
Abstract
On-chip caches represent a sizable fraction of the total

power consumption of microprocessors. Although large
caches can significantly improve performance, they have
the potential to increase power consumption. As feature
sizes shrink, the dominant component of this power loss will
be leakage. However, during a fixed period of time the activ-
ity in a cache is only centered on a small subset of the lines.
This behavior can be exploited to cut the leakage power of
large caches by putting the cold cache lines into a state pre-
serving, low-power drowsy mode. Moving lines into and out
of drowsy state incurs a slight performance loss. In this
paper we investigate policies and circuit techniques for
implementing drowsy caches. We show that with simple
architectural techniques, about 80%-90% of the cache lines
can be maintained in a drowsy state without affecting per-
formance by more than 1%. According to our projections, in
a 0.07um CMOS process, drowsy caches will be able to
reduce the total energy (static and dynamic) consumed in
the caches by 50%-75%. We also argue that the use of
drowsy caches can simplify the design and control of low-
leakage caches, and avoid the need to completely turn off
selected cache lines and lose their state.

1. Introduction
Historically one of the advantages of CMOS over com-

peting technologies (e.g. ECL) has been its lower power
consumption. When not switching, CMOS transistors have,
in the past, consumed negligible amounts of power. How-
ever, as the speed of these devices has increased along with
density, so has their leakage (static) power consumption. We
now estimate that it currently accounts for about 15%-20%
of the total power on chips implemented in high-speed pro-
cesses. Moreover, as processor technology moves below 0.1
micron, static power consumption is set to increase expo-
nentially, setting static power consumption on the path to
dominating the total power used by the CPU (see Figure 1).

Various circuit techniques have been proposed to deal
with the leakage problem. These techniques either com-
pletely turn off circuits by creating a high-impedance path
to ground (gating) or trade off increased execution time for
reduced static power consumption. In some cases, these
techniques can be implemented entirely at the circuit level

without any changes to the architecture or may involve only
simple architectural modifications. The on-chip caches are
one of the main candidates for leakage reduction since they
contain a significant fraction of the processor’s transistors.

Approaches for reducing static power consumption of
caches by turning off cache lines using the gated-VDD tech-
nique [1] have been described in [2][3]. These approaches
reduce leakage power by selectively turning off cache lines
that contain data that is not likely to be reused. The draw-
back of this approach is that the state of the cache line is lost
when it is turned off and reloading it from the level 2 cache
has the potential to negate any energy savings and have a
significant impact on performance. To avoid these pitfalls, it
is necessary to use complex adaptive algorithms and be con-
servative about which lines are turned off.

Turning off cache lines is not the only way that leakage
energy can be reduced. Significant leakage reduction can
also be achieved by putting a cache line into a low-power
drowsy mode. When in drowsy mode, the information in the
cache line is preserved; however, the line must be reinstated
to a high-power mode before its contents can be accessed.
One circuit technique for implementing drowsy caches is

Drowsy Caches: Simple Techniques for Reducing Leakage Power

Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, Trevor Mudge

krisztian.flautner@arm.com
ARM Ltd

110 Fulbourn Road
Cambridge, UK CB1 9NJ

{kimns, stevenmm, blaauw, tnm}@eecs.umich.edu
Advanced Computer Architecture Lab

The University of Michigan
1301 Beal Ave. Ann Arbor, MI 48109-2122

FIGURE 1. Normalized leakage power through an inverter

0

200

400

600

800

1000

1200

0.050.10.150.2
Minimum gate length (µm)

N
or

m
al

iz
ed

 le
ak

ag
e

po
w

er 105 ºC

75 ºC

50 ºC

25 ºC

The circuit simulation parameters including threshold voltage were obtained
from the Berkeley Predictive Spice Models [4]. The leakage power numbers
were obtained by HSPICE simulations.
ISCA 2002 1 of 10

adaptive body-biasing with multi-threshold CMOS (ABB-
MTCMOS) [5], where the threshold voltage of a cache line
is increased dynamically to yield reduction in leakage
energy. We propose a simpler and more effective circuit
technique for implementing drowsy caches, where one can
choose between two different supply voltages in each cache
line. Such a dynamic voltage scaling or selection (DVS)
technique has been used in the past to trade off dynamic
power consumption and performance [6][7][8]. In this case,
however, we exploit voltage scaling to reduce static power
consumption. Due to short-channel effects in deep-submi-
cron processes, leakage current reduces significantly with
voltage scaling [9]. The combined effect of reduced leakage
current and voltage yields a dramatic reduction in leakage
power.

On a per-bit basis, drowsy caches do not reduce leakage
energy as much as those that rely on gated-VDD. However,
we show that for the total power consumption of the cache,
drowsy caches can get close to the theoretical minimum.
This is because the fraction of total energy consumed by the
drowsy cache in low power mode (after applying our algo-
rithms) tends to be only about 25%. Reducing this fraction
further may be possible but the pay-off is not great
(Amdahl’s Law). Moreover, since the penalty for waking up
a drowsy line is relatively small (it requires little energy and
only 1 or 2 cycles, depending on circuit parameters), cache
lines can be put into drowsy mode more aggressively, thus
saving more power.

Figure 2 shows the changes necessary for implement-
ing a cache line that supports a drowsy mode. There are
very few additions required to a standard cache line. The
main additions are a drowsy bit, a mechanism for control-
ling the voltage to the memory cells, and a word line gating
circuit. In order to support the drowsy mode, the cache line
circuit includes two more transistors than the traditional
memory circuit. The operating voltage of an array of mem-
ory cells in the cache line is determined by the voltage con-
troller, which switches the array voltage between the high
(active) and low (drowsy) supply voltages depending on the
state of the drowsy bit. If a drowsy cache line is accessed,
the drowsy bit is cleared, and consequently the supply volt-
age is switched to high VDD.The wordline gating circuit is

used to prevent accesses when in drowsy mode, since the
supply voltage of the drowsy cache line is lower than the bit
line precharge voltage; unchecked accesses to a drowsy line
could destroy the memory’s contents.

Whenever a cache line is accessed, the cache controller
monitors the condition of the voltage of the cache line by
reading the drowsy bit. If the accessed line is in normal
mode, we can read the contents of the cache line without
losing any performance. No performance penalty is
incurred, because the power mode of the line can be
checked by reading the drowsy bit concurrently with the
read and comparison of the tag. However, if the memory
array is in drowsy mode, we need to prevent the discharge
of the bit lines of the memory array because it may read out
incorrect data. The line is woken up automatically during
the next cycle, and the data can be accessed during consecu-
tive cycles.

In this paper we focus on the policy implications of
using L1 drowsy data caches. Since, compared to the L1
cache, the impact of an extra cycle of wake-up on the L2
access latencies is small, all lines in an L2 cache can be kept
in drowsy mode without significant impact on performance.
This intuition is confirmed by the data presented in [10]. In
Section 2 and Section 3 we evaluate the design trade-offs
between simple drowsy policies. We argue that the simplest
policy of periodically putting the entire cache into drowsy
mode does about as well as a policy that tracks accesses to
cache lines. Section 4 provides details about various circuit
techniques for reducing leakage power and Section 5 evalu-
ates the impact of drowsy caches on energy consumption.

2. Policies
The key difference between drowsy caches and caches

that use gated-VDD is that in drowsy caches the cost of
being wrong—putting a line into drowsy mode that is
accessed soon thereafter—is relatively small. The only pen-
alty one must contend with is an additional delay and energy
cost for having to wake up a drowsy line. One of the sim-
plest policies that one might consider is one where, periodi-
cally, all lines in the cache—regardless of access patterns—
are put into drowsy mode and a line is woken up only when
it is accessed again. This policy requires only a single global
counter and no per-line statistics. Table 1 shows the working
set characteristics of some of our workloads using a 2000
cycle update window, meaning that all cache lines are put
into drowsy mode every 2000 cycles. Observations of cache
activity are made over this same period. Based on this infor-
mation we can estimate how effective this simpleminded
policy could be.

The results show that on most of the benchmarks the
working set—the fraction of unique cache lines accessed
during an update window—is relatively small. On most
benchmarks more than 90% of the lines can be in drowsy
mode at any one time. This has the potential to significantly
reduce the static power consumption of the cache. The
downside of the approach is that the wake-up cost has to be
amortized over a relatively small number of accesses:
between 7 and 21, depending on the benchmark.

Note that, for simplicity, the word line, bit lines, and two pass transistors in the
drowsy bit are not shown in this picture.

FIGURE 2. Implementation of the drowsy cache line

VDD (1V)

VDDLow (0.3V)

drowsy (set)

drowsy signal

SRAMs

ro
w

 d
e
c
o

d
e
r

w
o

rd
 l

in
e
 d

ri
v
e
r

voltage controller

word line

word line

power line

wordline gate

wake-up (reset)

drowsy bit

drowsy

drowsy
ISCA 2002 2 of 10

(EQ 1)

Equation 1 shows the formula for computing the
expected worst-case execution time increase for the baseline
algorithm. All variables except memimpact are directly
from Table 1. The variable accs specifies the number of
accesses, wakelatency the wakeup latency, accsperline the
number of accesses per line, and wsize specifies the window
size. Memimpact can be used to describe how much impact
a single memory access has on overall performance. The
simplifying assumption is that any increase in cache access
latency translates directly into increased execution time, in
which case memimpact is set to 1. Using this formula and
assuming a 1 cycle wake-up latency, we get a maximum of
9% performance degradation for crafty and under 4% for
equake. One can further refine the model by coming up with
a more accurate value for memimpact. Its value is a function
of both the microarchitecture and the workload:
• The workload determines the ratio of the number of

memory accesses to instructions.
• The microarchitecture determines what fraction of wake-

up transitions can be hidden, i.e., not translated into glo-
bal performance degradation.

• The microarchitecture also has a significant bearing on
IPC which in turn determines the number of memory
accesses per cycle.
Assuming that half of the wake-up transition latencies

can be hidden by the microarchitecture, and based on a ratio
of 0.63 of memory accesses per cycle, the prediction for
worst-case performance impact for the crafty benchmark
reduces to 2.8%. Similarly, using the figure of 0.76 memory
accesses per cycle and the same fraction of hidden wake-up
transitions, we get a performance impact of about 1.4%. The
actual impact of the baseline technique is likely to be signif-
icantly lower than the results from the analytical model, but

nonetheless, these results show that there is no need to look
for prediction techniques to control the drowsy cache; as
long as the drowsy cache can transition between drowsy and
awake modes relatively quickly, simple algorithms should
suffice.

The right side of Table 1 contains information about
how quickly the working set of the workloads are changing.
The results in the table specify what fraction of references in
a window are to lines that had been accessed 1, 8, or 32 win-
dows before. This information can be used to gauge the
applicability of control policies that predict the working set
of applications based on past accesses. As can be seen, on
many benchmarks (e.g. bzip, gcc), a significant fraction of
lines are not accessed again in a successive drowsy window,
which implies that past accesses are not always a good indi-
cation of future use. Aside from the equake and mesa
benchmarks, where past accesses do correlate well with

ExecFactor
accs wakelatency memimpact×

accsperline
--- 
  wsize - accs()+

wsize
--=

TABLE 1. Working set and reuse characteristics

Level 1 data cache 32K, 4-way, 32byte line, window size = 2000 cycles

Working set Number of
accesses Accesses per line Accesses per

cycle

Fraction of accesses same as in the
nth previous window

n=1 n=8 n=32

crafty 17.6% 1250.56 6.95 0.63 65.2% 54.9% 49.3%

vortex 10.8% 1209.07 10.89 0.60 54.3% 29.0% 31.0%

bzip 5.9% 1055.84 17.35 0.53 32.5% 19.7% 17.2%

vpr 9.2% 1438.69 15.27 0.72 62.2% 46.9% 45.6%

mcf 8.9% 1831.68 20.05 0.92 61.0% 60.8% 60.4%

parser 8.7% 971.73 10.85 0.49 46.9% 34.6% 28.4%

gcc 8.1% 809.69 9.78 0.40 36.9% 24.9% 21.1%

facerec 10.4% 970.04 9.15 0.49 37.4% 27.5% 33.6%

equake 7.0% 1513.27 21.09 0.76 92.8% 91.4% 90.7%

mesa 8.0% 1537.09 18.69 0.77 83.8% 76.8% 74.5%

TABLE 2.Latencies of accessing lines in the drowsy cache

Awake Drowsy

Aw
ak

e
Ta

gs H
it 1 cycle 1 cycle - wake up line

1 cycle - read/write line

M
is

s 1 cycle - find line to replace
memory latency

1 cycle - find line to replace
memory latency

Overlapped with memory latency:
wake up line.

Awake Drowsy

D
ro

w
sy

 T
ag

s

H
it 1 cycle

1 cycle - time for possible awake hit
1 cycle - wake up drowsy lines in set

1 cycle - read/write line
Off-path: put unneeded lines in set

back to drowsy mode

M
is

s

All lines in set are awake Not all lines in set are awake

1cycle - find line to replace
memory latency

Off-path: put unneeded lines
in set back to drowsy mode

1cycle - time for possible awake hit
1cycle - wake up drowsy lines in set

1cycle - find line to replace
memory latency

Off-path: put unneeded lines in set
back to drowsy mode
ISCA 2002 3 of 10

future accesses, most benchmarks only reaccess 40%-60%
of the lines between windows. The implications of this
observation are twofold: If an algorithm keeps track of
which cache lines are accessed in a window, and only puts
the ones into drowsy mode that have not been accessed in a
certain number of past windows, then the number of awake
to drowsy transitions per window can be reduced by about
50%. This in turn decreases the number of later wakeups,
which reduces the impact on execution time. However, the
impact on energy savings is negative since a larger fraction
of lines are kept in full power mode, and in fact many of
those lines will not be accessed for the next several win-
dows, if at all.

Another important consideration is whether the tags are
put into drowsy mode along with the data or whether they
are always on. Table 2 shows the latencies associated with
the different modes of operation. In both cases, no extra
latencies are involved when an awake line is accessed. If
tags are always on, then the cost of accessing a drowsy line
is an additional cycle for waking it up first. Hits and misses
are determined the same way as in normal caches. However,
if tags—along with the data—can be drowsy, then the situa-
tion gets more complicated. Access hits to an awake cache
line take a single cycle just as in the first case, however
access hits to a drowsy line take a cycle longer. The reason
for the extra delay is that during the first access cycle the
cache is indexed, awake lines are read out and their tags are
compared. If none of the awake tags match after the first
read, then the controller wakes up all the drowsy lines in the
indexed set and only then, an additional cycle later, can it
read and compare the data. Thus, a drowsy access takes at
least three cycles to complete. Another issue is that when
drowsy lines are woken up in a set just so that their tags can
be compared, they should be put back to sleep soon thereaf-
ter. It is not likely that these lines will be accessed soon,
since in that case they would have been awake already. The
controller can easily put these lines back into drowsy mode
without having to wait for the sleep transition to complete.

Note that in direct-mapped caches there is no perfor-
mance advantage to keeping the tags awake. There is only
one possible line for each index, thus if that line is drowsy, it
needs to be woken up immediately to be accessed.

3. Policy evaluation
In this section we evaluate the different policy configu-

rations with respect to how they impact performance and the
fraction of cache lines that are in drowsy mode during the
execution of our benchmarks. All our algorithms work by
periodically evaluating the contents of the cache and selec-
tively putting lines into drowsy mode. The following
parameters can be varied:
• Update window size: specifies in cycles how frequently

decisions are made about which lines to put into drowsy
mode.

• Simple or Noaccess policy: The policy that uses no per-
line access history is referred to as the simple policy. In
this case, all lines in the cache are put into drowsy mode
periodically (the period is the window size). The noac-
cess policy means that only lines that have not been
accessed in a window are put into drowsy mode.

• Awake or drowsy tag: specifies whether tags in the cache
may be drowsy or not.

• Transition time: the number of cycles for waking up or
putting to sleep cache lines. We only consider 1 or 2
cycle transition times, since our circuit simulations indi-
cate that these are reasonable assumptions.
We use various benchmarks from the SPEC2000 suite

on SimpleScalar using the Alpha instruction set to illustrate
our points. Most of the results are shown using the out-of-
order core in SimpleScalar. However, when appropriate we
also show results for a simpler in-order core. The simulator
configuration parameters are summarized below:
• OO4: 4-wide superscalar pipeline, 32K direct-mapped

L1 icache, 32 byte line size - 1 cycle hit latency, 32K 4-
way set associative L1 dcache, 32 byte line size - 1 cycle
hit latency, 8 cycle L2 cache latency.

• IO2: 2-wide in-order pipeline, cache parameters same as
for OO4.

All simulations were run for 1 billion instructions.
Figure 3 shows how window size impacts performance

and the fraction of drowsy lines. For clarity, we are showing
only a subset of the benchmarks. On an out-of-order core,

FIGURE 3. Impact of window size on performance and on the fraction of drowsy lines

OO4 policy, noaccess policy, awake tags, 1 cycle drowsy transition

crafty

128k

bzip parsermcf vprvortex

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50%
Run-time increase

D
ro

w
sy

 li
ne

s

Update window sizes:
128000, 32000, 8000, 2000, 500

IO2, noaccess policy, awake tags, 1 cycle drowsy transition

crafty

128k

bzip parsermcf vprvortex

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50%
Run-time increase

D
ro

w
sy

 li
ne

s

Update window sizes:
128000, 32000, 8000, 2000, 500
ISCA 2002 4 of 10

the sweetspot—where the energy-delay product is maxi-
mized—is around 2000 cycles. The same spot moves to
between a window size of 4000 and 8000 cycles on the in-
order core. The reason for this is that since the IPCs of the
benchmarks using the IO2 model tend to be a little less than
half as much as in the OO4 model, fewer memory accesses
are made within the same amount of clock cycles. Since
both the drowsy cache’s run-time overhead and its effective-
ness are correlated with the number of cache accesses
within a window, comparable power-performance trade-off
points are found at about twice the window size on the IO2
model as on OO4. Aside from the data for small window
sizes, the two graphs look very similar.

The reason for the relatively small impact of the
drowsy wake-up penalty on the in-order processor’s perfor-
mance is due to the non-blocking memory system, which
can handle a number of outstanding loads and stores while
continuing execution of independent instructions. More-
over, the drowsy wake-up penalty is usually only incurred
with load instructions, since stores are put into a write
buffer, which—if not full—allows execution to continue
without having to wait for the completion of the store
instruction.

The impact of increased transition latencies is shown in
Figure 4. The top graph in the figure shows the impact of
doubled wakeup latency using the simple policy, while the
bottom graph shows the impact on the noaccess policy due
to the use of drowsy tags. In both graphs, the two end points
of a line represent the two different configurations of each
benchmark. Both of the different types of overhead have
similar impact on the given policy: the fraction of drowsy
lines is unchanged, while the impact on run-time increases
(the lines connecting the two points are horizontal and the
points corresponding to the two cycle wakeup or the drowsy
tags are always on the right). The run-time impact on the
simple policy is larger compared to the noaccess policy,
since a larger fraction of the cache is drowsy at any one
time. Also note that for a given policy, the run-time over-
head of using drowsy tags should be very similar to increas-
ing the transition latency to two cycles. This is because both
models increase the most common type of drowsy access—
the drowsy hit—by the same amount.

Figure 5 contrasts the noaccess and the simple policies.
The main question that we are trying to answer is whether
there is a point to keeping any per-line statistics to guide
drowsy decisions or if the indiscriminate approach is good
enough. We show three different configurations for each
benchmark on the graph: the noaccess policy with a 2000
cycle window and two configurations of the simple policy
(4000 cycle and 2000 cycle windows). In all cases, the pol-
icy configurations follow each other from bottom to top in
the aforementioned order. This means that in all cases, the
noaccess policy has the smallest fraction of drowsy lines,
which is to be expected, since it is conservative about which
lines are put into drowsy mode. In all configurations, the
performance impact is never more than 1.2% and the frac-
tion of drowsy lines is never under 74%.

FIGURE 4. Impact of increased drowsy access latencies

70%

75%

80%

85%

90%

95%

100%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00% 2.20%
Run-time increase

D
ro

w
sy

 fr
ac

tio
n

ammp00 applu00
apsi00 art00
bzip200 crafty00
eon00 equake00
facerec00 fma3d00
galgel00 gap00
gcc00 gzip00
lucas00 mcf00
mesa00 mgrid00
parser00 sixtrack00
swim00 twolf00
vortex00 vpr00
wupwise00

1 cycle vs. 2 cycle wakup

simple policy, awake tags,
4000 cycle window

70%

75%

80%

85%

90%

95%

100%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00% 2.20%
Run-time increase

D
ro

w
sy

 fr
ac

tio
n

ammp00 applu00
apsi00 art00
bzip200 crafty00
eon00 equake00
facerec00 fma3d00
galgel00 gap00
gcc00 gzip00
lucas00 mcf00
mesa00 mgrid00
parser00 sixtrack00
swim00 twolf00
vortex00 vpr00
wupwise00

Awake vs. Drowsy tags

noaccess policy, 1 cycle
wakeup, 4000 cycle window

The bottom marker on each line corresponds to the noaccess policy with
2000 cycle window, the markers above it represent the simple policy with
4000 and 2000 cycle windows respectively

FIGURE 5. Comparison of the noaccess and simple policies

applu artcrafty

eon

facerec

galgel

gap

gcc gzip
lucas

mgrid

parser

sixtrack

twolf

vortex

70%

75%

80%

85%

90%

95%

100%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40%
Run-time increase

Dr
ow

sy
 fr

ac
tio

n

ammp00 applu00
apsi00 art00
bzip200 crafty00
eon00 equake00
facerec00 fma3d00
galgel00 gap00
gcc00 gzip00
lucas00 mcf00
mesa00 mgrid00
parser00 sixtrack00
swim00 twolf00
vortex00 vpr00
wupwise00

noaccess vs. simple policy

1 cycle wakeup, awake tags,
simple policy: 2000 and 4000
cycle window, noaccess
policy: 2000 cycle window
ISCA 2002 5 of 10

The benchmarks on the graph can be partitioned into
two groups: ones on lines whose slopes are close to the ver-
tical, and ones on lines that are more horizontal and thus
have a smaller positive slope. All the benchmarks that are
close to the vertical are floating point benchmarks and their
orientation implies that there is very little or no performance
benefit to using the noaccess policy or larger window sizes.
In fact, the mgrid, galgel, applu, facerec, and lucas bench-
marks have a slight negative slope, implying that not only
would the simpler policy win on power savings, it would
also win on performance. However, in all cases the perfor-
mance difference is negligible and the potential power
improvement is under 5%. The reason for this behavior is
the very bad reuse characteristics of data accesses in these
benchmarks. Thus keeping lines awake (i.e. noaccess pol-
icy, or larger window sizes) is unnecessary and even coun-
terproductive.

This anomalous behavior is not replicated on the inte-
ger benchmarks, where in all cases the noaccess policy wins
on performance but saves the least amount of power. Does
this statement imply that if performance degradation is an
issue then one should go with the more sophisticated noac-
cess policy? It does not. The slope between the upper two
points on each line is almost always the same as the slope
between the bottom two points, which implies that the rates
of change between the datapoints of a benchmark are the
same; the data point for the noaccess policy should be able
to be matched by a different configuration of the simple pol-
icy. We ran experiments to verify this hypothesis and found
that a window size of 8000 of the simple policy comes very
close to the coordinates for the noaccess policy with a win-
dow size of 2000.

We find that the simple policy with a window size of
4000 cycles reaches a reasonable compromise between sim-
plicity of implementation, power savings, and performance.
The impact of this policy on leakage energy is evaluated in
Section 5.

4. Circuit issues
Traditionally, two circuit techniques have been used to

reduce leakage power in CMOS circuits: VDD-gating and
ABB-MTCMOS. Recently, both of these methods were
applied to cache design as well [2][3][10]. In this paper, we
instead propose the use of dynamic voltage scaling (DVS)
for leakage control. While voltage scaling has seen exten-
sive use for dynamic power reduction, short-channel effects
also make it very effective for leakage reduction. Below, we
discuss the traditional VDD-gating and ABB-MTCMOS
techniques for cache leakage reduction, as well as our pro-
posed method using dynamic voltage scaling and a compar-
ison between the different methods.

4.1 Gated-VDD

The gated-VDD structure was introduced in [1]. This
technique reduces the leakage power by using a high thresh-
old (high-Vt) transistor to turn off the power to the memory
cell when the cell is set to low-power mode. This high-Vt
device drastically reduces the leakage of the circuit because
of the exponential dependence of leakage on Vt. While this
method is very effective at reducing leakage, its main disad-
vantage lies in that it loses any information stored in the cell
when switched into low-leakage mode. This means that a

significant performance penalty is incurred when data in the
cell is accessed and more complex and conservative cache
policies must be employed.

4.2 ABB-MTCMOS
The ABB-MTCMOS scheme was presented in [5]. In

this method, the threshold voltages of the transistors in the
cell are dynamically increased when the cell is set to drowsy
mode by raising the source to body voltage of the transistors
in the circuit. Consequently, this higher Vt reduces the leak-
age current while allowing the memory cell to maintain its
state even in drowsy mode. However, to avoid the need for a
twin-well process, the dynamic Vt scaling is accomplished
by increasing the source of the NMOS devices and by
increasing the body voltage of the wells of the PMOS
devices significantly when the circuit is in drowsy mode.
While the leakage current through the memory cell is
reduced significantly in this scheme, the supply voltage of
the circuit is increased, thereby offsetting some of the gain
in total leakage power.

Also, this leakage reduction technique requires that the
voltage of the N-well and of the power and ground supply
lines are changed each time the circuit enters or exits
drowsy mode. Since the N-well capacitance of the PMOS
devices is quite significant, this increases the energy
required to switch the cache cell to high-power mode and
can also significantly increase the time needed to transition
to/from drowsy mode. Similarly to the gated-VDD technique,
ABB-MTCMOS also requires special high-Vt devices for
the control logic.

4.3 Dynamic VDD Scaling (DVS)
The method proposed in this paper utilizes dynamic

voltage scaling (DVS) to reduce the leakage power of cache
cells. By scaling the voltage of the cell to approximately 1.5
times Vt, the state of the memory cell can be maintained.
For a typical 0.07um process, this drowsy voltage is conser-
vatively set to 0.3V. Due to the short-channel effects in
high-performance processes, the leakage current will reduce
dramatically with voltage scaling. Since both voltage and
current are reduced in DVS, a dramatic reduction in leakage
power can be obtained. Since the capacitance of the power
rail is significantly less than the capacitance of the N-wells,
the transition between the two power states occurs more

FIGURE 6. Schematic of the drowsy memory circuit

VDD (1V)

VDDLow (0.3V)

LowVolt

LowVolt

Voltage Controller

BL BL_

WL

VT0 » 0.3V VT0 » 0.2V

N1N2

N4 N3

P1 P2
ISCA 2002 6 of 10

quickly in the DVS scheme than the ABB-MTCMOS
scheme.

Figure 6 illustrates the circuit schematic of memory
cells connected to the voltage-scaling controller. High-Vt
devices are used as the pass transistors that connect the
memory’s internal inverters to the read/write lines (N1 and
N2). This is necessary because the read/write lines are
maintained in high-power mode and the leakage through the
pass transistors would be too large otherwise. One PMOS
pass gate switch supplies the normal supply voltage and the
other supplies the low supply voltage for the drowsy cache
line. Each pass gate is a high-Vt device to prevent leakage
current from the normal supply to the low supply through
the two PMOS pass gate transistors. A separate voltage con-
troller is needed for each cache line.

In determining the high-Vt value for the access transis-
tors of the memory cell (N1 and N2) we must consider the
leakage power reduction as well as the performance impact
of using a high-Vt device. Figure 7 shows leakage power
reduction versus performance impact for various Vt values.
Our HSPICE simulations using access transistors with 0.2V
Vt show that the portion of leakage power caused by the
pass transistors is 16.78% and 71.77% for normal and low
supply voltage modes respectively. These values are quite
significant. As we increase Vt of the access transistors
towards 0.35V, the leakage power decreases exponentially
and it approaches the maximum reduction ratio (92.15%)
that can be achieved by eliminating leakage current entirely
through the access transistor.

To estimate the performance degradation from increas-
ing Vt, we measured the delay from the word line assertion
to the point where there is a 50mV voltage difference
between two complementary bit lines using a netlist with
extract capacitances. This voltage difference is the threshold
for sense-amp activation. The value of 50mV was obtained
by conservatively scaling the value used in the former mem-
ory design technology [11]. Clearly the delay is increased as
the Vt is increased as shown in Figure 7, but the fraction of
the delay from the word line activation to the sense-amp
activation is only about 22% among other delay factors that

contribute to the total access time of the memory system,
according to our CACTI calculations. We chose 0.3V for
the high-Vt value because it results in a sensible trade-off
point between performance loss (6.05%) and leakage reduc-
tion (91.98%). However, we can compensate for the perfor-
mance loss by carefully tuning the size of the access and
cross-coupled inverter transistors. We have not done so in
this study because it may increase the dynamic power dissi-
pation as a result of the increase in switching capacitance of
the bit lines.

A possible disadvantage of the circuit in Figure 6 is that
it has increased susceptibility to noise and the variation of
Vt across process corners. The first problem may be cor-
rected with careful layout because the capacitive coupling
of the lines is small. To examine the stability of a memory
cell in the low power mode, we simulated a write operation
to an adjacent memory cell that shares the same bit lines but
whose supply voltage was normal. The coupling capaci-
tance and the large voltage swing across the bit lines would
make the bit in the drowsy memory cell vulnerable to flip-
ping if this circuit had a stability problem. However, our
experiments show (Figure 8) that the state of the drowsy
memory cell is stable. There is just a slight fluctuation in the
core node voltage caused by the signal cross-talk between
the bit lines and the memory internal nodes. In addition,
there is no cross-talk noise between the word line and the
internal node voltage, because word line gating prevents
accesses to drowsy mode memory cells. Of course, this volt-
age scaling technique has less immunity against a single
event upset (SEU) from alpha particles [12], but this prob-
lem can be relieved by process techniques such as silicon on
insulator (SOI). Other static memory structures also suffer
from this problem. The second problem, variation of Vt,
may be handled by choosing a conservative VDD value, as
we have done in our design.

The memory cell layout was done in TSMC 0.18um
technology, which is the smallest feature size available to
the academic community. The dimensions of our memory
cell is 1.84um by 3.66um, and those for the voltage control-
ler are 6.18um by 3.66um. We estimate the area overhead of
the voltage controller is equivalent to 3.35 memory cells for

FIGURE 7. Leakage power reduction and performance

0.35V

0.3V

0.25V

0.2V

85%

90%

95%

100%

75% 80% 85% 90% 95%
Leakage reduction

Pe
rf

or
m

an
ce

The figure shows various Vt numbers (next to the data points) and how these
values impact performance and leakage reduction.

FIGURE 8. Cross-talk stability of the drowsy memory cell

Simulation of a write operation to the normal mode (awake) memory cell
adjacent to a drowsy memory cell.

0

0.2

0.4

0.6

0.8

1

1.2

0.0E+00 1.3E-10 2.5E-10 3.8E-10
Time (sec)

Vo
lta

ge
 (V

)

drowsy cell core node

bit lines

word line

written cell core node
ISCA 2002 7 of 10

a 64 x Leff (effective gate length) voltage controller. This
relatively low area overhead can be achieved because the
routing in the voltage controller is simple compared to the
memory cell. In addition, we assumed the following (con-
servative) area overhead factors: 1) 1.5 equivalent memory
cells for the drowsy bit (the 0.5 factor arises from the two
additional transistors for set and reset); 2) 1 equivalent
memory cell for the control signal driver (two inverters);
and 3) 1.5 equivalent memory cells for the wordline gating
circuit (a nand gate). The total overhead is thus equivalent
to 7.35 memory cells per cache line. The total area overhead
is less than 3% for the entire cache line. To examine the
effects of circuit issues like stability and leakage power
reduction, we applied a linear scaling technique to all the
extracted capacitances.

In Table 3, we list the advantages and disadvantages for
the two traditional circuit techniques for leakage reduction
as well as for DVS, and we show the power consumption
for the three schemes in both normal and low power mode.
The leakage power in the gated-VDD method is very small
compared to the other schemes, however, this technique
does not preserve the state of the cache cell. Comparing the
DVS and ABB-MTCMOS techniques, the DVS method
reduces leakage power by a factor of 12.5, while the ABB-
MTCMOS method reduces leakage by only a factor of 5.9.

Detailed power values for drowsy mode and normal-
power mode for the proposed method are shown in Table 4.
In order to determine the time required to switch a cache
line from drowsy mode to normal power mode, we mea-
sured the delay time of the supply lines with HSPICE and
the Berkeley Predictive Model [4] for a 0.07um process. To
measure the transition delay, we connected a 32KB memory
cell array to the supply voltage controllers and then esti-
mated the capacitances of the supply voltage metal line and
bit lines. The transition delay varies depending on the tran-
sistor width of the pass gate switch in the voltage controller.

A 16 x Leff PMOS pass-transistor is needed for a two cycle
transition delay. A single cycle transition delay can be
obtained by increasing the width of this transistor to 64 x
Leff. The cycle time of the cache was estimated using the
CACTI model with the supported process scaling. We found
that the access time of the cache is 0.57ns and that the tran-
sition time to and from drowsy mode is 0.28ns with a 64 x
Leff width PMOS pass-transistor in the normal mode volt-
age supplier.

5. Energy consumption
Table 5 compares the energy savings due to the simple

policy with a window size of 4000 cycles and with and
without the use of drowsy tags. Normalized total energy is
the ratio of total energy used in the drowsy cache divided by
the total energy consumed in a regular cache. Similarly, nor-
malized leakage energy is the ratio of leakage energy in the
drowsy cache to leakage energy in a normal cache. The data
in the DVS columns correspond to the energy savings
resulting from the scaled-VDD (DVS) circuit technique while
the theoretical minimum column assumes that leakage in
low-power mode can be reduced to zero (without losing
state). The theoretical minimum column estimates the
energy savings given the best possible hypothetical circuit
technique. For all the results in the table, we conservatively
assume that there are only 19 tag bits (corresponding to 32
bit addressing) per line, which translates into 6.9% of the
bits on a cache line.

The table shows that our implementation of a drowsy
cache can reduce the total energy consumed in the data
cache by more than 50% without significantly impacting
performance. Total leakage energy is reduced by an average
of 71% when tags are always awake and by an average of
76% using the drowsy tag scheme. Leakage energy could
potentially be cut in half if the efficiency of the drowsy cir-

TABLE 3. Comparison of various low-leakage circuit techniques

Advantages Disadvantages
Leakage power

in low power
mode

DVS

• Retains cell information in low-power mode.
• Fast switching between power modes.
• Easy implementation.
• More power reduction than ABB-MTCMOS.

• Process variation dependent.
• More SEU noise susceptible.

6.24nW

ABB-
MTCMOS • Retains cell information in low-power mode.

• Higher leakage power.
• Slower switching between power modes.

13.20nW

Gated-VDD

• Largest power reduction.
• Fast switching between power modes.
• Easy implementation.

• Loses cell information in low-power mode. 0.02nW

TABLE 4. Energy parameters and drowsy transition time for 32-KB 4-way set associative cache with 32Wmin for
voltage controller switch size

Dynamic energy per
access

Leakage energy
per bit

Drowsy leakage
energy per bit

Transition energy
(W=64Leff)

Drowsy transition
latency

2.94E-10J 1.63E-15J 2.59E-16J 2.56E-11J 1 cycle
ISCA 2002 8 of 10

cuit techniques are improved (see the theoretical minimum
column). However, the benefits of any further reduction of
leakage in drowsy mode are tempered by the fact that lines
must still spend time in full-power mode when being
accessed, and consequently their leakage power consump-
tion is at least an order of magnitude higher. Thus, the
impact of more efficient drowsy circuits on total energy sav-
ings is reduced. Nonetheless, if there are circuits that are
more efficient without significantly increasing the transition
time, the simple policy can take advantage of it.

An important question is whether it is worth using the
more complex drowsy tag scheme. The energy-delay prod-
uct of the benchmarks when using drowsy tags are always
lower than without. So the decision about whether to use
drowsy tags or not comes down to acceptable engineering
trade-offs. Also note that in direct-mapped caches, tags can
be put into drowsy mode without undue performance impact
or implementation complexity (see Section 2). However,
using a direct mapped data cache instead of the 4-way asso-
ciative one has its own costs: miss rates on our benchmarks
are approximately tripled, which—aside from the perfor-
mance penalty—can significantly impact the total energy
consumption of the processor.

6. Conclusions and future work
During our investigations of drowsy caches we found

that our simplest policy—where cachelines are periodically
put into a low-power mode without regard to their access
histories—can reduce the cache’s static power consumption
by more than 80%. The fact that we do not propose a more

sophisticated policy with better characteristics should not be
taken as proof that such policy does not exist. However, we
believe that our combination of a simple circuit technique
with a simple microarchitectural mechanism provides suffi-
cient static power savings at a modest performance impact,
that it makes sophistication a poor trade-off. The simple pol-
icy is not a solution to all caches in the processor. In particu-
lar, the L1 instruction cache does not do as well with the
simple algorithm and only slightly better with the noaccess
policy. We are investigating the use of instruction prefetch
algorithms combined with the drowsy circuit technique for
reducing leakage power in the instruction caches. Our ongo-
ing work also includes the extension of our techniques to
other memory structures, such as branch predictors.

An open question remains as to the role of adaptivity in
determining the window size. We found that for a given
machine configuration, a single static window size (2000 to
8000 cycles, depending on configuration) performs ade-
quately on all of our benchmarks. However, the optimum
varies slightly for each workload, thus making the window
size adaptive would allow a finer power-performance trade-
off. One way of accomplishing this is by monitoring the
microarchitecture and counting the number of stall cycles
that can be attributed to the drowsy wakeup latency, and
only putting the cachelines into drowsy mode again after
their previous wakeup overheads have been amortized (i.e.
the performance impact falls under a given threshold). The
user’s preference for trading-off performance and power
savings could be controlled by the setting of the threshold
value.

TABLE 5. Normalized energy results and run-time increase for the OO4 core, simple policy, 1 cycle drowsy
transition, 4000 cycle window for both awake and drowsy tags

Awake tags Drowsy tags
Run-time Run-time

DVS Theoretical min. DVS Theoretical min. increase DVS Theoretical min. DVS Theoretical min. increase
ammp 0.25 0.11 0.24 0.09 0.66% 0.20 0.05 0.18 0.03 1.33%
applu 0.47 0.36 0.33 0.20 0.42% 0.43 0.32 0.28 0.14 0.84%
apsi 0.46 0.36 0.30 0.17 0.06% 0.43 0.32 0.25 0.11 0.22%
art 0.39 0.27 0.32 0.19 0.66% 0.35 0.22 0.27 0.13 1.32%
bzip2 0.45 0.34 0.26 0.12 0.59% 0.41 0.30 0.21 0.06 1.23%
crafty 0.53 0.44 0.34 0.22 0.45% 0.50 0.41 0.29 0.16 0.92%
eon 0.55 0.47 0.32 0.19 0.40% 0.52 0.43 0.27 0.13 0.64%
equake 0.50 0.41 0.27 0.13 0.08% 0.47 0.37 0.21 0.06 0.20%
facerec 0.46 0.36 0.29 0.15 0.46% 0.42 0.31 0.24 0.09 0.87%
fma3d 0.41 0.30 0.26 0.12 0.10% 0.37 0.25 0.20 0.05 0.08%
galgel 0.52 0.42 0.37 0.25 0.34% 0.49 0.39 0.32 0.19 0.69%
gap 0.52 0.43 0.28 0.14 0.26% 0.49 0.40 0.22 0.08 0.63%
gcc 0.43 0.32 0.28 0.14 0.65% 0.39 0.27 0.23 0.08 1.25%
gzip 0.46 0.36 0.28 0.14 0.83% 0.43 0.32 0.22 0.07 1.87%
lucas 0.43 0.32 0.25 0.11 0.04% 0.39 0.27 0.20 0.05 0.12%
mcf 0.55 0.46 0.28 0.15 0.11% 0.52 0.42 0.23 0.08 0.22%
mesa 0.51 0.42 0.27 0.14 0.14% 0.48 0.38 0.22 0.07 0.30%
mgrid 0.47 0.36 0.33 0.20 0.52% 0.43 0.32 0.28 0.14 0.97%
parser 0.46 0.35 0.28 0.15 1.03% 0.42 0.31 0.23 0.08 2.09%
sixtrack 0.48 0.38 0.31 0.18 0.33% 0.44 0.34 0.26 0.11 0.65%
swim 0.40 0.28 0.30 0.16 0.56% 0.36 0.24 0.24 0.10 1.14%
twolf 0.40 0.28 0.27 0.13 0.69% 0.35 0.23 0.22 0.07 1.48%
vortex 0.49 0.39 0.30 0.16 0.29% 0.46 0.35 0.24 0.10 0.60%
vpr 0.51 0.42 0.29 0.15 0.51% 0.48 0.38 0.23 0.09 1.25%
wupwise 0.36 0.24 0.24 0.09 0.07% 0.31 0.18 0.18 0.02 0.13%
Average 0.46 0.35 0.29 0.15 0.41% 0.42 0.31 0.24 0.09 0.84%

Normalized total energy Normalized leakage energy Normalized total energy Normalized leakage energy
ISCA 2002 9 of 10

While our dynamic voltage scaling circuit does not
offer the lowest leakage per bit, the fact that it maintains its
stored value, allows for an aggressive algorithm when
deciding which cache lines to put into drowsy mode. Using
our policy and circuit technique, the total energy consumed
in the cache can be reduced by an average of 54%. This
compares well with the theoretical maximum reduction of
65% corresponding to a hypothetical circuit that consumes
no leakage energy in drowsy mode. Since the amount of
leakage energy consumed in drowsy mode is only an aver-
age of 24% of total, further reductions of this fraction will
yield only diminished returns.

Moreover, as the fraction of leakage energy is reduced
from an average of 76% in projected conventional caches to
an average of 50% in the drowsy cache, dynamic energy
once again becomes a prime candidate for reduction.

7. Acknowledgements
This work was supported by DARPA/AFRL F33615-

00-C-1678, DARPA MDA972-33-1-0010, MACO 98-DF-
660, and SRC-2001-HJ-904.

References
[1] M. Powell, et. al. Gated-Vdd: A circuit technique to reduce

leakage in deep-submicron cache memories. Proc. of Int.
Symp. Low Power Electronics and Design, 2000, pp. 90-95.

[2] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploit-
ing generational behavior to reduce cache leakage power.
Proc. of Int. Symp. Computer Architecture, 2001, pp. 240-
251.

[3] H. Zhou, et. al. Adaptive mode-control: A static-power-effi-
cient cache design. Proc. of Int. Conf. on Parallel Architec-
tures and Compilation Techniques, 2001, pp. 61-70.

[4] http://www-device.eecs.berkeley.edu
[5] K. Nii, et. al. A low power SRAM using auto-backgate-con-

trolled MT-CMOS. Proc. of Int. Symp. Low Power Electron-
ics and Design, 1998, pp. 293-298.

[6] M. Weiser, et. al. Scheduling for reduced CPU energy. Proc.
of the First Symp. of Operating Systems Design and Imple-
mentation. November 1994

[7] T. Pering, T. Burd, and R. Brodersen. The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms. Proceed-
ings of International Symposium on Low Power Electronics
and Design, June, 1998, pp. 76-81.

[8] K. Flautner, S. Reinhardt, and T. Mudge. Automatic perfor-
mance-setting for dynamic voltage scaling. Proc. of Int. Conf.
on Mobile Computing and Networking (MOBICOM-7), July
2001, pp. 260-271.

[9] S. Wolf. Silicon processing for the VLSI era Volume 3 - The
submicron MOSFET. Lattice Press, 1995, pp. 213-222.

[10] H. Hanson, et al. Static energy reduction techniques for
microprocessor caches. Proc. of the Int. Conf. Computer
Design, 2001.

[11] K. Itoh. VLSI memory chip design. Springer Publisher, 2001,
pp. 413-423.

[12] T. May and M. Woods. Alpha-particled-induced soft errors in
dynamic memories. IEEE Trans. on Electron Devices, Vol.
ED-26, No. 1, Jan. 1979.
ISCA 2002 10 of 10

	1. Introduction
	2. Policies
	3. Policy evaluation
	4. Circuit issues
	4.1 Gated-VDD
	4.2 ABB-MTCMOS
	4.3 Dynamic VDD Scaling (DVS)

	5. Energy consumption
	6. Conclusions and future work
	7. Acknowledgements

