
1 Unequal Divide and Conquer (revised from last time)

1.1 Guidelines

In these problems, you are not required to find c and n0 and prove the result by induction. It is sufficient
to give a proof that appeals to results in the chapter. For example, you can say, without further comment,
“5n2 + 7n ≤ O(n2)” or “

∑n
j=1 j3 = Θ(

∫ n

0
x3 dx) = Θ(n4)” or “a k-ary tree with height h has Θ(kh) leaves

and nodes” (k > 1). In fact, I’d prefer that you get some practice in this “bigger picture” way of thinking,
and not always get bogged down with induction details.

1.2 The Problem

Exercises CLRS 4.2-4 and CLRS 4.2-5 illustrate that, if we use a divide-and-conquer approach to a problem,
it is typically better to divide the problem into nearly equal-sized subproblems. The above and the last
example of CLRS Section 4.2 also illustrate that it is not necessary that the subproblems be exactly the
same size.

We now switch from analyzing to designing algorithms. Given a problem of size n, we will break it into
two problems, of size a(n) and n− a(n), where a(n) is a “common” function satisfying 1 ≤ a(n) ≤ n/2. We
assume the Divide and Recombine cost is linear, so we have recurrence

T (n) = T (a(n)) + T (n− a(n)) + cn.

All other things being equal, we’d want a(n) = n/2 to minimize T (n). But sometimes there is a separate
(direct or indirect) cost involved in making a(n) exactly n/2 and it’s easier to choose other a()’s. Below we
investigate which a()’s are acceptable while still meeting certain overall cost requirements. Problem:

• How slowly-growing can a(n) be and still make T (n) ≤ O(n log2(n))?

Restrict attention to functions of the form nr(log(n))s, where r and s are constant real numbers, and you
only need to find s up to 1, additively. That is, your answer should be numbers r and s with

nr(log(n))s ≤ a(n) ≤ nr(log(n))s+1.

(If you’ve already found exactly the right s, please turn it in, but don’t attempt this if you haven’t started.)

2 Solution

First we show that, if a(n) = n/ log(n), then the requirement T (n) ≤ O(n log2(n)) is satisfied. That is,
T (n) ≤ O(n log2(n)). To do this, we show that the height of the recursion tree (longest path from root
to leaf) is at most O(log2(n)). Each level of the recursion tree contributes at most cn, so the total cost is
O(n log2(n)).

Write b(n) = a(n)/n, so that b(n) = 1/ log(n). The recurrence becomes

T (n) = T (nb(n)) + T (n(1− b(n))) + cn.

The longest path in the recurrence tree occurs along the n → n(1− b(n)) split (the “right spine” of the
tree). Along this path, let mi denote the size of the problem at depth i, so that mi+1 = mi(1− b(mi)), i.e.,

m0 = n

m1 = n(1− b(m0)) = n(1− b(n))
m2 = n(1− b(m1)) = n(1− b(n(1− b(n))))

...

1



We first consider i with n/2 ≤ mi ≤ n. Because

1
log(n)

= b(n) ≤ b(mi) ≤ b(n/2) =
1

log(n)− 1
≤ 2

log(n)
,

we get simplified expressions for mi, namely, mi(1 − 2/ log(n)) ≤ mi+1 ≤ mi(1 − 1/ log(n)), or solving the
simple recurrence,

n(1− 2/ log(n))i = m0(1− 2/ log(n))i ≤ mi+1 ≤ m0(1− 1/ log(n))i = n(1− 1/ log(n))i.

Using the approximation 1+x ≈ ex if |x| is small, we get mi = neΘ(i/ log(n)). If mi is deepest, mi ≈ n/2,
we need eΘ(i/ log(n)) ≈ 1/2, which happens at i = Θ(log(n)). In particular, we need that there is some
constant c1 such that, for i ≥ c1 log(n), we have mi ≤ n/2.

By repeating the process on mi instead of m0 = n, we get that, after log(mi) additional levels in the tree,
the problem size drops by half again, to mi/2 ≤ n/4. After log(n) repetitions of n 7→ n/2, we have reduced
the problem size to 1. Since all the mi’s are at most n, the length of this path is log2(n). This is what we
needed to show.

Next, we show that if T (n) = T (n/ log2+ε(n)) + T (n(1− 1/ log2+ε(n))) + cn, then T (n) > ω(n log2(n)).
Using an argument similar to the above, let mi be the size of the largest problem at depth i in the recursion
tree. If mi ≈ n/2, then i ≥ Ω(log2+ε(n)), using an argument similar to the above. Each problem along the
right spine at depth less than i has size at least n/2, which gives a total cost of Ω(n log2+ε(n)).

Thus it follows that a(n) = n/ log(n) or faster growing gives T (n) ≤ O(n log2(n)) and a(n) = nlogs(n)
for s < −2 gives T (n) > ω(n log2(n)). So r = 1 and −2 ≤ s ≤ −1.

Note: It is not necessarily the case that there is a slowest-growing function a(n) = nr logs(n) that
satisfies the requirement. There could be some s′ such that n logs′

(n) grows too slowly but, for any s > s′,
the requirement is satisfied. For a simpler example of this phenomenon, suppose we insist that s = −3 and
ask about r. We know that a(n) = n/ log3(n) will not satisfy the requirement but for any slower-growing
function n1−ε/ log3(n), i.e., for any ε > 0, the requirement will be satisfied.

In this case, s < −1 gives T (n) > ω(n log2(n)), so the answer is r = 1 and s = −1, i.e., a(n) = n/ log(n).

2


