) has error at most(`+j) ε
2B E.

We build aO(B2/ε)-sized tableT to store the information, for eachj ≤ B and eachl ≤ O(B/ε). For each
entry ofT , we compute:

T [j][l] = Far[j, l] = max
l1+l2=l+1

x : cost(Far[j − 1, l1], x) ≤ l2

wherecost(l, r) is the difference ofHr and the optimal one-bucket representation between indexl and index
r to it under weightw′.

For some optimal histogram, letej be the error in thej’th bucket, and letmj = dej ∗ 2B/(εE)e. Then,
inductively, our dynamic program will do at least as well as using error boundmj

ε
2B E for thej’th bucket,

which means the boundaries it finds will all be equal to or to the right of the corresponding boundaries in
the optimal histogram. The overall error is suboptimal byε

2B E per bucket, which is at mostεEopt overall.
Thus the overall error is(1 + ε)Eopt, as desired.

Note that, given1 ≤ Eopt ≤ M , we could use O(log log M ) time to find properE by binary search.

Theorem 19Suppose an algorithm reads and processes a workload of lengthN and boundM into an
objects of size|s|, then discards everything about the workload excepts, then reads time series data. If, for
any workload, any data, and any sufficiently smallε > 0, the algorithm produces, with probability� 1/2,
a (1 + ε)-approximation to the best 3-bucket histogram, then the algorithm can be used as a subroutine to
store any value from a vector of positive integer entries bounded byM/4, of length≈ N , up to the factor
(1 + O(ε)).

Proof. Suppose we are given a vectorv of entries bounded byM/4, of lengthN − log(M)/ε. Construct a
workload as follows. The firstO(log(M)/ε) values are all the powers of(1 + ε), in order, called “reference
values.” The next value is equal toM . Finally, the lastN − log(M)/ε values are the original vector. Run
the first part of the algorithm on this workload, producings.

Our goal now is to recover anyvj from s andj. To do this, consider the data that is all zeros except for a 1
at a position corresponding to a reference workload value of(1+ε)k and another 1 at position corresponding
to vj . If vj > (1+ ε)k+1, then the best 3-bucket histogram getsvj right and is zero everywhere else (getting
the 1 at reference position(1 + ε)k wrong). Similarly, ifvj < (1 + ε)k−1 the best 3-bucket histogram gets
vj wrong and(1 + ε)k right. It follows that we can learnvj up to the factor(1 + ε)2 = (1 + O(ε)).

Theorem 21A stringS given in itsLZ78 compressed formC(S) can be preprocessed in time and space
O(|C(S)|). A symbol range-count query(i, j, α) can be answered in timeO(|C[i, j]| log log N) where
|C[i, j]| is the number ofLZ78 parses overlapping[i, j].

Proof. We sketch our solution. First, we make a few observations about the dictionaryD. In particular,
focus on thedk’s. Notice that each newdk that is added toD is one symbol longer than a differentd′k ∈ D.
For example, whenS[i + 1, ..., j + 1] is added toD in the description of the algorithm above,S[i + 1, ..., j]
is already inD. Hence, the set of alld′k in D can be arranged as a rooted trie with the internal nodes labeling
the indexk; the edge from nodek′ to k is marked with the additional symbol ink. We label this trie asT .
The size ofT is proportional to the number of tuples inD, which we denote|T | = |D| and in fact, it is easy
to observe that|T | = |C(S)|, too.
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Our algorithm is as follows. Consider the parses that overlap[i, j] and denote their number by|C(i, j)|.
There may be a left boundary parse[l1, l2] with l1 < i and i < l2 < j; likewise, there may be a right
boundary parse[r1, r2] with i < r1 < j andj < r2. The remainder of the parses are central with both their
endpoints inside[i, j]. For each central parse, we will compute the number of occurrences ofα’s in it. For
the right boundary[r1, j], we note that since[r1, r2] is in D, then so must be[r1, j] sinceD has the property
that all the proper prefixes of adk in D are also inD. Given the pointer to the node that stands for[r1, r2],
in O(1) time one can get the node that stands for[r1, j] using the level ancestors algorithm [3]. We can
now treat the right boundary as the parse[r1, j]. A similar trick doesnot work for the left. We need to find
the number of occurrences ofα’s in [i, l2], but while [l1, l2] is a parse,[i, l2] need not be becauseD is not
suffx-closed, ie.,dk in D does not imply that all its suffixes are inD. We do a simple trick here: we count
the number ofα’s in [i, l2] as that in[l1, l2] minus that in[l1, i − 1] both of which are parses inD because
we are given that[l1, l2] is, and the other is its prefix. Thus the overall algorithm is to consider each of these
parses, at most|C[i, j]|+ 1 of them, and find the number ofα’s in each such substring.

We now focus on finding the number ofα’s in a given parse. We need a few definitions. DefineTα to be
the induced subtree ofT on edges labeledα; i.e., for any(x, y) labeledα with x the parent ofy, connectx
to v if v is the closest ancestor ofx in T such that(u, v) is labeledα andu is the parent ofv. It is clear that
Tα’s partition the edges ofT and hence their total size isO(|T |). We preprocess eachTα to answer Least
Common Ancestor (LCA) queries between any two nodes inO(1) time as in [13]. Also, we preprocessTα

so that for each nodev, we know its depthd(v) in Tα or equivalently the number ofα’s on the path from
to the root tov. Also, we preprocessT by constructing an Euler tour (in-order traversal of the tree but we
explicitly write down the node ID each time we visit it), writing down in an arrayE the sequence of node
IDs that are encountered as well as the symbol on the edge leading to that node. It is easy to see that each
nodeu in T has a leftmost and a rightmost position inE corresponding to the first and the last timeu was
visited; we denote these asLu andRu resp.

We can think of the query as countingα’s labeling edges on the path inT from the root to the nodeu
given by that parse. We do not want to spend time linear in the length of the parse because that is prohibitive.
Our approach is to find the deepest edge(x, y) on the path tou that is labeledα. Then, we would be able
to read offd(y) that has been precomputed. We find the edge(x, y) as follows. We determine the closest
occurrencea of α on the Euler tour to the left ofLu. Similarly, we determine the closest occurrenceb of
α to the right ofR(u). Each of this takesO(log log N) time using the van Emde Boas structure. Now our
central claim is:LCA(a, b) in Tα givesy for u. The proof involves case analyis which we omit here.

Theorem 22Given vectorw′ over alphabetΣ with LZ78 C(w′) under a plausible implementation, one can,
in timeO(|C(w′)|), construct anR′ of size|R′| < o(|C(w′)|), such thatC(w′) together withR′ constitute
a symbol-range-count structure with query time(log(N)|Σ|)O(1).

Proof. The proof assumes thatC(w) itself supports the following operations:

• Given a pointer into the decompression trie, find a pointer to the parent in timeO(1).

• Given a trie noden that corresponds to the end of some parseπ, find, in timeO(1), the node that
corresponds to the end of the next parse.

These are plausible assumptions about aLZ78 implementation. We omit the details of the algorithm engi-
neering involved in decimation.
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