EECS 591
Distributed Systems

Manos Kapritsos
Winter 2018

Slides by: Lorenzo Alvisi
3-Phase Commit

Coordinator c

1. sends VOTE-REQ to all participants

Participant p_i

2. sends $vote_i$ to Coordinator

 if $vote_i = \text{No}$ then

 $decision_i := \text{Abort}$

 halt

3. if (all votes are \textbf{Yes}) then

 send \textbf{Precommit} to all

 else

 $decision_c := \text{Abort}$

 send \textbf{Abort} to all who voted \textbf{Yes}

 halt

4. if received \textbf{Precommit} then

 send \textbf{Ack}

5. collect \textbf{Ack} from all participants

 When all \textbf{Ack}'s have been received:

 $decision_c := \text{Commit}$

 send \textbf{Commit} to all

6. When p_i receives \textbf{Commit},

 sets $decision_i := \text{Commit}$ and halts
A simplifying assumption

No communication failures

Timeout on a process = process failed

A process is operational if it is currently running and participating in the protocol
Timeout actions

Coordinator c

- **Step 2:** p_i is waiting for VOTE-REQ from the coordinator
- **Step 3:** Coordinator is waiting for vote from participants
 - Same as in 2PC
- **Step 4:** p_i is waiting for Precommit
 - Run termination protocol
- **Step 5:** Coordinator is waiting for Ack's
 - Coordinator sends Commit
- **Step 6:** p_i is waiting for Commit
 - Run termination protocol

Participant p_i

- **Step 2:** p_i is waiting for VOTE-REQ from the coordinator
- **Step 3:** Coordinator is waiting for vote from participants
 - Same as in 2PC
- **Step 4:** p_i is waiting for Precommit
 - Run termination protocol
- **Step 5:** Coordinator is waiting for Ack's
 - Coordinator sends Commit
- **Step 6:** p_i is waiting for Commit
 - Run termination protocol
Termination protocol

• When \(p_i \) times out, it starts an election protocol to elect a new coordinator.

• The new coordinator sends STATE-REQ to all processes that participated in the election.

• The new coordinator collects the states and follows a set of termination rules.
The new coordinator collects the states and follows a set of termination rules:

TR1: if some process decided **Abort**, then
decide **Abort**
send **Abort** to all
halt

TR2: if some process decided **Commit**, then
decide **Commit**
send **Commit** to all
halt

TR3: if all processes that reported state are uncertain, then
decide **Abort**
send **Abort** to all
halt

TR4: if some process is committable, but none committed, then
send **Precommit** to uncertain processes
wait for **Ack**’s
send **Commit** to all
halt
Termination protocol and failures

Processes can fail while executing the termination protocol

- if \(c \) times out on \(p \), it can just ignore \(p \)

- if \(c \) fails, a new coordinator is elected and the protocol is restarted (election protocol to follow)

- total failures will need special care
Recovering p

- If p fails before sending Yes, decide **Abort**
- If p fails after having decided, follow decision
- If p fails after voting Yes, but before receiving decision value
 - p asks other processes for help
 - 3PC is non-blocking: p will receive a response with the decision
- If p has received **Precommit**
 - still needs to ask other processes (cannot just **Commit**)

No need to log **Precommit**!
The election protocol

- Processes agree on linear ordering (e.g. by pid)
- Each process p maintains a set UP_p of all processes that it believes to be operational
- When p detects failure of c, it removes c from UP_p and chooses smallest q in UP_p to be the new coordinator
- If $p = q$, then p is the new coordinator
- Otherwise, p sends UR-ELECTED to $q
WHAT IF...?

What if p', which has not detected the failure of c, receives a STATE-REQ from q?

- it concludes that c must be faulty
- it removes from $UP_{p'}$ every $q' < q$

What if p' receives a STATE-REQ from $q' < q$ after it has changed the coordinator to q?

- p' ignores the request
Total failure

Suppose that \(p \) is the first process to recover and that \(p \) is uncertain. Can \(p \) decide Abort?

Some process could have decided Commit after \(p \) crashed!

\(p \) is blocked until some process \(q \) recovers such that either

- \(q \) can recover independently
- \(q \) is the last process to fail: then \(q \) can simply invoke the termination protocol
Determining the last process to fail

Suppose a set R of processes has recovered

Does R contain the last process to fail?

- the last process to fail is in the UP set of every process
- so the last process to fail must be in

$$
\bigcap_{p \in R} UP_p
$$

R contains the last process to fail if:

$$
\bigcap_{p \in R} UP_p \subseteq R
$$
Administrivia

- Homework #1 handed out today after class
 - Due Monday, Feb 5, before class (prefer hardcopy)
 - Individual work only
 - No collaboration with classmates
 - No looking up solutions online
 - No handwritten answers
- Research project
 - Declare your team and topic by Feb 7
 - Not sure what to do? Come talk to me.
Consensus and Reliable Broadcast
Broadcast

If a process sends a message m, then every process eventually delivers m.

How can we adapt the spec for an environment where processes may fail?
RELIABLE BROADCAST

Validity: If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m.

Agreement: If a correct process delivers a message m, then all correct processes eventually deliver m.

Integrity: Every correct process delivers at most one message, and if it delivers $m \neq SF$, then some process must have broadcast m.
Terminating Reliable broadcast

Validity
If the sender is correct and broadcasts a message \(m \), then all correct processes eventually deliver \(m \)

Agreement
If a correct process delivers a message \(m \), then all correct processes eventually deliver \(m \)

Integrity
Every correct process delivers at most one message, and if it delivers \(m \neq SF \), then some process must have broadcast \(m \)

Termination
Every correct process eventually delivers some message
Consensus

Every process has a value v_i to propose. After running a consensus algorithm, all processes should deliver the same value.
Consensus

Validity
If all processes that propose a value propose \(v \), then all correct processes eventually decide \(v \)

Agreement
If a correct process decides \(v \), then all correct processes eventually decide \(v \)

Integrity
Every correct process decides at most one value, and if it decides \(v \), then some process must have proposed \(v \)

Termination
Every correct process eventually decides some value
Properties of \textit{send}(m) and \textit{receive}(m)

Benign failures:

\textbf{Validity} \quad \text{If } p \text{ sends } m \text{ to } q, \text{ and } p, q \text{ and the link between them are correct, then } q \text{ eventually receives } m

\textbf{Uniform* integrity} \quad \text{For every message } m, q \text{ receives } m \text{ at most once from } p, \text{ and only if } p \text{ sent } m \text{ to } q

* A property is called uniform if it applies to both correct and faulty processes
Model

- **Synchronous** message passing
 - Execution is a sequence of rounds
 - In each round every process takes a step
 - sends messages to neighbors
 - receives messages send in that round
 - changes its state

- Network is fully connected
- **No communication failures**
A simple consensus algorithm

Process p_i:
Initially $V = \{v_i\}$

To execute $\text{propose}(v_i)$:
1. Send $\{v_i\}$ to all

$\text{decide}(\)$ occurs as follows:
2. for all $j, 0 \leq j \leq n + 1, j \neq i$, do
3. receive S_j from p_j
4. $V := V \cup S_j$
5. decide $\min(V)$
AN EXECUTION

\[p_1 \quad p_2 \quad p_3 \quad p_4 \]
AN EXECUTION

What should p_3 decide at the end of the round?
What should p_3 decide at the end of the round?
A process that receives a proposal in round 1, relays it to others during round 2.

Suppose p_3 hasn’t heard from p_2 at the end of round 2. Can p_3 decide?
A correct process p has not received all proposals by the end of round i. Can p decide?

Another process may have received the missing proposal at the end of round i and be ready to relay it in round $i + 1$.
 Dangerous chains

Dangerous chain

The last process in the chain is correct, all others faulty
LIVING DANGEROUSLY

How many rounds can a dangerous chain span?

- f faulty processes
- At most $f + 1$ nodes in the chain
- Spans at most f rounds

It is safe to decide by the end of round $f + 1$!
THE ALGORITHM

Process p_i:
Initially $V = \{v_i\}$

To execute $\text{propose}(v_i)$:
round $k, 1 \leq k \leq f + 1$

1. Send $\{v \in V: p_i \text{ has not already sent } v\}$ to all
2. for all $j, 0 \leq j \leq n + 1, j \neq i$, do
3. receive S_j from p_j
4. $V := V \cup S_j$

$\text{decide}(\)$ occurs as follows:
5. if $k = f + 1$
6. decide $\min(V)$
To execute \texttt{propose}(v_i):

round \(k, 1 \leq k \leq f + 1 \)

1. Send \(\{v \in V: p_i \text{ has not already sent } v \} \) to all

2. for all \(j, 0 \leq j \leq n + 1, j \neq i \), do

3. receive \(S_j \) from \(p_j \)

4. \(V := V \cup S_j \)

\textbf{decide}() occurs as follows:

5. if \(k = f + 1 \)

6. decide \(\min(V) \)

Every correct process

\begin{itemize}
 \item Reaches round \(f + 1 \)
 \item Decides \(\min(V) \), which is well defined
\end{itemize}
To execute `propose(v_i)`:

- round \(k, 1 \leq k \leq f + 1 \)

1. Send \(\{v \in V: p_i \text{ has not already sent } v\} \) to all
2. for all \(j, 0 \leq j \leq n + 1, j \neq i \), do
3. receive \(S_j \) from \(p_j \)
4. \(V := V \cup S_j \)

`decide()` occurs as follows:

5. if \(k = f + 1 \)
6. decide \(\min(V) \)

At most one value:
One `decide()` and \(\min(V) \) is unique

Only if it was proposed:
- To be decided, must be in \(V \) in round \(f + 1 \)
- If value = \(v_i \), then it is proposed in round \(1 \)
- else, suppose it was received in round \(k \).
 By induction:
 \(k = 1 \)
 - By Uniform Integrity of underlying send and receive, it must have been sent in round \(1 \)
 - By the protocol, and because we only have benign failures, it must have been proposed
- Induction hypothesis: all values received up to round \(k = j \) have been proposed
 \(k = j + 1 \)
 - Sent in round \(j + 1 \) (Uniform Integrity of send and synchronous model)
 - Must have been part of \(V \) of sender at end of round \(j \)
 - By the protocol, must have been received by sender by the end of round \(j \)
 - By induction hypothesis, must have been proposed
To execute $\text{propose}(v_i)$:

1. Send $\{v \in V: p_i \text{ has not already sent } v\}$ to all
2. for all $j, 0 \leq j \leq n + 1, j \neq i$, do
3. receive S_j from p_j
4. $V := V \cup S_j$

decide() occurs as follows:

5. if $k = f + 1$
6. $\text{decide } \min(V)$

Suppose every process proposes v^*

Since we only deal with crash failures, only v^* can be sent

By Uniform Integrity of send and receive, only v^* can be received

By the protocol, $V = \{v^*\}$

$\min(V) = v^*$

$\text{decide}(v^*)$
To execute \(\text{propose}(v_i) \):

round \(k, 1 \leq k \leq f + 1 \)

1. Send \(\{v \in V: p_i \text{ has not already sent } v\} \) to all
2. for all \(j, 0 \leq j \leq n + 1, j \neq i \), do
3. receive \(S_j \) from \(p_j \)
4. \(V := V \cup S_j \)

\(\text{decide()} \) occurs as follows:

5. if \(k = f + 1 \)
6. decide \(\min(V) \)

Lemma 1

For any \(r \geq 1 \), if a process \(p \) receives a value \(v \) in round \(r \), there exists a sequence of distinct processes \(p_0, p_1, \ldots, p_r \) such that \(p_r = p \), \(p_0 \) is \(v \)'s proponent and in each round \(p_{k-1} \) sends \(v \) and \(p_k \) receives it.

Proof

By induction on the length of the sequence
To execute \(\text{propose}(v_i) \):
\[
\begin{align*}
\text{round} \quad k, 1 \leq k \leq f + 1 \\
1. \quad \text{Send } \{ v \in V : p_i \text{ has not already sent } v \} \text{ to all} \\
2. \quad \text{for all } j, 0 \leq j \leq n + 1, j \neq i, \text{ do} \\
3. \quad \text{receive } S_j \text{ from } p_j \\
4. \quad V := V \cup S_j
\end{align*}
\]
\(\text{decide()} \) occurs as follows:
\[
\begin{align*}
5. \quad \text{if } k = f + 1 \\
6. \quad \text{decide } \min(V)
\end{align*}
\]

Lemma 2
In every execution, at the end of round \(f + 1 \), \(V_i = V_j \) for every correct process \(p_i \) and \(p_j \).

Agreement follows from Lemma 2, since \(\min \) is a deterministic function.

Proof
- Show that if a correct \(p \) has \(x \) in its \(V \) at the end of round \(f + 1 \) then every correct process has \(x \) in its \(V \) at the end of round \(f + 1 \).
- Let \(r \) be the earliest round \(x \) is added to the of a correct process. Let that process be \(p^* \).
- If \(r \leq f \), then \(p^* \) sends \(x \) in round \(r + 1 \leq f + 1 \). Every correct process receives \(x \) and adds it to its \(V \) in round \(r + 1 \).
- **What if \(r = f + 1 \)?**
 - By Lemma 1, there exists a sequence of distinct processes \(p_0, \ldots, p_{f+1} = p^* \).
 - Consider processes \(p_0, \ldots, p_f \).
 - \(f + 1 \) processes; only \(f \) can be faulty.
 - One of \(p_0, \ldots, p_f \) is correct and adds \(x \) to its \(V \) before \(p^* \) does it in round \(r \).

Contradiction!