1 Unequal Divide and Conquer (revised from last time)

1.1 Guidelines

In these problems, you are not required to find c and n_0 and prove the result by induction. It is sufficient to give a proof that appeals to results in the chapter. For example, you can say, without further comment, "$5n^2 + 7n \leq O(n^2)$" or $\sum_{j=1}^{n} j^3 = \Theta\left(\int_{0}^{n} x^3 \, dx\right) = \Theta(n^4)$" or "a k-ary tree with height h has $\Theta(k^h)$ leaves and nodes" ($k > 1$). In fact, I’d prefer that you get some practice in this “bigger picture” way of thinking, and not always get bogged down with induction details.

1.2 The Problem

Exercises CLRS 4.2-4 and CLRS 4.2-5 illustrate that, if we use a divide-and-conquer approach to a problem, it is typically better to divide the problem into nearly equal-sized subproblems. The above and the last example of CLRS Section 4.2 also illustrate that it is not necessary that the subproblems be exactly the same size.

We now switch from analyzing to designing algorithms. Given a problem of size n, we will break it into two problems, of size $a(n)$ and $n - a(n)$, where $a(n)$ is a “common” function satisfying $1 \leq a(n) \leq n/2$. We assume the Divide and Recombine cost is linear, so we have recurrence

$$T(n) = T(a(n)) + T(n - a(n)) + cn.$$

All other things being equal, we’d want $a(n) = n/2$ to minimize $T(n)$. But sometimes there is a separate (direct or indirect) cost involved in making $a(n)$ exactly $n/2$ and it’s easier to choose other $a()$’s. Below we investigate which $a()$’s are acceptable while still meeting certain overall cost requirements. Problem:

- How slowly-growing can $a(n)$ be and still make $T(n) \leq O(n \log^2(n))$?

Restrict attention to functions of the form $n^r(\log(n))^s$, where r and s are constant real numbers, and you only need to find s up to 1, additively. That is, your answer should be numbers r and s with

$$n^r(\log(n))^s \leq a(n) \leq n^r(\log(n))^{s+1}.$$

(If you’ve already found exactly the right s, please turn it in, but don’t attempt this if you haven’t started.)

2 Solution

First we show that, if $a(n) = n/\log(n)$, then the requirement $T(n) \leq O(n \log^2(n))$ is satisfied. That is, $T(n) \leq O(n \log^2(n))$. To do this, we show that the height of the recursion tree (longest path from root to leaf) is at most $O(\log^2(n))$. Each level of the recursion tree contributes at most cn, so the total cost is $O(n \log^2(n))$.

Write $b(n) = a(n)/n$, so that $b(n) = 1/\log(n)$. The recurrence becomes

$$T(n) = T(nb(n)) + T(n(1 - b(n))) + cn.$$

The longest path in the recurrence tree occurs along the $n \rightarrow n(1 - b(n))$ split (the “right spine” of the tree). Along this path, let m_i denote the size of the problem at depth i, so that $m_{i+1} = m_i(1 - b(m_i))$, i.e.,

$$
\begin{align*}
m_0 &= n \\
m_1 &= n(1 - b(m_0)) = n(1 - b(n)) \\
m_2 &= n(1 - b(m_1)) = n(1 - b(n(1 - b(n)))) \\
&\vdots
\end{align*}
$$
We first consider \(i \) with \(n/2 \leq m_i \leq n \). Because

\[
\frac{1}{\log(n)} = b(n) \leq b(m_i) \leq b(n/2) = \frac{1}{\log(n) - 1} \leq \frac{2}{\log(n)},
\]

we get simplified expressions for \(m_i \), namely, \(m_i(1 - 2/\log(n)) \leq m_{i+1} \leq m_i(1 - 1/\log(n)) \), or solving the simple recurrence,

\[
n(1 - 2/\log(n))^i = m_0(1 - 2/\log(n))^i \leq m_{i+1} \leq m_0(1 - 1/\log(n))^i = n(1 - 1/\log(n))^i.
\]

Using the approximation \(1 + x \approx e^x \) if \(|x|\) is small, we get \(m_i = ne^{\Theta(i/\log(n))} \). If \(m_i \) is deepest, \(m_i \approx n/2 \), we need \(e^{\Theta(i/\log(n))} \approx 1/2 \), which happens at \(i = \Theta(\log(n)) \). In particular, we need that there is some constant \(c_1 \) such that, for \(i \geq c_1 \log(n) \), we have \(m_i \leq n/2 \).

By repeating the process on \(m_i \) instead of \(m_0 \), we get that, after \(\log(m_i) \) additional levels in the tree, the problem size drops by half again, to \(m_i/2 \leq n/4 \). After \(\log(n) \) repetitions of \(n \mapsto n/2 \), we have reduced the problem size to 1. Since all the \(m_i \)'s are at most \(n \), the length of this path is \(\log^2(n) \). This is what we needed to show.

Next, we show that if \(T(n) = T(n/\log^{2+\epsilon}(n)) + T(n(1 - 1/\log^{2+\epsilon}(n))) + cn \), then \(T(n) > \omega(n\log^2(n)) \). Using an argument similar to the above, let \(m_i \) be the size of the largest problem at depth \(i \) in the recursion tree. If \(m_i \approx n/2 \), then \(i \geq \Omega(\log^{2+\epsilon}(n)) \), using an argument similar to the above. Each problem along the right spine at depth less than \(i \) has size at least \(n/2 \), which gives a total cost of \(\Omega(n\log^{2+\epsilon}(n)) \).

Thus it follows that \(a(n) = n/\log(n) \) or faster growing gives \(T(n) \leq O(n\log^2(n)) \) and \(a(n) = n\log^s(n) \) for \(s < -2 \) gives \(T(n) > \omega(n\log^2(n)) \). So \(r = 1 \) and \(-2 \leq s \leq -1 \).

Note: It is not necessarily the case that there is a slowest-growing function \(a(n) = n^r \log^s(n) \) that satisfies the requirement. There could be some \(s' \) such that \(n\log^{s'}(n) \) grows too slowly but, for any \(s > s' \), the requirement is satisfied. For a simpler example of this phenomenon, suppose we insist that \(s = -3 \) and ask about \(r \). We know that \(a(n) = n/\log^3(n) \) will not satisfy the requirement but for any slower-growing function \(n^{1-\epsilon}/\log^3(n) \), i.e., for any \(\epsilon > 0 \), the requirement will be satisfied.

In this case, \(s < -1 \) gives \(T(n) > \omega(n\log^2(n)) \), so the answer is \(r = 1 \) and \(s = -1 \), i.e., \(a(n) = n/\log(n) \).