
Wireless Networks 8, 507–520, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Automatic Performance Setting for Dynamic Voltage Scaling

KRISZTIÁN FLAUTNER, STEVE REINHARDT and TREVOR MUDGE
Advanced Computer Architecture Lab, The University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109, USA

Abstract. The emphasis on processors that are both low power and high performance has resulted in the incorporation of dynamic voltage
scaling into processor designs. This feature allows one to make fine granularity tradeoffs between power use and performance, provided
there is a mechanism in the OS to control that tradeoff. In this paper, we describe a novel software approach to automatically controlling
dynamic voltage scaling in order to optimize energy use. Our mechanism is implemented in the Linux kernel and requires no modification
of user programs. Unlike previous automated approaches, our method works equally well with irregular and multiprogrammed workloads.
Moreover, it has the ability to ensure that the quality of interactive performance is within user specified parameters. Our experiments show
that as a result of our algorithm, processor energy savings of as much as 75% can be achieved with only a minimal impact on the user
experience.

Keywords: dynamic voltage scaling, power management, performance-setting, interactive performance, response time

1. Introduction

The performance of microprocessors has been improving at
an exponential rate and this trend is likely to continue for sev-
eral years to come. However, increased performance does
not come for free. One of the most important consequences
of higher performance has been a dramatic increase in power
consumption. While an Intel 386 processor consumes about
2 watts of energy, a Pentium 4 can use more than 55 watts. In
a mobile environment, batteries have not kept pace with the
increased energy requirements, which means that either ap-
plication performance or battery time suffers. However, even
in environments where energy storage is not an issue, energy
cost and heat management may become problems [10].

There is still a need to continue to improve processor per-
formance, since not all applications are “fast enough”, but an
increasing number are. A way to bridge the gap between
high performance and low power is to allow the processor
to run at different performance levels depending on the ap-
plication’s requirements. Some processors, such as the Intel
XScale [2] and Transmeta Crusoe [8] allow the frequency of
the processor to be reduced with proportional reduction in
voltage. Slowing down frequency without voltage scaling is
not useful, since the power savings is offset by an equal in-
crease in execution time, yielding no reduction in the total
amount of energy consumed. However, since energy is pro-
portional to the square of the voltage, reducing the operating
voltage can yield significant energy savings [14]. The central
issue with processors whose performance can be changed is
how the right level of performance can be obtained. The goal
is to reduce the performance of the processor without causing
an application to miss its deadlines (see figure 1). Complet-
ing a task before its deadline and then idling is less energy
efficient than running the task more slowly to begin with, and
meeting its deadline exactly.

Our aim is to design an algorithm that balances energy sav-
ings with the following requirements:

Figure 1. Performance scaling. This figure shows two different runs of the
same workload. In A, the workload runs at full speed and finishes well in
advance of its deadline. In B, the execution of the workload is stretched to
its deadline, which allows for energy savings on processors that implement
voltage scaling.

• No modification of user programs.

• Works with irregular and multiprogrammed workloads.

• Ensures that user-perceived performance does not suffer.

Previous interval-based approaches to automated performance
setting did not fully achieve the goals outlined in the last
two points. These approaches focus on the ratio of idle-
to busy-time as the indicator of the right performance set-
ting [5,6,13,16]. While the results looked promising for reg-
ular workloads (such as audio playback, where processor uti-
lization is periodic), the proposed schemes do not work well
for interactive or irregular applications.

The aforementioned papers point out that looking at idle
time alone as the indicator of the right performance level is
not sufficient. In their future work section, Weiser et al. pro-
pose an alternative approach, where jobs are classified into
background, periodic and foreground classes [16]. They sug-
gest that the added semantic information could be used to im-
prove the scheduling algorithms. Govil et al., in their future



508 FLAUTNER, REINHARDT AND MUDGE

work section, propose a similar solution, where process type
along with information specified by the processes (e.g., dead-
line) could be used for performance setting [5]. Our approach
follows along the lines of these earlier works; however, we
derive deadline and classification information automatically
from the OS kernel, by examining the communication pat-
terns between the executing tasks (section 3). This informa-
tion is used to isolate execution episodes corresponding to
different communication patterns. We can classify execution
episodes into one of the following categories: interactive, pe-
riodic producer, and periodic consumer. These classifications
can be used to derive deadlines for the execution episodes.
For example, for an interactive episode, the deadline is the
perception threshold, which we assume to be between 50 ms
and 100 ms. The deadline for a producer is the point at which
the consumer actually needs the produced data. Episode clas-
sification guides performance-setting decisions on a per-task
and per-episode basis and is also used to dynamically evaluate
the impact of past decisions on user-perceived performance
(section 4).

We focus primarily on interactive applications, since we
believe that this is one of the most difficult, but also the
most important class of applications for performance scal-
ing. We also consider the effects of a concurrently running
background application (an MP3 player) and a variety of as-
sumptions about the power and performance models on the
performance-setting strategy (section 6).

2. Previous work

In the context of real-time systems, researchers have explored
voltage and frequency scaling as a means of reducing power
consumption. Papers [7,11,15] present algorithms and theo-
retical models that allow one to incorporate voltage schedul-
ing into real-time schedulers. However, these papers are
not directly applicable to general-purpose operating systems,
since the workloads are expected to have well defined charac-
teristics (periodicity, resource requirements, deadlines, etc.).
Moreover, the user must explicitly specify these characteris-
tics to the scheduler.

Our research is more closely related to the work described
in [5,14,16], where performance-setting decisions are made
automatically, guided by the ratio of idle time to busy time
on the processor. A weakness with the existing approaches
are that they are not very accurate and can be easily confused
by irregular processor utilization. We improve on these al-
gorithms by using task-level information form the OS kernel.
A more detailed summary of the directly related work follows
below.

The main ideas behind automatic performance setting
were sketched out by Weiser et al. [16]. Their mechanism
uses the amount of idle time as the guide for finding the op-
timum level of performance. The practical policy proposed
in this paper is called PAST. In this policy the utilization for
the most recent interval is computed and, if it is above a cer-
tain threshold performance, is increased, but if the interval
includes mostly idle time, performance is reduced.

While the PAST algorithm looks very attractive due to
its simplicity and effectiveness on some benchmarks, Govil
et al. [5] point out its shortcomings and propose improve-
ments. One of their complaints is that PAST looks back only
at a single interval and thus it smooths speed poorly: the algo-
rithm keeps on changing performance levels without coming
to a steady state, missing out on opportunities to save power.
To remedy the situation, the authors propose a number of al-
gorithms that use varying amounts of prediction to improve
their accuracy. They conclude that smoothing, rather than so-
phisticated prediction might be the most effective. Accord-
ingly, they propose an algorithm, PEAK, that looks for recur-
ring patterns of processor utilization, with special attention to
short bursts of high utilization, and attempts to set processor
speed accordingly.

Pering et al. evaluate interval-based voltage scaling algo-
rithms for use on a handheld device [13]. One of the key con-
tributions of this paper is the use of the clipped-delay metric,
which takes into account that the length of some events can
be increased without affecting the user (see section 4.1.1). In
practice, the effectiveness of this technique depends on the
allowed increase in delay. The algorithm may degrade perfor-
mance slightly but yield significant power reduction. While
the algorithms used in this paper worked, their performance
fell short of optimum. Moreover, the algorithms used some
specific knowledge about the executing programs, which may
be impractical on a production system. Pering et al. show that
while interval-based voltage scaling algorithms work well on
benchmarks with regular processor utilization (such as audio
playback), they do not fare well on irregular workloads, such
as interactive workloads or video playback.

These conclusions are corroborated by Grunwald et al. [6].
They also find that using a weighted average of processor
utilization as a guide to future utilization (the AVGN policy)
does not yield the clock speed that would maximize proces-
sor utilization. Another problem with this algorithm is that
the requirement to average N intervals introduces a delay in
responding to processor demand. The authors find that exist-
ing heuristics did not fare as well on an actual implementation
as previous studies had suggested.

Lorch et al. improve the performance of interval-based
scaling algorithms by taking a task’s work requirement prob-
ability distribution into account [9]. This information is used
to gradually increase the speed of the processor during exe-
cution, yielding an improvement in energy savings. A similar
insight led us to the strategy for setting the performance level
for interactive episodes and for deriving the PanicThreshold
(see equation (4)).

3. Episode detection

We first applied our interactive-episode detection algorithm
to measure the effects of multiprocessing on interactive per-
formance [3]. In this section we summarize this methodol-
ogy and also show how it can be extended to find periodic
episodes.



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 509

The first step in determining the optimum level of per-
formance is to distinguish the important parts of the execu-
tion from unimportant periods. We use the communication
characteristics of the executing applications as the basis of
this classification. Episodes are triggered by communication
events with specific tasks but multiple tasks may be involved
during the execution of an episode. For example, an inter-
active episode involving Ghostview is triggered by a mes-
sage from the X server to Ghostview. In return, events are
processed by the application and it may send messages to
the X server, the window manager and its rendering engine
(Ghostscript). All of these processes are part of the episode.

There are two principle groups of episodes: periodic and
interactive. Periodic episodes may be further categorized into
producer and consumer, where the communication between
these episodes establishes their performance level. All other
processor activity is classified as background activity. It is
important to note that during its lifetime a task can fall into
more than one of these classifications. For example, a music
playback process may be part of an interactive episode when
it is updating the GUI and be a producer when it is decoding
music data.

We monitor which tasks communicate with a few well-
known system tasks (such as the X server and the sound dae-
mon). These tasks are then monitored for communication
through specific system calls that are then used to classify
them into one of the above categories. In addition, we collect
run-time statistics about processor utilization. Thus, instead
of relying on the programmer, we extract the necessary infor-
mation from the system automatically, using simple changes
to the OS kernel.

As a consequence of our approach, the only idle time that
shows up within an episode is due to device or communication
latencies (hard idle-time) and cannot be removed by perfor-
mance changes of the processor. Soft idle-time, on the other
hand, occurs between episodes and is mostly due to latencies
inherent in user interactions. This type of idle time can be
reduced by slowing down the execution of episodes.

3.1. Examples

Perhaps the easiest way to understand what episode detection
accomplishes is to take a look at figure 2. This figure shows
three execution traces, where the different types of episodes
are highlighted in different colors and an abbreviation of the
episode type is shown next to a few key episodes (IE – inter-
active episode, PE – producer episode, and CE – consumer
episode). The episode classification is exactly the same as
it would be during run-time, no postprocessing takes place
(based on knowledge of the future) to derive the exact begin
and end timestamps of the episodes. In the traces, a vertical
bar of unit width represents one millisecond of execution. The
vertical length of the line corresponds to the utilization of the
processor in that quantum. Each line is colored according to
the type of episode during the execution quantum (black, if it
is not part of any specific episode). In some cases, especially
in trace B, a single vertical line may be made up of multiple

Figure 2. Episodes during execution. The figure shows three execution
traces, where the different types of episodes have been highlighted. The
first two traces are from the Acrobat Reader benchmark and include an MP3
player running in the background, the third trace is from Netscape accessing
web servers on the internet (no MP3 playback in background). IE stands for
interactive episode, PE for producer episode, and CE for consumer episode.

episodes, in which case the colors are proportional to the ex-
ecution lengths of each type of episode during the quantum.

Trace A is representative of execution during interactive
applications. It includes two significant interactive episodes
along with producer and consumer episodes that are triggered
by the MP3 player that is executing on the machine. The first
thing to note is that the detection mechanism is not confused
by overlapping episodes. The MP3 player kicks in twice (pro-
ducer episodes) during the first interactive episode, and the
classification mechanism accurately attributes the consumed
processor time to it. The sound daemon (consumer episodes)
wakes up once every 20–23 ms and runs for about a third of
a millisecond. During this time it checks whether there is
enough data in the sound card and triggers the producer to
decode more data when necessary. This behaviour explains
why the producer episode is always preceded immediately by
a consumer episode. The checking is accomplished by the
sound daemon periodically polling the sound device for data
requests using the select system call. Note that the only
code that gets executed during these short periods is the code
corresponding to the select system call in the kernel, which
checks for activity on the monitored devices. The periodicity



510 FLAUTNER, REINHARDT AND MUDGE

of these consumer episodes is determined by how often the
kernel schedules processes that are blocked on the poll or
select system calls while waiting for activity. The peri-
odicity can be configured by the caller of the system call but
programmers often just rely on the default value in the ker-
nel. When the sound device runs out of data, the select
call returns – indicating the need to generate more sound data
– which in turn wakes up the MP3 player that is blocked in
the write system call between requests.

This data also illustrates that even a lightweight periodic
process can have a significant impact on the user-perceived re-
sponse time. During the run of the interactive episode, which
lasts for 218 ms, the MP3 player and the sound daemon use up
about 16 ms of execution time, causing about an 8% increase
of the response time.

Trace B shows the bursty activity resulting from the user
moving a mouse over the screen, where a document in Ac-
robat Reader is displayed. In this trace, one sees many short
interactive episodes instead of the long ones in trace A. Just
as before, the periodic producer episodes are running, how-
ever it is more difficult to visually distinguish the consumer
episodes from the interactive episodes. There is only one long
interactive episode (at around 300 ms), but there are interac-
tive episodes in almost every quantum that has a utilization of
about a quarter or more. Short interactive episodes are spaced
at about 10 ms apart. The distance between these episodes
is determined by the X server, which controls the quality of
the user experience. Our X server, when it observes rapid
mouse movement, increases screen updates to improve the
user experience. The interactive episodes are short because
the computation required to update the position of the mouse
and to redraw affected regions of the screen are very simple.
The only heavier-weight interactive episode in this trace lasts
for about 3.5 ms is a result of a change in the appearance of
the cursor when it passes over a special region of the Acrobat
Reader application.

Trace C illustrates a long interactive episode with a high
percentage of idle time from a run of the Netscape bench-
mark. The interactive episode starts at around 35 ms and ends
at 468 ms, and it corresponds to a user loading a web page
from a server on the internet. The idle time is due to I/O la-
tency while the page is loaded from a remote server. Initially
there are only small bursts of activity, mostly dealing with
progress updates but as the requested data starts coming in
(at around 280 ms), the rendering engine kicks in and starts
generating output to the screen. Our episode detection mech-
anism accurately attributes the entire episode as an interactive
episode instead of breaking it into smaller disjoint parts. This
example also illustrates a shortcoming of our scheme, which
we believe is a fundamental problem with kernel level episode
detection: for a user, it might be sufficient to wait until the
first screen of data is rendered instead of waiting for the en-
tire web page to be ready. However, without modifying the
web browser, there is no way of knowing when the window
update is done. One could add further hooks into the web
browser to accurately signal if the user is really interested in
data at the bottom of the page.

3.2. Implementation

Our episode detection mechanisms was purposely designed to
be as autonomous from other parts of the kernel as possible.
Incorporating these techniques into an existing kernel requires
only a small number of hooks, but most importantly it does
not require changes to existing scheduling algorithms and
policies. This contrasts with the approach taken by other re-
searchers that treat the performance-setting problem as a twist
on existing scheduling algorithms [7,11,15]. These schemes
usually require perfect knowledge about episode deadlines,
which need to be specified either by the programmer or the
user of the system.

Most applications under UNIX communicate using sock-
ets, signals, and pipes. In particular, the X server uses sockets
to communicate with its clients. We do not track interactions
via other methods such as System V IPC and shared mem-
ory since our benchmarks do not use them. By tracking the
communications between the tasks, we are able to determine
which tasks have an effect on interactive performance. Un-
like other operating systems (e.g., Windows NT), Linux does
not differentiate between threads and processes. Threads are
implemented using regular processes and the clone system
call. We use the name “task” as a synonym for both threads
and processes. The implementation that performs the track-
ing is as non-invasive as possible. The difficulty was not in
the actual implementation but in finding all the parts of the
kernel that needed to be tracked. Currently we track commu-
nications through the following system calls:

kill, pread, pwrite, read, readv, recv,

recvfrom, rcvmsg, send, sendmsg, sendto,

write, writev.

We instrumented each of these system calls to emit a trace
of the signals, inodes, and sockets that they are accessing.
The socket information is output instead of the inode number,
when a socket is accessed through an inode. To be able to
match read and write requests through socket pairs, we use
the socket’s pair (sock → sk → pair) on a write and the
read socket itself on a read event. Currently we track only
communications through UNIX sockets since this is the only
socket type that is local to the machine. One could extend this
methodology to track communications through other types of
sockets if the communicating programs are all local to the
machine. However, we have seen no need for this extension
so far.

The primary reason for tracking signals is that the thread
library (LinuxThreads) uses signals to implement synchro-
nization between threads. By looking at the signal activity
we can determine how threads communicate through con-
dition variables, mutexes, and locks. The two functions
that needed to be instrumented are handle_signal and
send_sig_info. An alternative to this approach would
have been to instrument the thread library; however, our cur-
rent approach is more generic and has lower overhead.

To determine when tasks are blocked on I/O, we instru-
mented the schedule function to record the reason why it



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 511

was called. If it is called from a part of the kernel that is
related to I/O (such as the read and write system calls),
then we assume that the task is blocked while waiting for an
I/O event to complete. Since there is no predefined way in
Linux to find which system call caused a transition to the ker-
nel, we instrumented key system calls to put their id in a field
of the executing task’s task_struct. Once execution gets
to the schedule function, our code looks at this field and
outputs the task’s reason for giving up time. Our approach
uses a mix of static and dynamic kernel patches. As men-
tioned above, we have augmented a few kernel data structures
and added “hooks” to some kernel functions. However, most
of the patching is done dynamically by replacing vectors in
the system call table with stubs that monitor the application
behaviour.

3.3. Interactive episodes

The beginning of an interactive episode is initiated by the user
and is usually signified by a GUI event, such as pressing a
mouse button or a key on the keyboard. Finding the end of
an episode is more difficult since there is no event that auto-
matically gets generated when the computer is done respond-
ing. To find interactive episodes, we keep track of the set of
tasks that communicate with each other as a result of a user-
initiated GUI event. The start of an interactive episode is ini-
tiated by the GUI controller (X server in our case) sending a
message through a socket to another task. When this happens
both the GUI controller and the receiver of the task are added
to what we refer to as the task set of the episode. If the mem-
bers of the task set communicate with non-member tasks, then
the as yet non-member tasks are also added. The end of the
episode is reached when all the following conditions are met
for tasks in the task set:

• None of the tasks are executing.

• Data written by the tasks have been consumed.

• None of the tasks remains unfinished, as a results of being
preempted the last time it ran (i.e., all tasks gave up time
on their own by blocking in a system call).

• None of the tasks are blocked on device I/O.

Detecting interactive episodes is only the first step towards
performance prediction. Section 4.1 describes how the
episode’s deadline can be found.

3.4. Periodic episodes

Detecting periodic activity is similar to detecting interactive
episodes. However, instead of using communications with the
X server as the trigger for starting the episode, we base this
decision on whether the initiating task is periodic. To detect
periodic activity, we keep track of two pieces information for
each task:

• Last execution time.

• Length of the n last periods.

Figure 3. Producer and consumer episodes. The figure shows communi-
cations between a producer and a consumer process. The processor can be
slowed down to stretch the producer episode to the beginning of the consumer
episode.

If a task exhibits only a small amount of variation in period
length over the last n runs (<5%), then we treat it as a periodic
task.

3.4.1. Producer–consumer episodes
Producer–consumer episodes form a special subcategory of
periodic episodes, where the optimum performance level is
established by the distance from producer to consumer, not
by the distance between periods. A case in point is the Linux
esd sound daemon, which wakes up periodically to check for
sound playback requests and to send data to the sound card. If
esd’s playback buffer is not empty, it sends some of the data
to the sound card. If the buffer is close to being empty, it
wakes up and unblocks the music decoders (e.g., MP3 play-
ers), which causes them to generate the next few frames of
data.

Figure 3 illustrates interaction between a producer and
a consumer process. The distance between the run of the
producer and where the data is needed establishes the per-
formance level of the producer. The producer episodes can
be stretched to the beginning of their associated consumer
episodes. To determine how much the consumer can be
slowed down, we first need to determine what the consumer
is doing. This information can either be specified by the user
on a per-process basis, or one can compute it by observing
which devices or processes the consumer communicates with.
If the task is communicating with a device, the buffer sizes
and the speed requirements of the device establish the mini-
mum speed of the consumer episode. In our current scheme
we assume that the consumer can be slowed down to the same
speed as the producer.

4. Performance prediction

Our prediction mechanism operates on a per-task basis
and uses different algorithms for interactive and periodic
episodes. In both cases, the predictor computes the perfor-
mance factor, which is the ratio of the desired execution speed
and the processor’s maximum speed.

4.1. Interactive episodes

It is difficult to come up with a good prediction strategy for
the optimum performance level of interactive episodes, since
interactive episodes are completely dependent on the user, not
on some activity within the computer. There is no predictable
pattern of recurrence and the lengths of interactive episodes



512 FLAUTNER, REINHARDT AND MUDGE

Figure 4. Cumulative interactive episode length distributions. Left line shows the cumulative number, right line the cumulative percentage of time spent in
interactive episodes whose lengths are less than or equal to the time specified on the x axis. The x axis is drawn using a logarithmic scale. Vertical lines
from right to left: (a) 50 ms, (b) 12.5 ms and (c) 5 ms.

can have orders of magnitude of difference. Our detection
scheme allows us to differentiate between different types of
episodes (i.e., interactive, producer, consumer) but cannot dis-
tinguish between different instances of the same episode in
the same task (e.g., when the same button is pushed in the
GUI as before).

We believe that the ability to distinguish between inter-
active episode instances would improve prediction accuracy.
However, this would require the kernel to have knowledge
about the location in the user program that initiated the given
interactive episode. While not impossible, distinguishing the
real call-sites from the kernel is difficult to do. A simple com-
parison based on the user-mode program counter (PC) is not
sufficient, since programs usually go through at least one level
of indirection (through libC) when calling a system call, and
thus all instances of a program’s calls to a given system call
would have the same user-mode PC. Moreover, since interac-
tive episodes are usually generated as a result of GUI inter-
action, the necessary number of indirection levels is probably
higher due to the use of GUI libraries (e.g., gtk, Xlib). To find
the PC value that really distinguishes one interactive episode
from another, one would have to chase pointers through mul-

tiple levels, where the actual number of levels depends on the
environment (stack layout, libraries, etc.).

Instead of basing a predictor on the ability to distinguish
between interactive episode instances, we looked for a sim-
pler solution that only relies on episode type (i.e., interactive,
periodic producer or periodic consumer) for prediction.

Figure 4 shows the cumulative distribution of interactive
episode lengths for four interactive benchmarks. In each
graph, there are two cumulative distributions: the one on the
left shows the cumulative number and the one on the right
shows the cumulative time spent in interactive episodes of a
given length or shorter. To account for the large variation
of interactive episode lengths, the time axis is logarithmic.
Three vertical lines (a, b, and c from right to left) delineate
the perception threshold (50 ms), the point under which all
episodes finish under the perception threshold at 1/4th of
peak performance (12.5 ms), and 1/10th peak performance
(5 ms). These values were selected because current proces-
sors that are capable of performance and voltage scaling have
a minimum performance of about 1/4th peak performance,
and future processors could possibly extend the rage of per-
formances to 1/10th of peak value.



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 513

These graphs show that while most episodes are very short,
the vast majority of time is actually spent in a small frac-
tion that correspond to the long episodes. For example, in
Ghostview, 92% of the time is spent in 4% of the episodes.
This distribution holds true on the Xemacs benchmark as
well, however in this case even the relatively long episodes
fall under the perception threshold. Xemacs is an example
of an application where one could run almost all of its inter-
active episodes in the lowest performance level without ever
exceeding the perception threshold.

The cumulative episode length distribution graphs imply
that a predictor that predicts that an interactive episode only
needs the minimum available processor performance would
be right more than 90% of the time. However, since these
episodes tend to make up only a small percentage of total
time – and consequently, have a small contribution to energy
use – it is more important to focus on accurately predicting
the performance level of the relatively long episodes.

Our performance-factor predictor for interactive episodes
works by starting off with an initial performance factor, set to
the minimum performance factor of the processor, and then
by successively refining its value. Since the initial setting is
only relevant for the first interactive episode, the choice of ini-
tial value does not have a significant impact on response time
or energy savings. The algorithm uses the following three
steps:

• Starts running the episode at the predicted performance
factor.

• At the end of the episode, computes the duration that cor-
responds to executing at full performance. Use this infor-
mation to compute the optimal performance factor for the
episode.

• Uses the weighted average of optimum performance fac-
tors (PF) as a prediction for future performance factors.

The main observation that we use in our predictor is that it
is straightforward to compute what the optimum performance
level should have been once an interactive episode is over.
During the execution of the episode, the performance-setting
of the processor might be changed by external events (e.g., pe-
riodic episodes start executing), so the algorithm must keep
track of the observed performance factors (pf i ) during the
episode’s execution. At the end of the episode, this infor-
mation can be used to estimate how long the episode would
have been at full performance:

TFullSpeed =
n∑

i=1

pf i (ti − idlei ) + idlei . (1)

This equation computes the full speed execution time for an
interactive episode given n different observed performance
levels during the episode. The variable ti specifies the length
of execution at the ith performance level during an interactive
episode, and idlei is the corresponding amount of idle time.

Based on the estimate of the episode execution time at
full performance, the optimum performance level can be
estimated for an interactive episode. Equation (2) gives

the equation for computing the optimum performance fac-
tor for episodes where TFullSpeed falls between the minimum-
performance threshold and the PerceptionThreshold, where
Tidle specifies the amount of idle time during the episode:

pf optimum = TFullSpeed − Tidle

PerceptionTreshold − Tidle
. (2)

The minimum-performance threshold specifies the episode
duration that could be slowed down to the processor’s min-
imum performance level and still finish under the perception
threshold. If the perception threshold is assumed to be 50 ms
and the processor’s minimum performance is 1/4th of peak,
then this value is 12.5 ms. Episodes that are shorter than the
minimum-performance threshold can be run at the processor’s
minimum performance level. Episodes that are longer than
the perception threshold need to run at full performance.

We predict the performance factor for the next interactive
episode of a given task simply as the average of the optimum
performance factors of past interactive episodes, weighted by
the duration of each episode:

PFprediction =
∑k

j=1 pf j Tj
∑k

j=1 Tj

. (3)

Equation (3) shows the computation for the predicted perfor-
mance factor based on the optimum performance factors (pf j )

for k past interactive episodes. Tj refers to the estimated full-
speed time of an interactive episode. The size of k can be var-
ied to eliminate saturation and to allow temporal variations of
episodes lengths to affect the predictor (see section 4.3).

Since there can be orders of magnitude of difference be-
tween the lengths of interactive episodes (see figure 4), this
strategy means that the predicted performance factor for short
episodes will almost certainly be higher than necessary. This
effect is mitigated by the observation that short episodes have
only a minimal impact on power consumption.

To recover from prediction errors we set an episode-
duration threshold, after which if the episode is still executing,
the performance level is raised to full speed. We refer to this
threshold as the PanicThreshold. While the PanicThreshold
can ensure that interactive performance does not degrade be-
low a certain level, the goal of the predictor is to set the right
performance level at the beginning of the episode, without the
need to transition to a higher performance setting later on.

The setting for the PanicThreshold reflects the user’s toler-
ance for worst-case performance degradation and determines
how speculative the performance factor predictor can be. If
the user has no tolerance for possible performance degrada-
tion, there is no opportunity for speculation and consequently
energy savings. In this case one would be forced to be con-
servative and always run at full performance to avoid mispre-
diction errors that might extend the episode beyond the per-
ception threshold.

Equation (4) shows the computation for the PanicThresh-
old for a given performance factor (PF) and perception
threshold:

PanicTreshold = PerceptionTreshold(1 + PF). (4)



514 FLAUTNER, REINHARDT AND MUDGE

This formula allows a longer panic threshold when the initial
performance setting is high, because in those cases more work
actually gets done per unit time and therefore the cost of an
incorrect setting (in terms of its impact on the user) is lower.
We also make the assumption that the user allows more per-
formance degradation for episodes whose lengths are close to
the perception threshold than for longer episodes. In the worst
case, if an episode were to be exactly 50 ms at full speed, then
its length will be stretched to 97 ms given a performance fac-
tor of 1/4. On the other hand given the same performance
factor, an episode that would have been 200 ms at full speed
would only be stretched to 247 ms.

4.1.1. The perception threshold
In this paper we use a range of perception thresholds dur-
ing some of our experiments. Our motivations for this are
twofold:

• The higher perception thresholds allow us to estimate the
energy and interactive characteristics on a future, higher-
performance processor. The 100 ms threshold on today’s
processor roughly corresponds to the 50 ms threshold on a
processor with twice the performance.

• The perception threshold varies by individual and task and
may be used as a user settable indicator for his preference
for high-performance or energy savings.

Literature about human–computer interaction [1,12] in-
dicates that 20–30 frames per second are sufficient for the
human visual system to perceive the images as a continu-
ous stream. This suggests that the perception threshold is
around 50 ms. Human subject tests in [1] show that percep-
tual causality – when two events are perceived to be fused
together – ends around 100 ms, and for some test subjects
quality degradation begins at around 50 ms.

Other experiments have shown that for simple operations,
such as dragging an object through the screen, as few as 5 up-
dates per second are sufficient to maintain an interactive feel
(200 ms perception threshold). For non-continuous opera-
tions, as much as 1–2 s delays are acceptable [12]. However,

when human motor operations form a feedback loop with vi-
sual activity, then it is more important to have a faster re-
sponse time.

4.2. Incorporating periodic episodes

The optimum performance factor for periodic activity can be
computed easily by either stretching the periodic episode’s
execution to the beginning of the next episode or to the begin-
ning of the associated consumer episode. Since periodic (such
as video or sound playback) applications sometimes adjust the
quality of playback based on processor performance, it is im-
portant to switch to full performance when a periodic appli-
cation starts executing, so that it has a chance to adapt to the
highest performance level. Our assumption is that the user’s
emphasis is on service quality over energy savings. Others
have addressed the trade-off where service quality can be re-
duced to save energy [4].

An important consideration is to find the performance fac-
tor when interactive episodes are present in addition to the
periodic activity. Our strategy is very simple:

• When there is no interactive episode executing on the
processor, we set the performance factor to the one com-
puted for the periodic activity.

• At the beginning of an interactive episode we switch to
the performance factor that was predicted for the task’s
interactive episodes, if it is higher than the periodic per-
formance factor.

Figure 5 illustrates this strategy during two runs of the Ac-
robat Reader benchmark. When there is no periodic activity,
performance is determined only by the prediction for inter-
active episodes. However, when periodic activity is present,
the algorithm switches between the two performance lev-
els, causing significantly more performance transitions. The
spikes that transition the processor to full performance are
triggered by interactive episodes whose lengths exceed the
PanicThreshold. Aside from the initial start at full perfor-
mance when MP3 is executing in the background, there is

Figure 5. Performance factor settings during the execution of the Acrobat Reader benchmark. Two runs of the Acrobat Reader benchmarks are shown side
by side with and without MP3 playback during the run. Perception threshold was set to 200 ms, and data was generated using our simplest strategy (Basic
predictor and XSB model without quantization, see section 6.2). More sophisticated models have significantly fewer performance-level transitions when MP3
is executing in the background. Spikes to full performance represent instances when the PanicThreshold was reached. Note that the graphs do not show
transitions to sleep mode.



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 515

only one extra transition due to reaching the PanicThreshold
on the second figure.

Periodic episodes have the effect of extending the run-
times of interactive episodes [3], which means that the inter-
active performance-factor predictor should be updated when
periodic activity starts. Instead of making the prediction for-
mula more complicated, our approach allows the performance
predictor to quickly adapt to the presence of the periodic ac-
tivity. The next section describes how this is done exactly.

4.3. Implementation details of the Basic predictor

The main features of the Basic predictor are summarized be-
low:

• Interactive episode performance level prediction based on
optimum performance factors of past episodes. Estimates
of the optimal performance factors are computed at the end
of each interactive episode.

• PanicThreshold bounds worst-case performance.

• Periodic performance level computed by observing peri-
odic episodes and their communication patterns.

• Switches between periodic and interactive performance
factors depending on which episode is executing.

An attractive feature of the predictor is that it requires very
little state. We use two variables per task: one keeps track
of the sum of episode length weighted performance factors
(totalPF) and the other keeps track of the total time spent in
episodes (totalTime). In both cases time is the estimated full-
speed execution time of the episode. The performance factor
prediction is thus totalPF divided by totalTime.

One problem with an averaging based predictor is that if
the execution time is long, then temporal variation may not
influence the predictor for a very long time. One way of alle-
viating this problem is periodically rescaling the variables by
dividing them both by the same amount. This way the predic-
tor can better accommodate a changing workload.

Performance prediction for interactive episodes in the
presence of periodic activity relies on rescaling to allow the
predictor to adapt to the changing workload. Our studies
in [3] have shown that even lightweight background activ-
ity, such as MP3 playback, extends the duration of percep-
tible interactive episodes by an average of 14%. This implies
that performance factors predicted based on data without the
background activity would underestimate the necessary per-
formance. To alleviate this problem, when periodic activity is
detected, the totalTime variable is set to 100 ms and totalPF
is recomputed based on the new value. While providing a
reasonable initial prediction, this change allows new perfor-
mance factor data to take hold quickly.

5. Simulation methodology

Our simulator is driven by traces collected using a modified
Linux kernel (2.3.99-pre3) running on a Dell Precision work-
station 410, with only one of the two Pentium II 450 MHz

processors enabled (512M RAM). The software environment
was Mandrake Linux 7 with Helix Gnome 1.2. The traces
used in this study are the same as the uniprocessor traces used
in [3]. All benchmarks were run by a live user. While we have
collected multiple runs in each configuration, in this paper we
only use a single run for each simulation. We aimed to re-
peat each run with MP3 in the background as accurately as
possible, but there are slight variations between the runs. All
the significant events (e.g., mouse clicks, text entry) were per-
formed in the same order during each benchmark run. How-
ever, the exact path of mouse movement (and therefore the
interactive episodes corresponding to them) and the amount
of time between events varies from one run to the other.

The traces include all significant OS events during the
benchmarks execution: thread swap events, system calls, and
task information (e.g., name, pid, etc.). Based on this in-
formation, our simulator can reconstruct the communication
events between the tasks (which imply the synchronization
points between them) and simulate the effects of performance
scaling. The upside of our methodology is that we have the
flexibility to investigate a wide set of architectural parameters.
The downside is that the absence of actual hardware prevents
us from measuring total energy consumption and from cali-
brating our results.

6. Energy and performance implications

Our aim is to develop a performance scaling technique that
can guarantee that user-perceived performance does not de-
grade below a user-settable level. A detailed microarchitec-
ture-level power analysis is beyond the scope of this paper;
however, we can derive some estimates regarding the ex-
pected energy savings using a few simple assumptions.

The metric we use is the energy factor, which is the ra-
tio of the energy used by the scaled workload divided by its
predicted energy use at full performance. Equation (5) gives
the energy factor formula for a given workload, assuming
that the workload is divided into n pieces that execute at the
scaled voltage (vi) and frequency (fi , specified in MHz) for
the scaled amount of time (ti , in s). T refers to the total exe-
cution time at full speed, while the max subscript refers to the
maximum value of the given variable:

EnergyFactor =
∑n

i=1 v2
i fi ti

v2
maxfmaxT

. (5)

Our model focuses on the CPU alone and does not take the
power consumption of other devices (such as memory and
peripherals) into account.

6.1. Processor and power scaling model

Our performance model is based on assumptions from the In-
tel XScale microarchitecture [2]. Our traces were collected
on a 450 MHz Pentium II based workstation, and we make
the simplifying assumption that these traces correspond to the
full-speed performance on each of the simulated models.



516 FLAUTNER, REINHARDT AND MUDGE

Table 1
Frequency–voltage pairs in our energy models. The table shows the given
frequency–voltage pairs of our models. Dashes represent frequency levels
that are not supported in a given model.

Model Frequency (MHz)

150 333 400 600 773 800 1000

XSBase – 1 1.1 1.3 1.5 – –
XSA 0.75 1 1.1 1.3 1.5 – –
XSB 0.75 1.2 1.4 1.75

We assume that for each performance transition, there is
a 20 ms pause, during which the processor does not execute
any instructions. This pause is due to the time it take to re-
synchronize the PLLs for the changed frequency value. After
this, the performance transition time – during which the volt-
age level is changed – is assumed to be 1 ms regardless of
starting and ending performance level. During this time, we
assume that the processor is executing instructions at the rate
corresponding to the lower of the two performance levels, but
energy is being consumed at the higher.

Table 1 shows the known frequency–voltage values that we
used to compute voltage equations (equations (5)–(7)) for ar-
bitrary frequency levels between the minimum and maximum
frequencies. The XSBase model corresponds closely to the
high-end XScale part (80200M733) described in [2]:

vXSBase = −5 × 10−8f 2 + 0.0012f + 0.6261. (6)

However, since this model only has a 2.32× frequency
range, we extended it to 5.15× by allowing it to go as low
as 150 MHz in the XSA model:

vXSA = −4 × 10−7f 2 + 0.0015f + 0.5324. (7)

The XSB models the parameters of a high-end device that
is a research prototype. This processor can vary its perfor-
mance between 150 MHz and 1000 MHz for a 6.67× swing:

vXSB = 5 × 10−7f 2 + 0.0005f + 0.6624. (8)

We use the energy factor as our metric for computing en-
ergy reduction. It is the ratio of a given workload’s energy
consumption using our performance-setting strategy over its
energy consumption using the processor’s peak performance.
In all our energy calculations, we assume that the OS power
manager puts the processor into a low power sleep mode im-
mediately when no instructions are executing. We do not at-
tribute a power cost to this operation and assume that it hap-
pens instantaneously.

During our evaluation we specify a quantization factor
for each of the power models. On an actual processor not
all frequency–voltage pairs can be directly set up, one must
choose from a set of predetermined values. This means that
when the performance estimator requests a given performance
setting, the actual performance value is rounded up to the
next quantum. In our experiments we mostly focus on mod-
els where frequency is quantized at 5% steps (100%, 95%,
90%, etc.). We denote quantized models with the suffix ‘q’
followed by the quantum size.

6.2. Performance and energy characteristics

In this section we examine the characteristics of the basic per-
formance setting algorithm and propose some improvements.
Our evaluation focuses on the following three main goals:

• Minimizing the number of performance-level transitions.

• Minimizing the amount of increase in the duration of per-
ceptible interactive episodes.

• Maximizing energy reduction.

These three aspects are closely interrelated. Reducing the
number of performance-level transitions is important, because
each transition has a delay and energy cost that negatively af-
fects both the perceptible performance and energy savings.
On the other hand, increasing the interactive episode duration
has a positive effect on energy savings, because the longer in-
teractive episodes may stretch, the slower they can run. How-
ever, this has a negative impact on the user-perceived perfor-
mance. While the increase in perceptible interactive episode
duration in all cases falls within the acceptable range (since
ensuring this is part of the performance-setting algorithm’s
job, see section 4.3), we seek to minimize it, i.e., our method-
ology favors faster response time over energy savings.

The perceptible interactive episode-length increase is com-
puted for all scaled episodes that fall above the perception
threshold by dividing the scaled episode length by either the
full-speed episode length or the perception threshold, depend-
ing on whether the original episode length was longer or
shorter (respectively) than the perception threshold.

Table 2 shows our baseline results using the XSB model
(without quantization) and 50 ms perception threshold and as-
sumptions described in section 6.1. The mean perceptible in-
teractive episode length increase in all cases is under 30%.
Applications that have many short episodes (e.g., Xemacs
and Netscape) tend to have the largest increase, while work-
loads with long episodes (e.g., Ghostview and GIMP) exhibit
the smallest increase. This makes sense given that our ac-
ceptable delay function (PanicThreshold) allows more perfor-
mance degradation for shorter episodes than for longer ones.
One should also note that the number of performance tran-
sitions increases significantly (up to four times) when MP3
playback is running in the background. This is because, when
a periodic episode is running, the performance setting algo-
rithm alternates between the setting for interactive episodes
and the setting for the periodic task. The energy factor tends
to be lower when MP3 is running than without. The reason
for this is that in most cases the MP3 player requires a lower
performance-setting than the interactive application. Xemacs
is an exception: the benchmark’s interactive episodes require
a lower performance-setting than the MP3 player.

Table 3 illustrates the effects of quantization on the results.
This model corresponds more closely to an actual hardware
implementation than the one used in the previous table. Quan-
tization tends to slightly reduce energy savings and also re-
duce perceptible interactive episode lengths. The only bench-
mark where this was not the case is Xemacs, where quantiza-
tion corrects a few mispredictions, causing both an increase



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 517

Table 2
Performance characteristics (XSB, 50 ms perception threshold).

Benchmarks No MP3 in background MP3 playback in background

Performance Mean perceptible Median perceptible Energy Performance Mean perceptible Median perceptible Energy
transitions IE length increase IE length increase factor transitions IE length increase IE length increase factor

Acrobat Reader 543 13% 7% 0.91 668 13% 11% 0.84
FrameMaker 155 20% 11% 0.89 191 9% 7% 0.75
Ghostview 510 5% 1% 0.98 1149 5% 1% 0.91
GIMP 919 5% 4% 0.97 1731 5% 4% 0.91
Netscape 1026 18% 14% 0.87 1739 21% 12% 0.82
Xemacs 381 23% 20% 0.30 1417 29% 33% 0.34

Table 3
Performance characteristics (XSBq5, 50 ms perception threshold).

Benchmarks No MP3 in background MP3 playback in background

Performance Mean perceptible Median perceptible Energy Performance Mean perceptible Median perceptible Energy
transitions IE length increase IE length increase factor transitions IE length increase IE length increase factor

Acrobat Reader 28 12% 5% 0.92 664 12% 10% 0.86
FrameMaker 15 17% 11% 0.90 184 7% 6% 0.77
Ghostview 10 4% 0% 0.99 1135 4% 0% 0.92
GIMP 28 4% 3% 0.98 1533 5% 3% 0.92
Netscape 32 17% 12% 0.88 1547 20% 11% 0.84
Xemacs 15 15% 14% 0.26 1416 29% 31% 0.32

Table 4
Performance characteristics with MP3 playback in background (XSBq5, 50 ms perception threshold).

Benchmarks MP3 MP3
IEPerf transition start latency = 1 ms IEPerf transition start latency = 5 ms

Performance Mean perceptible Median perceptible Energy Performance Mean perceptible Median perceptible Energy
transitions IE length increase IE length increase factor transitions IE length increase IE length increase factor

Acrobat Reader 637 11% 4% 0.86 125 13% 6% 0.75
FrameMaker 153 8% 7% 0.76 81 12% 9% 0.73
Ghostview 1031 5% 1% 0.91 222 6% 1% 0.86
GIMP 854 5% 4% 0.88 334 6% 6% 0.83
Netscape 1072 18% 12% 0.83 340 20% 14% 0.72
Xemacs 1047 29% 32% 0.32 980 34% 39% 0.31

in energy savings and a decrease in the average perceptible
episode length.

Perhaps the most striking improvement over the data in ta-
ble 2 is the dramatic reduction in the number of performance-
level transitions (in some cases more than 300-fold) when no
MP3 playback is running concurrently with the interactive ap-
plication. This behaviour is also due to the fact that when
there is no periodic background activity, the successively pre-
dicted performance levels are close to each other, causing
quantization to eliminate the minor corrections. When MP3
playback is present, the deliberate transitions between inter-
active and periodic modes keeps the number of transitions
high.

The number of performance transitions can be further re-
duced based on an observation of figure 4. We have pointed
out that the majority of interactive episodes are very short
(less than 1 ms) and that very little time is spent in those
episodes (<5%). When there is no periodic background ac-
tivity, the effect of the short interactive episodes is negli-
gible since the performance level is always set at the pre-

dicted interactive performance level, however, when there
is an MP3 player in the background, these short interactive
episodes cause an unnecessary transition from the periodic
to the interactive performance level. When the interactive
episode is very short, this transition simply wastes energy,
since the episode is likely to be finished before the transition
is over.

This observation suggests a strategy that waits for a cer-
tain amount of time before starting a transition to the inter-
active performance level. Table 4 illustrates the effects of a
transition-start latency before interactive episodes. The data
is only shown for the benchmarks with MP3 playback in the
background, because there was no significant change in re-
sults when background activity was not present.

Contrasting with table 3 shows that a 1 ms transition-
start latency leaves the energy factors mostly unchanged but
causes a small reduction in the number of performance tran-
sitions. Extending the transition-start latency to 5 ms causes
both a significant reduction in energy consumption and in the
number of performance transitions (up to a 5-fold reduction).



518 FLAUTNER, REINHARDT AND MUDGE

Figure 6. Energy factors corresponding to different perception thresholds using three quantized (5%) models. These graphs show results using the Enhanced
predictor corresponding to a variety of perception thresholds. At each perception threshold level, we show the energy factors for the QSBaseQ5 (top point),
XSAq5 (middle point, connected) and XSBq5 (bottom point) models.

Moreover, the average perceptible interactive episode-lengths
stay at around the same level as before.

6.3. The Enhanced predictor

The previous section suggests two minor changes to the Basic
predictor: (1) to quantize the allowable performance levels;
and (2) to wait for a certain time before changing the perfor-
mance factor when an interactive episode starts. For simplic-
ity we only use a statically specified transition start latency of
5 ms in the Enhanced predictor. A more sophisticated predic-
tor could dynamically compute a per-process value.

Figure 6 shows the energy factors using the Enhanced pre-
dictor and the XSBaseQ5, XSAq5 and XSBq5 power models
given a variety of perception thresholds. Our results show that
while on the measurement machine there is little opportunity
for power savings, as the peak performance of the proces-
sor gets faster, energy savings will be more pronounced. We
must note that our traces were collected on a 450 MHz Pen-
tium II machine, and today’s high-end processors are already
2–3 times faster. We estimate that the energy factor on to-
day’s high-end desktops could be in the 10–75% range at the
50–100 ms perception threshold.

In the figure, energy factors corresponding to the XSAq5
model are connected by a line at each perception threshold,
the results for the XSBaseQ5 and XSBq5 are shown as the
bars above and below each point (respectively). In all cases,
XSBq5 achieves the largest energy savings, while XSBaseQ5
achieves the least. For most applications the difference be-
tween the three models is small: in most cases less than 5%.
However, the difference is significant on the Xemacs bench-
mark runs, since this application spends most of its time at
the lowest performance setting allowed in each model. In this
case, the lower minimum performance levels of the XSA and
XSB models give them a significant edge.

Periodic activity has the effect of vertically compressing
the graph towards its center. The load due to the background

activity increases the energy savings for benchmarks with
long interactive episodes. On the other hand, one can ob-
serve the exact opposite effect when the interactive episodes
are short (Xemacs).

6.4. Desired hardware improvements

We have already shown that by reducing the number of
performance-level changes, quantization can have a positive
effect on both energy savings and interactive performance.
In our measurements we found that the quantum size does
not greatly impact our results. Using the Enhanced predictor,
the difference in energy savings due to quantum sizes of 5%,
10%, and 20% are negligible. While, in all cases the 5% quan-
tum size has the smallest energy factor, the 20% quantum size
is only behind by at most 1%. Using Oracle information, the
difference in energy savings due to different quantum sizes
would always be under 5%.

For all our measurements we assume that there is a 20 µs
pause when a performance transition is initiated, and that a
transition takes 1 ms. The current pause duration, which we
believe is indicative of what can realistically be expected, is
short enough that eliminating it has neither a significant im-
pact on energy savings, nor on perceptible interactive perfor-
mance. However, there might be other reasons for lowering
it, such as latencies incurred during communication with pe-
ripheral devices.

Reducing the lengths of performance transitions, on the
other hand, has a positive effect on both perceptible perfor-
mance and energy savings. While shortening performance
transitions has an overall positive effect, a better prediction
mechanism (as shown by the Oracle predictor) could achieve
even more significant improvements. We believe that the En-
hanced predictor could be improved by giving it the ability
to distinguish between episode instances (as discussed in sec-
tion 4.1), not just episode types.



AUTOMATIC PERFORMANCE SETTING FOR DYNAMIC VOLTAGE SCALING 519

7. Conclusions and future work

In this paper we describe an automatic episode detection
mechanism that can be used to guide the performance-setting
decisions for a processor that supports dynamic performance
and voltage scaling. This system can derive and predict
episode deadlines automatically, without the need to modify
existing user programs. We have shown that our approach
can achieve significant energy savings while ensuring that in-
teractive performance stays at an acceptable level. We are
currently working on the evaluation of our algorithms on a
system that is capable of dynamic voltage scaling.

While our current implementation is tied closely to the
Linux kernel and its application environment, we believe that
the ideas proposed in this paper are also applicable to other
operating systems. We developed our methodology for Linux
by observing common program design and communication
patterns. While the specifics may vary from one OS to an-
other, most modern operating systems have abstractions that
a similar monitoring environment could be built on (i.e., inter-
process communication, multithreading, system calls).

Our mechanism works without modifications of user pro-
grams, however an optional API might be useful for appli-
cations that want to take full advantage of performance scal-
ing. One of the biggest shortcomings of the current predictor
is its inability to distinguish episode instances from one an-
other. An API that would allow the programmer to delineate
and name critical episodes and perhaps optionally specify its
type and deadline would help. The API might consist of the
following system calls:

episode_begin <id> [type] [deadline]
episode_end <id>

The id is a per-task identifier assigned by the programmer to
distinguish one episode from another. The type field option-
ally categories. The deadline field optionally specifies the
maximum length of the episode. The idea behind this API is
that its main role is to give hints to the existing prediction and
communication-tracking mechanism, instead of superseding
it. For example, there is no need to specify dependencies
between episodes since that information can be derived au-
tomatically from information in the kernel.

We have shown that along with peak performance, it is
also important to allow the processor to run slowly. While
there will always be applications that can only run acceptably
at the processor’s fastest setting, an increasing number of ap-
plications are able to take advantage of the lower performance
modes of the processor. As peak performance of the proces-
sor increases, it is important to widen the gap between the
minimum and maximum performance levels of the processor.

We believe that the core idea of our technique – on-line
monitoring and dynamic adaptation – could be extended to
allow the kernel to make better scheduling and service-quality
decisions.

Acknowledgements

We thank Trevor Pering, Mike Morrow, and Shekhar Borkar
of Intel for comments on an early draft of this paper and for
helping us develop a realistic processor model. This work was
supported by an Intel Graduate Fellowship, by an equipment
grant from Intel, and by DARPA contract number F33615-00-
C-1678.

References

[1] S.K. Card, T.P. Moran and A. Newell, The Psychology of Human–
Computer Interaction (Lawrence Erlbaum Associates, 1983).

[2] Developer manual, Intel 80200 processor based on Intel XScale
microarchitecture, http://developer.intel.com/design/
iio/manuals/273411.htm

[3] K. Flautner, R. Uhlig, S. Reinhardt and T. Mudge, Thread-level paral-
lelism and interactive performance of desktop applications, in: Pro-
ceedings of Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX) (November 2000).

[4] J. Flinn and M. Satyanarayanan, Energy-aware adaptation for mobile
applications, in: Proceedings of 17th ACM Symposium on Operating
Systems Principles (SOSP-17) (December 1999).

[5] K. Govil, E. Chan and H. Wasserman, Comparing algorithms for dy-
namic speed-setting of a low-power CPU, in: Proceedings of the First
International Conference on Mobile Computing and Networking (No-
vember 1995).

[6] D. Grunwald, P. Levis, K. Farkas, C.B. Morrey III and M. Neufeld,
Policies for dynamic clock scheduling, in: Proceedings of the Fourth
Symposium on Operating Systems Design & Implementation (October
2000).

[7] C.M. Krishna and Y.-H. Lee, Voltage-clock-scaling adaptive scheduling
techniques for low power hard real-time systems, in: Proceedings of the
Sixth IEEE Real Time Technology and Applications Symposium (RTAS
2000) (2000).

[8] D. Laird, Crusoe processor products and technology (Janu-
ary 2000) http://www.transmeta.com/press/download/
pdf/laird.pdf

[9] J. Lorch and A.J. Smith, Improving dynamic voltage scaling algorithms
with PACE, in: Proceedings of the ACM SIGMETRICS 2001 Confer-
ence (June 2001).

[10] T. Mudge, Power: A first class design constraint for future architec-
tures, in: Proceedings of the 7th International Conference on High Per-
formance Computing (HiPC 2000) (December 2000).

[11] T. Okuma, T. Ishihara and H. Yasuura, Real-time task scheduling for a
variable voltage processor, in: Proceedings of the International Sympo-
sium on System Synthesis (November 1999).

[12] D.R. Olsen, Developing User Interfaces (Morgan Kaufmann, 1998).
[13] T. Pering, T. Burd and R. Brodersen, The simulation and evaluation of

dynamic voltage scaling algorithms, in: Proceedings of International
Symposium on Low Power Electronics and Design 1998 (June 1998)
pp. 76–81.

[14] T. Pering, T. Burd and R. Brodersen, Voltage scheduling in the lpARM
microprocessor system, in: Proceedings of the International Sympo-
sium on Low Power Electronics and Design 2000 (July 2000).

[15] Y. Shin and K. Choit, Power conscious fixed priority scheduling for
hard real-time systems, in: Proceedings of the 36th Annual Design Au-
tomation Conference (1999).

[16] M. Weiser, B. Welch, A. Demers and S. Shenker, Scheduling for re-
duced CPU energy, in: Proceedings of the First Symposium of Operat-
ing Systems Design and Implementation (November 1994).



520 FLAUTNER, REINHARDT AND MUDGE

Krisztián Flautner is currently a Principal Research
Engineer at ARM Limited. He received a Ph.D.
degree in computer science and engineering from
the University of Michigan in 2001. His thesis ex-
plored the relevance of multithreading for interac-
tive desktop workloads and described the implemen-
tation of an automatic power-management algorithm
for processors supporting dynamic voltage scaling.
In the research group at ARM, he is currently work-
ing on the next generation ARM architecture.

E-mail: krisztian.flautner@arm.com

Steven K. Reinhardt received the B.S. degree in
electrical engineering from Case Western Reserve
University in 1987, the M.S. degree in electrical en-
gineering from Stanford University in 1988, and the
Ph.D. degree in computer science from the Univer-
sity of Wisconsin-Madison in 1996. He is currently
an Assistant Professor of Electrical Engineering and
Computer Science at the University of Michigan in
Ann Arbor. His primary research interest is in com-
puter system architecture, focusing on uniprocessor

and multiprocessor memory systems, multithreaded systems, and system
simulation techniques. He is the recipient of a 2001 Sloan Research Fel-
lowship and a 1998 NSF CAREER award. Dr. Reinhardt is a member of
ACM, IEEE, and the IEEE Computer Society.
E-mail: stever@eecs.umich.edu

Trevor Mudge received the B.Sc. degree from the
University of Reading, England, in 1969, and the
M.S. and Ph.D. degrees in computer science from the
University of Illinois, Urbana, in 1973 and 1977, re-
spectively. Since 1977, he has been on the faculty
of the University of Michigan, Ann Arbor. He is
presently a Professor of Electrical Engineering and
Computer Science. He recently concluded a ten
years term as the Director of the Advanced Com-
puter Architecture Laboratory – a group of eight fac-

ulty and about 70 graduate students. He is the author of numerous papers
on computer architecture, programming languages, VLSI design, and com-
puter vision. He has also chaired about 30 theses in these research areas.
His research interests include computer architecture, computer-aided design,
and compilers. In addition to his position as a faculty member, he runs Idiot
Savants, a chip design consultancy, and he is a technical advisor to several
venture firms. Trevor Mudge is a Fellow of the IEEE, a member of the ACM,
the IEE, and the British Computer Society.
E-mail: tnm@eecs.umich.edu


